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Abstract

Weighted tardiness is easily one of the top three criteria in écheduling,

(one reported survey [7] suggests it is the most important practical

criferion) yet little has been done for real world problems of this type, due
to its inherent complexity. (In fact, simple, intuitive, extremely accurate
heuristics for even the stylized one machine problem have not been previously
available.) Good heuristics are thus essential; one major approach is to
design excellent heuristics for simpiified versions of real problems, and then
to modify these to build and test heuristics for more complicated situations.
We follow this approach. We have built and tested such a heuristic for the
stylized one machine problem. It is one of the simplest ever proposed, has
good intuitive appeal, and has been found in testing to be extremely accurate.
The heuristic has also been modified and tested for parallel machines, and
flow shops. All these results are reported briefly here. A vegy brief sum-
mary of further research for proportionate flow shops, bottleneck shops and
job shows, currently underway, is also given, followed by a sketch of future
research directions. (This article is a condensation of three technical

reports. [18], [22], [25].)



ACCURATE MYOPIC HEURISTICS FOR TARDINESS SCHEDULING

1. Introduction and Summary

In a survey, Panwalker, Dudek, and Smith [7] report that the propor-
tion of schedulers in industry who ranked meeting due dates or minimizing
penalty costs as the most important criterion was larger than for any other
criterion. The class of such criteria would include mainly average tardiness,
weighted average tardiness, maximum tardiness and weighted percentage tardy.
It can be argued that weighted average tardiness is the most important of
these. (In any event the performance of our heuristics developed by us seems
to be highly correlated for these three, as will be apparent below in the flow
shop results.) Thus the design of good heuristics for real world problems
with a weighted tardiness criterion would seem to be very important,
especially if these heuristics also turn out to be robust. Yeturelatively
little has been done for tardiness in realistic environments since Carroll
introduced COVERT in 1965 [4].

One major approach to developing good heuristics for complex environments
is to design e%cellent heuristics for the stylized one machine problem, and
then to modify these to build and test heuristics for more reaiistic situa-
tions. We follow this approach. (Other major approaches such as search
techniques or relaxation procedures can still often benefit by the addition of
;imple heuristics for guidance.)

Even for the stylized one machine problem, simple, intuitive, extrenmely
accurate heuristics have not been available. 1In Sections 2 and 3 we discuss
5 earlier heuristics for the simple problem: WSPT, EDD, Schild and Fredman
[24], Montagne [15], Baker [2]. Next we present a linear and an exponential

version of a new myopic heuristic which behaves asymptotically correctly
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when the due dates are either too tight or too slack and which also approxi-
mates the choices of pairwise interchange. (Preliminary study resulted in the
selection of the exponential version.) The Schild and Fredman [24] procedure
could not be evaluated since it was devised to be an exact procedure, which was
later shown to be wrong. Baker's procedure [2] cannot easily be generalized
to the weighted casé, and thus was also not evaluated. WSPT, EDD, Montagne,
and the'new MYOPIC were tested against optimal solutions when they could be
found, (lower and upper bounds otherwise), for 1,920 problems. The myopic
ﬁrocedure consistently outperformed the other heuristics in an average sense
by a wide margin. There was only one setting of problem parameters for which
the myopic solution exceeded the optimal solution by more than 0.07 of an
average processing time per job.

We turn now to the parallel machine extension presented in Section 4.
There do not seem to be any previous heuristics here, even when all machines
are identical. However, we can generalize our heuristics and the earlier omne
machine heuristics to the equal parallel machine case in a rather obvious way.
All the simple heuristics provide a‘dynamic ranking of the jobs. When a
machine becomes available) assign the highest ranking job. Due to greater
computational complexity, we did not attempt to compute optimal solutions for
our benchmark. (A new approach allows some optimal testing for smaller
problems; such further testing is currently in progress.) We tested EDD,
WSPT, Montagne, Two-pass Montagne, and the Myopic heuristic on 1,280 problems.
In general, the Myopic outperformed all others in an average sense with only a
few excgptioﬁs. In these exceptions, the Myopic cost never exceeded the best
cost by more than 0.002; also its parameter value coulé be adjusted slightly
to obtain the best result. 1In order to provide more conservative benchmarks,

a second study was done in which lower bounds were calculated for each problem
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by several methods. Average myopic deviations from the "best" lower bound
were 0.01, 0.08, 0.16, 0.21 by increasing tardiness factor, for a total of 320
problems. The myopic procedure, in a third set of experiments was followed by
pairwise interchange to try to get a different type of benchmark. Not much
improvement to the heuristic resulted; as expected from its design, the Myopic
heuristic is usually locally o?timal or near optimal.

