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ABSTRACT
In this paper we address the problem of levelling the workload for a given number-
workstations in an assembly line. Most heuristic and optimal procedures used in designing
the assembly lines are greedy and tend to load earlier stations more than later stations. We
characterize dominant solutions and these characterizations are incorporated into an iterative
procedure. We report computational results. When used in conjunction with currently
available assembly line procedures, our procedure provides significant leveling of

workloads. Future research directions are indicated.






LOAD SMOOTHING IN ASSEMBLY LINES

1. Introduction

Assembly lines are widely used for high volume production of goods and services.
Substantial amount of research effort has been devoted in the past to the efficient design
and operation of the assembly systems. Most of the earlier research focused on the
development of enumerative and heuristic methods for nﬁnhnizing the number of workers
required for a desired production rate or minimizing the cycle time for a given number of
workstations. Recent advances in these methods (Johnson [1988]) are useful for finding
optimal and/or near optimal solutions to practical size problems. Howe\;er, in practice,
many z;xspects are to be considered in the design of assembly lines such as zoning, task
: compatil;ﬂity, safety, tool requirement overlaps, etc. (Johnson [1983]). While some of
- these considerations can easily be dealt with using prior methods, some need development
of special procedures. We address one sﬁch issue here--smoothing the workload among
the given workstations.

Workload smoothing has quite a few beneficial features associated with it. Ina
recent paper, Farber, Luss and Yu [1987] described the need for workload smoothing in
printed circuit board assembly plants. In case of manual lines, the notion of equity
warrants it. It is common practice to attempt to assign nearly identical workloads to each
station in order to provide comparable work and hence slack time to each person. Uneven
assignments are viewed as inherently unfair and usually call for some kind of
compensatory action on the part of management such as differential pay. Further, Smunt
and Perkins [1985] have shown that where line lengths are long aﬁd/or task times variance
is low, it is best to allocate the tasks as evenly as possible among the workstations to
maximize the output. These considerations motivate the need to develop workload
smoothing procedures.

Our paper is organized as follows: in the next section, we define the problem, and
develop criteria for measuring workload smoothness. In Section 3, we discuss prior

research. In Section 4, we provide characterizations of dominant solutions for the problem



and develop procedures for solving the problem. In Section 5, we provide computational

results. Finally, we discuss future research directions.

2. Problem Description

The line designer is faced with the problem of designing a paced assembly line to

provide specified output rate of the product. The output rate defines the maximum cycle

time for the line. The primary objective of the line designer is to use as few stations as

possible. The secondary objective is to distribute the workload as evenly as possible

among the workstations on the line. There are many alternative criteria which can be used

as surrogates for the secondary objective. Some prominent ones are listed below (notation

used in this paper is shown in Table 1).

)

Workload Range
W - Wiy Where W and W . represent maximum and minimum station
workloads respectively.
(ii) Cumulative Difference
Make a cumulative plot of the workloads (Figure 1). Also, plot the cumulative
workload if it were evenly distributed. The area between the two curves is a
measure of uneven workload distribution.
Cumulative load
/ for the sequence
Cumulative load,
. if workload is
Cumulative evenly distributed
Load

Workstation .

FIGURE 1



TABLE 1
Notation
D : Demand rate for the product
n(D) : Number of stations in the line to achieve the desired output rate of D. This
may be heuristic or optimal solution
n* : Minimum value of n(D). n(D) 2n*
¢ : Cycle time (c = 1/D)
N : Number of tasks
i: Taskindexi=1,.2,.N
'ti . Processing time for task i
T: Work content
N
.t
=11
Pi . Set of tasks immediately preceding task i in the precedence network
Ai . Set of tasks immediately succeeding task i
X, 1 if task iis assigned to station j
J 0 otherwise
Wj : Total work assigned to station |
W : Mean workload = T/n(D)
Uj : Underload at station j
. max(0, W- Wj)
Oj : Overload at station j
: max(O,Wj - W)
ADj :  Absolute deviation of the workload at station j from mean workload
: U.+0.
] )
MAD : Mean absolute deviation of workloads
n(D)
: (I/n(D)) ¥ AD.
=1
E(i) : Index of the earliest station to. which one (or more) of the immediate
successors of task i has (have) been assigned
L(i) : Index of the latest station to which one (or more) of the immediate
predecessors of task i has (have) been assigned
S(i) : " Index of the station to which task i is currently assigned