We turn next to flow shops in Sections 5 and 6. It turns out that the
Myopic heuristic can usually be applied in a local dispatch fashion with good
results. This is consistent with weil known results fordaverage lateness
[1]. However when a heuristic employs the due date, this unfortunately means
that the due date off the current machine (operation due date) must be
determined. This requires knowing total processing time and waiting time

after this machine for each job (we term these "lead times"). A theorem for

preemptive proportionate shops is that if lead times are known exactly,

solving the problem 16cally at each machine will exactly solve the global
problem. (A flow shop is said to be proportionate if the ratio of processing
time for any 2 jobs is constant across machines.) Thus if shops in practice
are "nearly” proportionate, accurate estimation of lead times is central.
Lead times in the study were estimated by two methods: 1. A fixed multiple of
remaining process time. (The constant was a parameter to be investigated)

2. TIterative estimation of actual lead times. Neither optimums nor lower
bounds could be obtained. Seven competing heuristics were evaluated:

1. First Come First Served (FCFS), 2. Weighted Shorted Process Time (WSPT),
3. Earliest (Global) Due Date (EDD), 4. Slack per Remaining Operation
(s/oP), 5. COVERT, 6. MYOPICl, 7. MYOPIC2. A total of 1,280 problems were
run. For each problem the standard of comparison was excess above the "best

result of the 7 heuristics.” To summarize the results, MYOPIC came in first
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and second, COVERT was third, WSPT a poor fourth: MYOPIC2 = 0.009; MYOPICl =
0.04; COVERT = 0.09; WSPT = 0.37. FCFS was last with 1.36. ANext, a second
study was run with the same set of problems to check out robustness of the
various heuristics to misspecificatiop of the criterion function. The cri-
teria evaluated were weighted tardiness, maximum tardiness, 7% tardy jobs, work
in process (WIP), work in system (WIS). (The first 3 are tardiness measures,
the last two inventory measures.) The three tardiness measures behaved very
similarly, giving a combined ranking order of MYOPIC2, MYOPICl, COVERT, WSPT,
EDD, S/0P, FCFS (almost identical to the first study). /The two shop inventory
measures differed from the tardiness rankings (and from each other), with an
average ranking of EDD, S/OP, MYOPIC2, MYOPICl, WSPT, COVERT, FCFS. (The

poor showing of WSPT is an average of a very good showing on WIP, and a very
poor showing on WIS). Note that MYOPIC2 ranks first and third across tardi-
ness and inventory measures, a truly remarkable achievement. MYOPICl, which
is easier to use, ranks second and fourth. COVERT ranks third and fifth,

WSPT ranks fourth and fifth.

In Section 7 we very briefly indicate current other related research on
the tardiness problem. For equal parallel machines, the authors have recent-—
ly discovered a method for determining optimal solutions whose effort is the
product of the number of machines, and the effort for one machine with the
same total number of jobs. Thus it now becomes feasible to run some smaller
problems with the optimum as a benchmark. A proportionate flow shop is one in
which any two jobs have the same ratio of processing time on every machine. A
nunber of simple propositions have been proved for the pre-emptive case.

These results should help ;onstruct good heuristics for the non-preemptive
case if there is only "mild" departure from proportionality [25]. Peng Si Ow

[20] has recently achieved a heuristic for flow shops with a bottleneck
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machine which are better than anj of MYOPICL, MYOPIC2, or COVERT in this
situation. Vepsalainen has had good succes; to date extendiﬁg the myopic to
dynamic job shops. Again MYOPIC2 is usually superior. He has also tested a
number of improvements such as anticipated work in queue (AWINQ)
modifications.

We finally discuss possible future research in Section 8. Some of these
directions include:

1. Add dynamic arrivals and other time constraints to the one

machine problem. -

2. Add precedence constraints to the one machine problem.
3. Treat uniform (proportionate) parallel processors.
4. Treat general unequal parallel processors.
5. Treat the generalized flow shop.
6. Treat bottleneck job shops.

7. Develop myopic procedures for other criteria.

Plans for each of these possibilities will be briefly sketched.

2. One machine--Heuristic Design

The next two sections represent a summarized version of the research
reported in [18]. Lenstra [14] has shown that the simple weighted tardiness
problem is NP-complete, which motivates the heuristic approach taken here.
?roblem definition: n jobs arrive simultaneously with processing time P;> due
date di’ and weight v, . We minimize the sum of penalties for jobs. 1If £
is the completion time of 1, its penalty is wi(ti - di)+' Turning to past
heuristics, the weighted shortest processing time rule (WSPT) is known [2] to
be asymptotically optimal as the load increases, and to minimize weighted

lateness. The earliest due date (EDD) rule will find, for lightly loaded
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shops, a perfect zero tardiness schedule if one is possible [2]. Schild and
Fredman combined these two rules to produce a procedure [24] known not to be
optimal [8]. There seems to be no computational studies. Montagne's method
[15] is to rank jobs by decreasing wi/(pi(Zpj - di))’ that is, the WSPT
measure multiplied by the "tardiness if last.” Although this method turned
out to test here fairly well, it is not clear how to generalize "last of all"
in a dynamic long horizon context. Baker [10] presents a good heuristic with
the right asymptotic behavior for the unweighted case. It is appears to be
difficult to generalize to the weighted case; we did not test it.

In developing our new myopic heuristic, we desired one with the correct
asymptotic behaviors, plus local optimality under adjacent pairwise
interchange.

Proposition: For two adjacent jobs in an optimal solution

W.
3 {1 -

ij:_{l_(di_t—Pi)‘l-}) (dj“t—Pj)+
P -

i Pj PJ Py
where t is the start time for job i.

To form a heuristic, we first replace 1 and pj by the average S: (This

approximation allows each job to be giQen a priority in isolation rather than

investigating all pairs, reducing effort from 0(n2) to O(n), at some cost of

accuracy.) Secondly we allow a family of rules by replacinglg by k;, and

determining the best k experimentally. For a larger k than the nominal k=1,

the priority begins to rise somewhat before it would be necessary for local

optimality. It turns out that this look ahead feature helps to approximate

3 and 4 way conflicts. A k=2.0 usually turns out to be about the best. Thus

our priority rule becomes
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The solid heavy line in Figure 1 illustrates the first form of our heuristic

priority rule, which we dub "linear" for the way the priority falls off.

Pi = Priority

Linear

Exponential

W /Pi)

Slack =
(di -t - Pi)

¢ = >
FIGURE 1

Myopic Heuristics

After some initial testing it became apparent that simply assigning O
priority to all jobs with more than 2p slack is not good. Jobs should retain
some priority based both on due date and weighted processing time. An expo-
nential decay proved best (typical k=0.5).

W
i k +
Ry =—exp {-=(d; -t -p)}
Py D
The rule is the same for negative slack, but dies off like the dashed line
for positive slack. The rule now becomes in this region a due date rule,

except that due dates are shifted somewhat forward or backward depending on

the WSPT ranking values. We dub this the "exponential" version.



3. One machine--Computatiomnal Study.

The original study [18] devotes several pages to previous researchers'
experimental design to help motivate ours. However, this discussion is
omitted here. Our own measure of the performance of heuristic j is !

Cj = (vj - v*)/(E*n*p). That is, the normalized excess cost of heuristic j

is the excess of its cost over optimal divided by the product of average job
weight, number of jobs, and average processing times. This measures gives the
average extra tardiness per job for a heuristic as a fraction of a standard
processing time. (Percentage errors are very misleading for answers all very
close to zero.)

We omit also any discussion here of the carefully designed procedures
for obtaining optimal benchm;rks where possible, and lower/upper bounds other-—
wise. (Basically optimal benchmarks for n=10 and n=20 problems, and about

50/50 between optimal and bounds for n=30.) Turning now to the experimental

design, some parameters need explanation. The tardiness factor is a measure

of % of jobs which on. average would be tardy in a FCFS sequence. The due date
range exprgsses."maximum“ range in due dates as a fraction of np.

We did a factorial design with:

4 tardiness factors: 0.2, 0.4, 0.6, 0.8

2 job time coef. of variation: 0.1, 0.3

1 uniform distribution for wi/pi [0,2]

2 correlations between P; and di 0.0, 0.5
2 due date range factors 0.4, 0.8
3 numbers of jobs 10, 20, 30

20 replications per cell

leading to 1,920 problems. From prior testing, we selected the exponential

version of our myopic heuristic with k=0.5.
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Table 1 presents a summary of our results for n=10 and n=20. The case
n=30 is more complicated, since only half of the problems coﬁld be solved to
optimality. The optimal solution comparisons for n=30 are presented in Table
2, while comparison with best lower bounds obtained for the other problems
are shown in Table 3. For the same unsolved problems Table 4 compares the
heuristic vs. best upper and lower bounds.

In Tables 1, 2, and 3 we see that the myopic heuristic is consistently
close to optimal, and superior to other heuristics. It 1s also extremely
consistent over parameter variations. In only one parameter setting did the
myopic solution exceed the optimal solution by more than 0.07 of an average
processing time. In only one setting was the myopic second best, and then
by only 0.006. Table 3 shows that for the unsolved n=30 problems, the myopic
outperforms the second best heuristic (Montagne) by a wide margin. Table 4
shows that it is very difficult go improve on the myopic heuristic in these
cases, even with extensive computational effort.

What can be said about the other heuristics? EDD is good at a tardiness
of 0.2 butﬁdeteriorates very rapidiy at high tardiness to be by far the worst.
WSPT is slightly worse than EDD at low tardiness, but is much better at high
tardiness. The Montagne procedure and the Myopic procedure dominate these
at all parameter settings. The Montagne procedufe is nearly competitive with
the Myopic for n=10, but becomes uncompetitive rapidly for higher numbers of
jobs.