(iii) Workload Variance (V)

n(D)

aho) 5, ( J ;,%)?
(iv) The sum of absolute deviations of workloads (MAb)

n(D)I W,

=1 n(D)

Although all of these measures are potential candidates, they are clearly not
identical. (i) measures only the extreme values of the workloads without regard to the
distribution of workload among the workstationg. For this reason, (ii) is likely to be better
than (i). - But the area between the curves depends on the sequence of workloads. For
| example, suppose that two neighboring workstations have been assigned precedent free
‘ tasks. Interchanging them may.change the measure though neither improvement nor
deterioration has taken place in the workload distribution. Critefia (iii) and (iv) overcome
both these deficiencies. They are similar to each other, but workload variance penalizes
deviations quadratically whereas absolute deviation applies a linear penalty. From a
practical perspective, we can see no reason to choose one over the other. We chose (iv)
because it seems reasonable from an equity point of view and it has certain desirable

analytical properﬁes.

2.1 Mathematical Programming Formulation
Using the sum of absolute deviations as the criterion, we can formulate the problem

as a mixed integer programming problem. Problem formulation is given below:

n*

mm):(U +0)) 1)

s.t.

3 x.= . Vi=12,.N )



' xkj Sxij ‘ Vke Pi’j =1,..n* 3)

n*
.21 t X <c Vj=1l..n* 4)
i= :

n* T
igl t xij+Uj -Oj=n—* Vi=1,.n* (5)

xij=00r1

Constraint set (2) implies that each task has to be completed. Precedence relations
are observed in (3). Constraint set (4) ensures that the cycle time restriction is not violated.
. Structural equations to measure relative underloading and overloading of the workstations
. are given by (5).

Though, in principle, the above problem can be solved using any standard mixed
integer programming code, the number of binary variables and constraints are too large to
solve the problem optimally for practical size problems. Hence the situation warrants
alternate approaches to solving this problem. A categorization of possible approaches is

shown in Figure 2.

3. Prior Research

Most prior research on assembly lines has focused attention on minimization of the
number of workstations required to maintain a desired output rate or maximize the output
rate for a given number of workstations. For a recent survey of exact procedures for
solving these problems, the reader is referred to the study by Baybars [1986]. Talbot et al.
[1986] provide a comparative evaluation of various heuristics for these problems. Almost
all these procedures are single pass procedures. Arcus [1966] suggested a multi-pass
biased search method. These studies do not take into consideration equitable allocation of

tasks among workstations. Some results stated in this paper appear in a preliminary form

in Rachamadugu and Talbot [1987].



Design the line with
minimum number
of stations and minimum
MAD for a given D
Single step Multi-step
approach procedures
Determine number Determine number Determine required number
of stations and task of stations and task of stations using optimum or
assignments simultaneously | |assignments simultaneously heuristic procedure
using an optimum procedure | | using a heuristic procedure (known as Type I problem)

There are many heuristic procedures available for solving assembly line balancing
problems (see Talbot et al. [1986]). Almost all of them are greedy in the sense that they
assign as much work as possible to the early stations so that the number of stations is
reduced. This results in more idle time appearing in later stations. However, an exception to
this statement is a modification to the Hoffmann procedure [1963] suggested by Gehrlein and
Patterson [1978]. Original Hoffmann's proced;lre for Type I problems is as follows: from

the available tasks, a subset is selected such that the current workstation is loaded as much as

FIGURE 2
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For the given number of
stations, minimize cycle time
(known as Type II problem)

l

Y

Level the workload with
the above as initial
solution

Alternate Approaches to Solving the
Dual Criteria Problem
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Step 2

Step 3



possible. This is done through complete enumeration. After a station has received its best
assignment of tasks, the procedure is repeated until all tasks are assigned. It can be noticed
that such a procedure tends to concentrate idle time either at the first few stations or the last
few stations depending upon whether a forward of reverse network problem is solved.
Gehrlein and Patterson [1978] noted that in Hoffmann's procedure enumeration of all
maximal feasible combinations at each station can be‘ computationally costly. So they
modified Hoffmann's procedure as follows: curtail the search for the set of tasks to be

assigned to a workstation when the idle time at the station falls within a given value

Idle time < 6 {cycle time - total work content }

theoretical minimum
number of stations

‘ where 0 is a parameter. Gehrlein and Patterson t1978] found that this modification not
only reduced the computational time, but also smoothed the idle time present among
workstations for certain classes of line balancing problems. Prior studies by Gehrlein and
Patterson [1978] and Talbot et al. [1986] suggest use of 6 value in the range [0, 2.0].
Since this heuristic has the desirable property of workload smoothing, it is appropriate to
investigate this procedure.

Yet another approach to workload smoothing is to use a multi-step approach
(Figure 2). In the first step, required number of stations can be determined by using either
an optimum or heuristic procedure. In the next step, a Type II problem is solved to
minimize the cycle time for the number of workstations determined in the previous step.
This is intuitively appealing since minimizing the cycle time for a given number of stations
would force more work to be assigned to later stations. However, procedures 'designed for
Type II problems solve the problem as a series of Type I problems. Hence this can still
result in underloading of later stations. Thus, whether or not solution to a Type I problem
has been resolved as a Type II problem, need exists for developing a procedure for
smoothing workload among a given number of workstations. Such a procedure can be

used as a post-processor on the following solutions:



i) Solution of a Type I problem (heuristic or optimum).
ii) Solution from Type I problem (heuristic or optimum) solved as a Type II

problem (heuristic or optimum).

In the next section we describe characterizations of dominant solutions for

workload smoothing for a given number of stations.

4. Characterizations of Dominant Solutions
Given any heuristic or optimal solution to a Type I or Type II problem, it is
generally necessary to reassign tasks among the workstations to smooth out workloads

across the stations.

Proposiiion 1: Task i can be transferred from station j to station k (k > j) only if

E(i)Zk'ande+ti<c Vi

Proposition 2: Taskican be transferred from station k to j only if

L) <jand W+, <c Vi

Proposition 3: If the work content of a pair of stations is either above or below W,

reassignment of tasks among these two stations will not improve MAD.

It is clear that Propositions 1 and 2 follow directly from precedence feasibility and
cycle time considerations. Proposition 3 can easily be verified and omitted here for the

sake of brevity. It follows directly from the property of absolute deviations.

Proposition 4: Consider any two stations j and k. MAD can be improved by shifting

task i from station j to station k if

Wj-ti>Wk, Wj>W,W

Proof: By Proposition 3, it is clear that to reduce MAD we can transfer tasks from a

station with higher than mean workload content to a station with lower than mean



workload content. Suppose we transfer task i from station j to k. Further, Wj -

t > Wk‘ We have to consider four cases. They are shown in Table 2.

TABLE 2
Case 1 Case 2 Case'3 Case 4
-Wj>W, WJ.>\7V, Wj<V—V, Wj<V_V,
Wk<W Wk>W Wk>W Wk<W

'Note that prior to the transfer of task i from station jtok, WJ >W and Wk <W. It

. can easﬂy be seen that MAD decreases in case 1. Case 2 is shown in Figure 3.