In summary, it is rather clear from our computational study that the new
myopic procedure performs close to optimally throughout a range of parameters,
and also outperforms other heuristics, by large margins in many cases. It is
simple, easy to implement, and can be used in a dynamic dispatching mode. We

shall see that it generalizes readily to more realistic problems.
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TABLE 2

ONE MACHINE

Mean Performance Measure for Solved 30 Job Problems

(n = 30)
R = 0.4
OPT EDD WSPT MP MYO
Tardiness | # Fully Solved | Value | Excess | Excess | Excess | Excess
0.2 73 0.027 | 0.107 0.099 0.035 0.017
0.4 26 0.400 | 1.125 | 0.290 0.164 0.027
0.6 8 2.069 | 2.049 0.439 0.350 0.056
0.8 16 5.186 | 4.242 0.564 0.315 0.018
R = 0’8
OPT . EDD WSPT MP MYO
Tardiness | # Fully Solved | Value | Excess | Excess | Excess | Excess
0.2 80 0.001 | 0.033 0.224 0.020 0.007
0.4 38 0.172 | 0.521 0.739 0.260 0.048
0.6 10 1.600 | 2.412 1.215 0.634 0.073
0.8 20 5.380 | 4.223 0.837 0.352 0.030
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4. Parallel Machines

We modify the problem just given only in that n jobs now arrive simul-
taneously to m initially available machines. (The modification to allow
dynamic arrivals and initial availability is simply the standard dispatch
modification.) A much more complete discussion of prior research, lower bound
methodology, etc. is given in the original paper [11].

There seem to be no prior study of heuristics for weighted tardiness and
parallel macﬁines. A number of related, preemptive, and special case results
are given in [13, 10, 9, 19, 23]. One heuristic for the unweighted case is
known [3], which unfortunately reduces to EDD for one machine, which as we
have seen is very poor.

In extending our heuristic to the parallel machine case, we first note:

Proposition 1: 1If all jobs have equal length, any two jobs scheduled jth

and (j+l)th on two different machines may be pairwise interchanged using the
proposition of Section 2.

Proposition 2: A similar remark applies for any two adjacent jobs on the

same machine.

These propositions guide our construction of a heuristic. Order the
jobs in a list by the exponential version of the one machine myopic heuristic.
Assign the first job on the list to the first available machine. Repeat.
Note that our heuristic is a single-pass procedure; partitioning by machine
and sequencing on machine are simultaneous; it is a dispatch procedure. (Re-
sequencing after assignment was found to give only very small improvement, and
destroyed the dispatch feature.)

We adapt WSPT, EDD, and Montagne from Section 2 in a similar way to give

competing heuristics. We also test a two-pass version of Montagne heuristic:

1. basic heuristic 2. re-sequence by Montagne on each machine.
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We turn now to the experimental design, which is very similar to that
for the one machine case.

4 tardiness factors: 0.2, 0.4, 0.6, 0.8

2 job time coef. of variation: 0.1, 0.3

1 uniform distribution for wi/pi [0,2]

Correlation between P; and di 0

2 due date range factors 0.4, 0.8
jobs per machine 15, 30
machines | 2,5
replications 20

Thus there were a total of 1,280 problems tested. The normalization applied
to costs to compare heuristics is the same as given in the iast section. Pre-
liminary tests suggested the exponential myopic be used with k=1.0. (We could
have used R = 0.5 as in single machine case. However, better results can be
achieved by slightly increasing the value of k for larger number of machines.

In Tables 5, 6, 7, and 8 we sece that the myopic heuristic is consistently
superior to other‘heuristics. In ﬁhe only two parameter settings which were
exceptions, the myopic heuristic was second by no more than 0.0021 The two
pass version of Montagne's method was almost always second. Our heuristic
scored dramatically better than the second best for large range due dates (R =
0.8) less dramatically better for small ranges (R = 0.4). Our advantage also
increases moderately by tardiness factor. It seems relatively insensitive to
numbers of jobs and machines. EDD deteriorates very rapidly with increasing
tardiness factor, as before; WSPT is superior only to EDD as before.

In the few situations in the above experiment where the procedure did not
do as well, it seemed possible to fine tune the parameter. This was done

successfully, and is reported in the original paper [22].
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We turn now to a second study, in which we calculated several lower
bounds on each problem, and recorded the best one. The myopic heuristic was
then compared to the lower bound. Table 9 shows this comparison for 320
problems. Each line of the table represents the average of 20 replications;
parameter variations are shown in the table. The myopic scores very well.
Average deviations from the best lower bound were 0.01, 0.08, 0.16, 0.21 by
increasing tardiness factor. Since no high-computational upper bounds have
been obtained which are not much closer to the heuristic than to lower bounds,
these results are very satisfying. In Table 10 we turn to that issue. TFor
the same 320 problems a phase 2 pairwise interchange was added to the myopic.

Note that there was very little improvement.

5. Flow Shops—-Heuristic Design

We omit details of earlier studies, details of the experimental design,
and fine detail of analysis; these may be found in [4]. It turns out that the
myopic heuristic can be applied in a local dispatch fashion with good results,
both here in flowshopo, and in current research by Vepsalainen in job shops.
This is consistent with many early studies validating the local use of WSPT
for weighted average lateness [l11l, 21]. However, in the current case, the
operation due date is needed off the local machine. This is the global due
date minus the lead time after this machine, defined as the actual sum of
remaining processing time and waiting. Thus accurate estimation of the lead-
time becomes essential. We first summarize some results for the preemptive

proportionate flow shop which support this idea.

Proposition 1. If all the LT are known exactly for the optimal solu-

tion, then optimal local assignments will also optimize the global problem.

Proposition 2. Proposition 1 is relatively insensitive to small errors

in the leadtime.
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TABLE 9

PARALLEL MACHINES

Deviation from the Best Lower Bound
the Myopic Heuristic

Tardiness Factor = 0.2

R =0.4 R =0.8
n n/m Deviation from Best Deviation from Best
lower bound lower bound lower bound lower bound
2 15 0.0119 0.0113 0.0069 0.0029
2 20 . 0.0225 0.0229 0.0051 0.0009
4 10 0.0184 0.0187 0.0128 0.0029
4 14 0.0231 0.0138 0.0063 0.0000
Tardiness Factor = 0.4
2 15 0.0493 0.2603 0.0637 0.1621
2 20 0.1038 0.2742 0.1096 0.1514
4 10 0.0416 0.1660 0.0582 0.0755
4 14 0.0679 0.1758 0.0662 0.0690
Tardiness Factor = 0.6 )
2 15 0.1012 ' 0.9009 0.1263 0.8226
2 20 0.2812 1.2383 - 0.2363 0.9586
4 10 0.0933 0.7628 0.1007 0.5444
4 14 0.1616 0.8224 0.1636 0.6652
Tardiness Factor = 0.8
2 15 0.2083 2.7561 0.1867 2.5254
2 20 0.3547 3.2259 0.2576 3.0736%
4 10 0.1053 1.8846 0.1394 1.8294%
4 14 0.2440 2.2868 0.1668 2.3890%

m = machines n = jobs
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TABLE 10

PARALLEL MACHINES

Deviation of the Myopic Heuristic from the Best Lower Bound
after Adjacent Pairwise Interchange

Tardiness Factor = 0.2

R = 0.4 R =0.8
n/m Deviation from Best Deviation from Best
lower bound lower bound lower bound lower bound
2 15 0.0084 0.0113 0.0053 0.0029
2 20 0.0204 0.0229 0.0035 0.0009
4 10 0.0158 0.0187 0.0179 0.0029
4 14 0.0200 0.0138 0.0038 0.0000

Tardiness Factor = 0.4

Eo RN

15 0.0457 0.2603 0.0600 0.1621
20 0.1007 0.2742 0.1025 0.1514
10 0.0392 0.1660 0.0480 0.0755
14 0.0621 0.1758 0.0555 0.0690

Tardiness Factor = 0.6

SN

15 0.0995 0.9009 . 0.1217 0.8226
20 0.2808 1.2383 0.2328 0.9586
10 0.0925 0.7628 "0.0962 0.5444
14 0.1601 0.8224 0.1613 0.6652

Tardiness Factor = 0.8

SN

15 0.2079 2.7561 0.1867 2.5254
20 0.3530 3.2259 0.2566 3.0736%
10 0.1052 1.8846 0.1383 1.8294%

14 0.2435 2.2868 0.1658 2.3890%
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Lead times in this study were estimated by two methods: 1. A fixed
multiple of remaining process time. (The counstant is a free parameter).

2. Iterative estimation of leadtime. In the iterative approach, the problem
is first run with fixed multiple estimates. All the actual resulting lead-
times are saved and used in a second pass as the estimates. The process is
repeated (5 or 6 times usually) until there is no further improvement (therev
will still be some "bounce" at termination).

The original report discusses a number of related previous heuristics
using the due date: 1. global due date 2. operation due date (allocate 1l/m
of remaining time to each machine to set these) 3. static slack, 4 static
slack per operation, 5. static slack/remaining operation time. Dynamic
versions of .these rules are also discussed. Most of these rules do poorly
in the weighted tardiness case. Some of the more elaborate historical pro-
cedures do use some estimate of lead times. These include: 1.  critical
ratio, 2. dynamic composite, 3. COVERT. COVERT seems to perform well [22].
good results for unweighted average tardiness. (We made the obvious modifi-
cation to COVERT for ﬁhe weighted case to make our comparison fair.) COVERT is
somewhat similar to the linear version of our MYOPIC heuristic, but it is not
designed to be locally optimal as ours is. COVERT has maximum priority when
the "crash” slack is zero, decreasing down to zefo priority when a "generous"
slack is greater or equal to zero. MYOPIC (linear) has maximum priority when
the true slack is zero, decreasing to zero priority about two processing times
prior to due date. COVERT has also a free parameter in defining "generous,"”
which we set at 0.5 as recommended [11].

MYOPICl and MYOPIC2 then implement the exponential rule (k=0.5)
developed for the one machine case using the operation due date, fixed esti-

mate, iterated estimate, respectively in a dispatch mode. 1In the current
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job shop research, Vepsalainen starts with a similar procedure tested in a

typical set of dynamic job shops.