—W
Station j k Station j k
Before , After
FIGURE 3
ADj + AD, before transfer = J ) ( Wk) = Wj - Wy —

ADJ + ADk after transfer (W

'tl' ) [W +t. -W)
=W, Wk 2W Q)
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It can easily be seen that (1) - (2) 2 0. Thus the transfer results in an improvement

in MAD. Case 3 is shown in Figure 4.

i
—W
Station j k Station j k
Before After
FIGURE 4

ADj +AD, before transfer = (wj - v‘v) + [v“v - wa = Wj - Wy (3)

AD; + AD, afer transfer = W- (wj 1)+ (wk *t, - v‘v)
= wk.wj + 2, @)

It is obvious that (3) - (4) 2 0 and hence results in an improvement. Case 4 is shown in

Figure 5.

ADj+ADk before transfer = Wj -W+W - Wk=Wj -Wk (5)

ADj + ADk after transfer

W- (Wj - tj) +W- (Wk + ti)

2W+ Wj - Wi ‘ 6)
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Station j k Station j k
FIGURE 5

Comparing (5) and (6), it can easily be verified that (5) - (6) 2 0. Hence, in all cases, there

~isan improvement in MAD by transferring tasks from station j to k. [

While attempting to transfer tasks from one station to another, precedence feasibility
can easily be verified by using Propositions 1 and 2. If Propositions 3 and 4 are used in
selecting the tasks and stations, there is no need to verify cycle time feasibility. If the
original assignment was cycle time feasible, the revised assignment is also cycle time
feasible.

So far, we investigated only situations where MAD could be improved by
transferring a task from one station to another. Next, we describe a condition in which
simultaneous exchange of one task from a station with a set of tasks from another station

can improve MAD.

Proposition 5: Suppose we wish to transfer task i from station j to k
Wj >W> Wk . At the same time, we transfer a set of tasks from k

to j. Call this set s. This interchange improves MAD if the following

condition holds good

(Wk.' Wj'+ ti) < -thSti
ges
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Note that the contribution to MAD by any one station is a convex function of the
workload at that station. So, contribution to MAD from statipn k is a convex
function of the work content of 5. Similarly, contribution to MAD from station j
is also a convex function of the work content of s. Since the sum of any two
convex functions is convex, total contribution to MAD from stations j and k is a
convex function of the work content of s. We now show that outside the bounds
stated in this proposition, contribution to MAD from stations j and k are higher
than prior to interchange. Due to convexity property, this implies that within the

bounds, contribution to MAD cannot be worse than before the interchange.

Case 1. Suppose Yt > t..  This situation is shown in Figure 7.

€s
contributionqto MAD before interchange

=(wj - W)+(W- wk)=Wj Wi

Station j k * Station j k

Before After ’

FIGURE 6

contribution to MAD after interchange

.—.(wj + Tt -y W}+(W- (Wk+ t; - th))

qes ges
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=W,- W, + th-ti)
qes

Since Yt < t;, we are worse off than prior to the interchange.
qes

Case 2: Suppose | Y, tq < Wk - (Wj - ti). This situation is shown in Figure 7.
qes .

contribution to MAD from station j and k after interchange

i
— W
Station | k Station j k
Before After
FIGURE 7
=(W- [Wj -t th ]]+(Wk+ti- th - W)
qes qes

=2(ti - §)tq)+Wk-Wj
qes :
=wj-wk+2(ti - Tty - Wi+ wk)
qes

=wj-wk+2(wk H - W - th)
ges

-Since Y, tq < Wk - (Wj - ti) (by definition for this case), above expression

€S
can be rewritten as
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ij "‘wk.

Hence within the bounds, contribution of stations i and k to MAD after

interchange can be no more than prior to interchange. This completes the

proof. n

It may be noted that in an interchange using Proposition 5, it is not necessary to
verify cycle time feasibility. If the original assignment was cycle time feasible,
reassignmeﬁt using Proposition 5 is also cycle time feasible. However, precedence
feasibility needs to be verified. In our implementation, we restricted our choice to tasks to
be included in s to those which did not have immediate successors assigned to earlier than j

(if k < j) or to those which did not have immediate predecessors assigned to later than j

U f j < k). Further tasks at k were inspected to' SPT order and qualifying tasks were

" accumulated and whenever Proposition 5 was satisfied, further search for inclusion of
tasks in S was terminated. It is possible to devise better search methods for determining s
at the cost of larger computational time.