6. Flow Shops——Computational Study

We did not attempt to compute optimal solutions, or even lower bounds,
given the computational complexity. The stopping rule for the MYOPIC
iterative pr&cedure was based on: 1. convergence of leadtime estimates;

2. 1improvement in objective function; 3. number of iterations. We tested
the following heuristics: FCFS, WSPT (local), EDD (global), S/OP, (weighted)
COVERT, MYOPICl, MYOPIC2.

The layouts investigated are-as follows. A 4 machine shop.could be
increasing speed from first to last, constant, or decreasing. Either 20 or 60
jobs were u;ed giving 6 cases. An 8 machine shop could be increasing or
alternating with 60 jobs giving 2 cases. Thus there were a total of 8
layouts.

Processing times for a job are a random multiple of a base time for that
job divided by the speed of the machine. . The multible was either uniform
(0.75, 1.25) or uniform (0.25, 1.75). (Smaller range is approximately pro-
.portionate shop, larger range is approximately random.) The base for each job
was drawn also from a uniform distribution (5, 25). There are two side load
types. Either all jobs start at the first machine, or else 207 start at later
machines for 4 machine cases, 10% for 8 machine cases. The tardiness factor
is set at 0.3 or 0.6. The due date range was 0.6 to 1.6. Due dates are set
depending on the tardiness factor, as explained in the report on single machine
case [2]. Weights for jobs are uniform from 1.0 to twice the base job time,
making WSPT indices flatter, and thus making problems more difficult. There

are 10 replications per parameter set with a factorial design, giving a total
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of 1,280 problems run. We use the same normalized measure of excess weighted
tardiness discussed earlier. Since optimal solutions are not available (or
lower bounds), we use for each problem the excess of a given rule over the
best of the seven heuristics.

Table 11 gives these results. To summarize raunkings by overall average
normal excess over the "best of 7": MYOPIC2 = 0.009; MYOPICl = 0.04; COVERT =
0.09; WSPT = 0.37; EDD = 0.61; S/OP = 0.62; FCFS = 1.36. Thuslthe myopic
with iterated lead time is superior (but somewhat expensive). One can use the
cheaper constant MYOPICL at a normalized cost of 0.03 COVERT (just as com-—
plicated as MYOPICL) costs an additional 0.05. At 0.28 more, the additional
simplicity of WSPT seems perhaps bought at a high price. The other three are
not really iﬁ the running. Careful investigation of the table reveals that
the qualitative behavior of the four best heuristics vis-a-vis each other
remains remarkably constant over layout type, tardiness factor, due date
range. Behavior of gll the rules by parameter variations are very consistent
with results for the one machine case. Sensitivity of results to experimental
design is fully discussed in the original paper.

We turn to a second study which investigated robustness of these results
to misspecification of the criterion. The same .set of problems and heuristics
were tested against three tardiness measures and two inventory measures. The
results are shown in Table 12. Overall rankings are very similar for weighted
tardiness, maximum tardiness, and % tardy, with average ranking of MYOPIC2,
MYOPICL, COVERT, WSPT, EDD, S/OP, FCFS. The two inventory measures, work in
process (WIP) and work in system (WIS) were different in ranking from tar-
diness measures, and fairly differeant fromaeach other. (WIS charges inventory
at least until the due date, and thus does not particularly reward earliness.

as does WIP). The ranking for WIP is WSPT, (MYOPICL, MYOPIC2, EDD) nearly
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FLOW SHOPS

Comparison of Heuristics

4 machines, 20 jobs

T=0.3 T=0.6 Excess
Total over
Rule R=0.6 {R=1.6 | R=0.6 | R=1.6 | Average | Best Rule
FCFS .836 1.269 2.264 2.395 1.691 1.267
WSPT .261 625 1.017 1.242 .786 .362
EDD 322 054 1.904 1.661 .985 561
S/PT 361 .075 1.921 1.658 1.004 .580
COVERT .163 071 1.002 784 .505 .082
MYOPICL 121 .033 1.004 .738 A4 .051
MYOPIC2 104 .021 912 679 431 .007
4 machines, 60 jobs
T=0.3 T = 0.6 Excess
Total over
Rule R=0.6 | R=1.6 | R=0.6 | R=1.6 | Average | Best Rule
FCFS 1.171 1.970 3.547 3.997 2.672 2.065
WSPT 335 .850 1.565 1.919 1.167 .560
EDD 349 .026 3.053 2,571 1.500 .893
S/PT 376 .039 2.948 2.472 1.459 .852
COVERT .198 043 1.513 1.069 .706 .099
MYOPICL .132 014 1.455 1.015 654 047
MYOPIC2 112 010 1.383 971 .619 .012
8 machines, 60 jobs .
T=10.3 T =20.6 Excess
Total over
Rule R=0.6 | R=1.6 | R=0.6 | R =1.6 | Average | Best Rule
FCFS 601 .753 1.455 1.588 1.129 746
WSPT 254 441 707 .883 571 .188
EDD .368 .218 1.251 1.240 .769 .386
S/PT 437 264 1.265 1.253 .805 422
COVERT .195 210 .706 J44 464 .081
MYOPICL 170 .166 .698 J14 437 .053
MYOPIC2 143 .128 .631 .658 390 .007

tardiness factor
due date range
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FLOW SHOPS