Using the characterizations described in Propositions 1-5, we developed an iterative
heuristic procedure which can be used with heuristic and/or optimal solutions to Type I and

Type II problems. The procedure is described below.
Step 0: (~n(D)

Step 1: If (=0 gotostep4
IfW[ > Wgo to step 3

Step 2a: If available, choose the largest task i such that

{Wsu) > v‘v} and {ws(i) -t > w[}

and
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either {E(i) 2 (  if [>S(i)} or {L() <L if (< S(i)}

Transfer i from S(i) to {and update S, E, L and W. Go to step 3. Otherwise,

go to step 2b.
Step 2b: If available, choose largest task i such that

Interchange tasks between s(i) and [ by invoking Proposition 5, subject to

precedence feasibility. Update s, E, L, W.

Step 3. - [« (-1
Gotostep 1
Step 4: Stop.

Steps 0 through 4 are repeated until there is no further improvement in the MAD
value.
It can easily be seen that step 2a in the above heuristic invokes Propositions 1-4 and

step 2b invokes Proposition 5.

5. Computational Results

In order to validate our procedure, we tested it on solutions for sixty-four problems
from the literature (Talblot et al. [1986]). Our procedure was coded in FORTRANYVS (IBM
version of Fortran 77) and implemented on IBM 3090-600 at The University of Michigan,
Ann Arbor, Michigan. The code optimizer was invoked at level 3. These are Type I
problems for which optimal number of stations are known. Beneficial effects of using our
procedure on the results of Type I problems are shown in Table 2. Use of our procedure
resulted, on average, in 33.65% reduction in MAD. If we exclude the cases where initial
MAD was zero (MAD value cannot be less than 0 and hence the solution is also optimal for

MAD) reduction in MAD due to the use our procedure is 37.13%.
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TABLE 2

Results of Using Workload Leveling Procedure
on Optimal Solutions for Type I Problems

MAD before the MAD afterthe | Percent
Cycle | use ofleveling use of leveling | reduction
Problem Time procedure .| procedure inMAD
Merten's 7-Element 6 0.8889 0.8889 0.00
Merten's 7-Element 7 0.6400 0.6400 0.00
Mernten's 7-Element 8 1.0400 0.6400 38.46
Merten's 7-Element 10 0.4444 0.4444 0.00
Merten's 7-Element 15 0.5000 0.5000 0.00
Merten's 7-Element 18 2.5000 0.5000 80.00
Bowman's Problem 20 1.6000 1.6000 0.00
Jaeschke's 9-Element 6 0.8750 0.8750 0.00
Jaeschke's 9-Element 7 0.8980 0.6939 22.72
Jaeschke's 9-Element 8 1.2222 0.8889 27.27
Jaeschke's 9-Element 10 0.3750 0.3750 0.00
Jaeschke's 9-Element 18 42222 3.1111 26.31
Jackson's 11-Element 7 . 1.0000 1.0000 0.00
Jackson's 11-Element 9 1.4444 1.0000 30.76
Jackson's 11-Element 10 0.9600 0.6400 . 33.33
Jackson's 11-Element 13 1.5000 1.0000 33.33
Jackson's 11-Element 14 1.5000 1.5000 0.00
Jackson's 11-Element 21 7.5556 0.8889 88.23
Dar-El's Problem . 48 1.7500 0.8750 50.00
Dar-El's Problem 62 0.4444 0.4444 0.00
Dar-El's Problem 94 0.5000 0.5000 0.00
Mitchell's 21-Element 14 10.6563 0.4375 33.33
Mitchell's 21-Element 15 2.0938 1.1563 44,77
Mitchell's 21-Element 21 0.0 0.0 0.00
Mitchell's 21-Element 26 3.6000 0.4000 88.88
Mitchell's 21-Element 35 0.0 0.0 0.00
Mitchell's 21-Element 39 2.6667 2.6667 0.00
Heskiaoff's 28-Element 138 14.0000 6.0000 57.14
Heskiaoff's 28-Element 205 0.3200 0.3200 0.00
Heskiaoff's 28-Element 216 12.2400 2.4800 79.73
Heskiaoff's 28-Element 256 0.0 0.0 0.00
Heskiaoff's 28-Element 324 92.0000 0.5000 99.45
Heskiaoff's 28-Element 342 0.4444 0.4444 0.00
Sawyer's 30 Element 25 1.9796 , 1.0408 47.42
Sawyer's 30 Element 27 2.1183 0.8639 59.21
Sawyer's 30 Element 30 2.6667 1333 50.00
Sawyer's 30 Element 36 4.2400 2.2000 48.11
Sawyer's 30 Element 41 0.6250 0.6250 0.00
Sawyer's 30 Element 54 9.8776 7.3061 26.03
Sawyer's 30 Element 75 11.8400 3.7600 68.24
Kilbridge & Wester 57 0.8400 0.4300 42.85
Kilbridge & Wester 79 0.2449 ©0.2449 0.00
Kilbridge & Wester 92 0.0 0.0 0.00
Kilbridge & Wester 110 29.0000 25.3333 12.64

(Table 2 continued on next page)
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TABLE 2 (continued)
MAD before the MAD afterthe | Percent
Cycle | use of leveling use of leveling | reduction
Problem Time procedure procedure inMAD

Kilbridge & Wester 138 0.0 0.0 0.000
Kilbridge & Wester 184 0.0 0.0 0.00
Tonge's 70-Element 176 7.4694 5.6735 24.04
Tonge's 70-Element 364 18.0000 3.0000 83.33
Tonge's 70-Element 410 27.3333 11.3333 58.53
Tonge's 70-Element 468 44,4375 12.2500 72.43
Tonge's 70-Element 527 32.1225 1.6326 94.91
Arcus' 83-Element 5048 298.3438 242.1797 18.82
Arcus' 83-Element 5853 467.7566 426.8994 8.73
Arcus' 83-Element 6842 576.6406 309.1262 46.39
Arcus' 83-Element 7571 740.5298 393.6860 46.84
Arcus' 83-Element 8412 1018.4805 489.5601 51.93
Arcus' 83-Element 8898 377.0125 353.4570 32.77
Arcus' 83-Element 10816 1906.1875 1005.5938 4127
Arcus' 111-Element 5755 162.4941 111.4570 3141
Arcus' 111-Element 8847 733.2222 375.5554 48.78
Arcus' 111-Element 10027 919.9922 155.4297 83.10
Arcus' 111-Element 10743 1103.1487 461.4673 58.16
Arcus' 111-Element 11378 1129.6841 358.2756 68.28
Arcus' 111-Element 17067 502.8887 46.4444 90.76

Computational times in all cases were less than 100 milliseconds. Reduction in MAD in
case of large size problems such as Tonge and Arcus problems can be substantial.

Next, we tested our procedure on the solutions of modified version of Hoffmann
heuristic procedure for Type I problems as proposed by Gehrlein and Patterson [1978].
Computational experiments by Talbot et al. [1986] have shown that Hoffmann heuristic
[1963] had provided better results than competing heuristics for Type I problems.
Modified version of this heuristic is the only heuristic procedure that addresses the issue of
smoothing workload while simultaneously attempting to minimize the use of workstations.
Also, Gehrlein and Patterson [1978] reported that the use of 8 factor (Section 2) spread the
idle time evenly among workstations. Hence this procedure seemed a relevant benchmark

against which procedure needs to be compared.. We obtained solutions for the 64 literature

problems using modified Hoffmann's procedure for various 8 values. MAD for these
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solutions was compared with the MAD obtained after using our procedure on these

solutions. Summary of these results is given in Table 3.