Table 12. Heuristics Across Criteria

4 machines, 20 jobs

4 machines, | 20 jobs
Norm. Weight. | Max Norm. Portion of
Rule Tardiness Tardiness Tardy Jobs | WIP WIS
FCFS 1.129 .326 . 53.6% 2.24 | 3,11
WSPT 571 145 50.3% 1.91 | 2.84
EDD .769 176 56.5% 1.94 | 2.48
S/PP .805 .193 67.1% 2.00 | 2.51
COVERT 464 115 52.3% 2.04 | 2.70
MYOPIC1 437 .108 48.5% 1.98 | 2.62
MYOPIC2 <390 .100 45.5% 1.93 | 2.57
4 machines, 60 jobs
4 machines, | 20 jobs
Norm. Weight. | Max Norm. Portion of
Rule Tardiness Tardiness Tardy Jobs | WIP WIS
FCFS 2.672 .367 47.8% 5.09 | 8.12
WSPT 1.167 134 44.7% 3.72 | 6.99
EDD 1.500 .151 43.27% 3.69 | 5.58
S/pp 1.459 ©.183 51.4% 3.80 | 5.52
COVERT 706 .083 38.0% 4,45 | 6.53
MYOPICL .654 .071 34.6% 3.72 | 5.68
MYOPIC2 619 .070 33.3% 3.79 | 5.80
8 machines, 60 jobs
4 machines, | 20 jobs
Norm. Weight. | Max Norm. Portion of
Rule Tardiness Tardiness Tardy Jobs | WIP WIS
FCFS 1.691 .227 49.5% 4.52 | 6.33
WSPT .786 .085 46.27% 3.80 | 5.69
EDD .985 .097 47.5% 3.84 | 4.94
S/pp 1.004 123 57.1% 3.96 | 4.99
COVERT <505 .055 42.17% 4.24 | 5.49
MYOPIC1 474 .049 39.9% 3.87 | 5.03
MYOPIC2 431 .048 37.4% 3.86 | 5.07
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tied, S/OP, COVERT, FCFS. The ranking for WIS is (EDD, S/op) nearly ties,
MYOPICl, MYOPIC2, COVERT, WSPT, FCFS. Notice that the myopic rules are much
more robust across differing criteria than COVERT or WSPT. In fact, if we
average the inventory measures, MYOPIC2 averages first and third, a trdly
robust achievement. By comparison, COVERT ranks third and fifth. (COVERT
behaves especially badly for larger problems in either WIP or WIS).

These results are very encouraging for further development of myopic

heuristics in other realistic environments.

7. Other Current Related Research

Turning first to continuing efforts on the parallel machine problem, the.
authors have recently devised a method for determining optimal solutions which
needs no mofe alternatives to be investigated than the one machine case.
(Although there is more computation per alternative.) For either equal or
uniform machines there is a 1-1 correspondence between the order in which jobs
are assigned to the first ﬁinishing machine, and the resulting schedule. Ties
are not a problem, given specification of a tiebreaking mechanism. Thus there
are only n! schedules to consider as in the one machine case. Lower bounds
are obtainable as a linear assignment problem; branch on the first job rather
than the last. Thus it now becomes feasible to‘run some smaller problems
using the optimum solution for comparison.

The authors have recently completed a study giving a number of simple
propositions which hold true in any pre—emptive proportionate flow shop.

Some of these results were necessary for the optimal lead time decomposition
theorem given in Section 5. A rough statement of the propositions: 1l. Per-
mutation schedules constitute the set of dominant schedules for any regular A

measure of performance. 2. The completion time of any job off any machine is
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a simple expression involving total actual processing for the job plus waiting
time for all previous jobs at the bottleneck machine. 3. Any permutation |
schedule minimizes makespan. 4. Several "tardiness” results. 5. A "no
passing” result. 6. A "no waiting” result. The importance of these results
iz partly that they can help form good heuristics for the non-preemptive case
for shops which are even roughly proportional [12].

In a nearly proportionate flow shop, permutation schedules should, as a
result, be nearly optimal. Thus lead times can be calculated directly rather
than by iteration, and non-bottleneck machines may often be ignored. Peng
Si Ow [12] has recently obtained theoretical and experimental results, using
these ideas, when there is a bottleneck machine. She compares her heuristic
with earlier heuristics and our myopic heuristics, and often can achieve
considerable imprqvement.

Vepsalainen is also currently extending the myopic procedures presented
here for the dynamic job shop. He has run several computational studies simi-
lar to those given here for the flow shop, with similar results. MYOPIC2,
MYOPIC 1, COVERT remain the best performers, in that order. He 1s also cur-
rently investigating "semi-myopic" rules which modify priorities somewhat
by considerations at the next machine(s). His work is in the same spirit as
the AWINQ, but crafted carefully into the current myopic heuristics. This

work forms the last two chapters of his thesis.