TABLE 3
6 Value 0 1 2
- Average %
reduction in
MAD resulting 44 .50 43.57% 43.26%
from the use of
our heuristic

These results reported in Table 3 were somewhat counterintuitive. Larger 6 values
 spread out idle time more evenly among the workstations and hence further reductions in
MAD should be difficult to come by. However, even m these cases, reductions in MAD
could be achieved with the use of our heuristic procedure. This is due to two factors.
Firstly, using large 0 values may distribute the workload more evenly, but in some cases
they resulted in the use of more number of workstations than when 0 # 0. This
observation is consistent with the computational studies done by Talbot et al. [1986]. This
resulted in opportunities for further leveling the workload. Secondly, when 6 = 0
Hoffmann's procedure tends to pack earlier stations more densely than other heuristic or
optimal procedures. It can easily be verified that the workload assigned to the first station
by Hoffmann procedure for a Type I problem is no less than the workload assigned to the
first station by any heuristic or optimal procedure (the statement holds good for the last
station if reverse network is used). Though this is very useful in minimizing the number of
workstations (thus explaining Why it does better than other heuristic procedures [Talbot et
al. 1986]), this also leads to greater opportunities for smoothing workloads.

' We next tested the performance of our workload leveling procedure with Type II
problems for which optimal solutions were known. These problems constitute tough

benchmark since we would expect greater leveling of workloads with minimum cycle time
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for a given number of stations. However, Type II problems are generally solved as a
series of Type I problems. Since all optimum and/or heuristic procedures (with the known
exception of modified Hoffmann procedure) for type I are greedy (in the sense that they
load each station with as much work as possibie subject precedence and chosen cycle time),
it is conceivable that scope exists for workload leveling even in optimal solutions for Type
IT problems. |

We used 23 test problems for which optimal cycle times were known (Wee and
Magazine [198'1]). In 5 cases, MAD for initial solutions was zero and hence optimal. In 7
other cases also, initial solution was optimal (optimality in these cases was verified by
inspec;ion--for example, if stations have work content equal to optimal cycle time or
(optimal 'cycle time - 1), then the solution is optimal for MAD also). Results of using our
* procedure on the other 11 problems are shown in Table 4. On average, MAD improved by

22.36% in these cases. As mentioned earlier in our discussion, improvements resulting

TABLE 4

Solutions for Type II Problems for Which Minimal MAD
Assignments are Unknown

, Known MAD Before MAD After
Problem Number Optimal the Use of the Use of % Reduction
of Stations  Cycle Time  Our Procedure Our Procedure in MAD
Merten's Problem 5 7 0.6400 0.6400 0.00
3 10 1.7500 1.2500 28.57
Jaeschke's Problem 7 7 0.8980 0.6939 22.72
Jackson's Problem 5 10 0.9600 0.6400 33.33
4 12 0.5000 0.5000 0.00
3 16 0.8889 0.4444 50.00
Mitchell's Problem 8 14 0.6563 0.4375 33.33
Sawyer's Problem 13 26 0.8876 0.8757 1.34
8 41 0.7500 -0.5000 33.33
Tonge's Problem 11 320 09917 0.9917 0.00

Arcus' Problem 9 16723 11.7778 6.6667 43.79
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from the use of our procedure are less in the case of Type II problems than Type I

problems.

6. Conclusion
In this paper we investigated an important problem in assembly line design--
leveling of workloads across workstations. We characterized dominant solutions and
incorporated these characterizations into a heuristic procedure. When used in conjunction
with optimal or heuristic solutions for Type I and II problems, our procedure yielded better
allocation of work across stations. Computational times for using our procedure are
insignificant and in no case exceeded 100 milliseconds (on IBM 3090-600 system). Thus
‘'the procedure is computationally inexpensive. Effectiveness of our procedure was
_established through testing on solutions for Type I problems, modified Hoffmann
procedure solutions and solutions for Type II problems. It yielded improvements in all
catégories, though improvements in case of Type II solutions were less than in other cases.
Our procedure can also be used to accelerate convergence to optimality in Type II

problems. We are currently investigating this aspect.
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