8. Potential Future Research

Adding time comstraints to the one machine problem would actually make
optimum benchmarks easier to obtain, but would seem to require complicating
the heuristics somewhat. Job start constraints (dynamic arrivals) only

require restricting the heuristic evaluation each time a job finishes to those
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currently available. (It has already been tested somewhat in the dynamic
job shop work.) Job ending constraints (late absolute due dates) could be
handled easily with two passes (which unfortunately destroys a lot of the
dispatch advantage). The first pass is done as before, ignoring ending con-
straints. Second pass: find the earliest late due date violated, and move
that job forward in priority until it just beats its deadline; then find the
second date violated, etc. If the second job runs into the first in the pro-
cess, both must be moved back, etc. It is easy to see a feasible schedule
will be created if there is one. Turning to scheduled downtimes: machine
periods of unavailability are easy for regular situations. If a machine
operates 40 hours of 168 each week, treat it as a machine 40/168 as fast
operating full time.

Adding precedence constraints to the one machine problem also makes
benchmarks easier to obtain. The analogous result to EDD for precedence con-
straints is known, and is exact. Define the initial set of a job as all its
predecessors. The extended EDD rule is: find the job with the earliest due
date. Process first éll its predecessors in any feasible order, then the job
itself. Now repeat for the unprocessed part of the network. The analogous
result to WSPT for precedence constraints is an excellent heuristic given and
tested in [23]. The extended WSPT rule is: calculate the aggregate weight
and the aggregate processing time for each (job, initial set). The job and
initial set with highest aggregate weight per unit aggregate processing time
should be run first. In this subproblem, the job must be run last. In the
initial set pick the job with highest ranking in the same way; repeat.
Eventually the whole subproblem will be complete. Repeat the process on the
rest of the problem. We now have all the elements: due date, processing

time, weight for use of our myopic heuristic. Calculate a priority for every
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job, to determine which (job, initial set) to go first. In that subproblem
put the job last, and repeat on the sub-problem etc. Putting these ideas
together with those of the last paragraph it should be possible to provide
accurate answers to very complex one machine tardiness problems. There are
many such problems in real life, for example, planning one's own activities.
In addition, there is reason to hope that complex job shops handling projects
instead of individuals jobs, could often usefully concentrate on the bottle-
neck machine, which could be analyzed using these ideas.

Turning to future research on parallel machines, the uniform (propor-
tioﬂate machine) case is a rather easy extension. Weights and due dates are
the same. Use the weighted average prbcessing time on all machines for the
formula. Coﬁpute the priorities each time a job is to be assigned, and
assign to the machine that finishes it first. Note that the load is kept
rather even, so that makespan is handled as well as a secondary objective.
The general unequal case with processing times pij is more difficult. The
following sorts of heuristics might be considered. In heuristic type 1, for
each assignment calcuiate the priorities as before. All jobs within a certain
cutoff tolerance priority deviation from the highest are considered to be
scheduled next. For these jobs, try gcheduling-each on each machine, and
schedule that job on that machine which completes it earliest. This rule
should perform well on tardiness, but only fair on makespan. In heuristic
type 2, we consider makespan to be capturing total processing capability of
the machines. Suppose W, now represents the dollar value of completing job i.
Suppose based on historical data, machine j can process d, dollars on average
per hour. Then the value per hour of assigning job i to machine j is
(wi/pij) - Ad, X is a parameter set between 0.0 and 1.0 depending on how

J

busy the machine is. Select jobs within a priority toleraunce as before. For
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every such job i and machine j calculate the net per hour value of the
assignment as sta&ed. However, if a machine becomes scheduled more than T
hours into the future it is temporarily "closed" and only remaining machines
compete. (Without the tardiness objective the same makespan procedure could
be used with all jobs checked instead of those within a tardiness tolerance.)

The generalized flow shop (sets of parallel machines in series) should be
straightforward to study. Treat each parallel center as a single machine with
a single priority list (as for the parallel case), which then reduces the
problem to an ordinary flow shop. (In the case that each center is nearly
uniform, simply replacing each center by a single faster machine is postulated
to be an excellent approximation in many cases.)

Turning'finally to other criteria, the authors have devised a methodology
for transforming general convex cost criteria as a function of lateness into
myopic priority functions similar to those discussed here. This means that
such mixed criteria as 1. (weighted) earliness + (weighted) tardiness,

2. (weightedllateness + (weighted) tardiness, can be studied. The first is
already under investiéation [L7]. More complicated mixed criteria such as
including setup costs are much more difficult, however some preliminary
heuristics have been designed.

As a longer range goal, the authors are working toward robust heuristics
for criteria which are combinations of lateness, tardiness, makespan (effi-
ciency), and setups, in job shops with such real constraints as precedence,
availability of (machines, tools, people), shifts, maintenance. Such heuris-
tics, to be useful must also given though to dovetailing with lotting

procedures.
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