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Abstract
We identify a condition characterizing adjacent jobs in an optimal sequence
for the weighted tardiness problem. This condition can be used as an effective
pruning device in enumerative methods. Further, we show that the Modified Due
Date Rule is a special case of this condition. Lastly, we identify a set of
circumstances under which the first job in an optimal sequence can be deter-

mined without fully solving the problem.
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sequencing. To appear in Operations Research.



-2-

Consider the n-job, single machine weighted tardiness problem. Each job has
associated with it a triple, (wi, P;» di)’ representing the weight, processing
time, and due date of J; (job i). Let C, represent the completion time of job
i in a particular sequence. We wish to schedule the jobs to minimize

n

. W; max (0, Ci - di)'

i=i

Emmons (1969) developed dominance tests for the average tardiness problem.
These were extended to the weighted tardiness problem by Rinnooy Kan, et al.

(1975). Such dominance tests can be used to structure the problem as a global

precedence network. In this note we develop a local precedence relationship

among adjacent jobs in an optimal sequence.

Proposition 1: Consider any two adjacent jobs in an optimal sequence for the

single machine weighted tardiness problem. Either the follow-
ing condition holds or an alternate optimal sequence can be

constructed by interchanging the adjacent jobs in the optimal

sequence:
+ +
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where [i] denotes the index of the job in the ith position,

xT denotes max (0,x) and t is the start time for J[i]'

Proof: 1In the optimal sequence under consideration, jobs are either early (on
time is considered early) or tardy. It can easily be shown through
pairwise interchange arguments that either our condition is satisfied
or an alternate optimal sequence is constructed in which that condition

is satisfied.
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There are 16 cases to be considered as shown below (E is early and T is
tardy). Without loss of generality, assume that i is the index of the
job occupying the ith position and j be the index of the job occupying

the (i+1)st position in the optimal sequence.

Case # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Before interchange
Jobi E E E E E E E ET T T T T T T T
Jobj E E E E T T T T E E E E T T T T
After interchange
Jobi E E T T E E T T E E T T E E T T

Jobj E T E T E T ET E T E T E T E E

Note that cases 2, 4, 9, 10, 12, 13 and 14 are logically inconsistent.
In case 1, if the condition is not satisfied, we merely interchange
jobs i and j without sacrificing optimality. In all other cases, the
condition can be shown to be necessary through pairwise interchange
arguments, Details are omitted here for the sake of brevity.
Proposition 1 can be implemented as a pruning device in any enumerative
procedure. Note that Proposition 1 supplements the dominance tests identified
by Rinnoy Kan, et al. (1975). It can be applied at any node in the enumerative
procedure to ensure local optimality, thus reducing the search for optimal
solution. Potts and Wassenhove (1985) have verified the effectiveness of
adjacent job interchange as a pruning device in their branch and bound algo-
rithm for the weighted tardiness problem. In all of their test cases, adjacent

job interchange reduced the median value of CPU time.
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Note that Proposition 1 reduces to the Weighted Shortest Processing Time
Rule when adjacent jobs are tardy. Also, Corollary 2 used by Picard and
Queyranne (1978) and Theorem 2.1 used by McNaughton (1959) are special cases
of Proposition 1.

Baker and Bertrand (1982) have developed a very effective dispatch rule for
the average tardiness problem. The rule is as follows: let t be the current
time. For all jobs yet to be scheduled, determine the Modified Due Date (di)
as given below -

| -
di = max(di,t+pi).

Schedule next the job that has earliest Modified Due Date (MDD). As stated

below, the MDD rule is a special case of Proposition 1.

Remark 1: For every average tardiness problem, there exists an optimal

sequence satisfying the MDD rule.

Proof: We establish the claim by showing that the MDD Rule can be derived from
Proposition 1. Set w, = 1 for all jobs. Proposition 1, with a little

algebraic manipulation, can be rewritten as

max(di,t+pi) S_max(dj,t+pj)
Next we identify a sufficiency condition for determining first job in an
optimal sequence without fully solving the problem. In most practical situ-
ations, we are concerned with identifying the next job to be scheduled on the

machine and not necessarily with developing the full schedule.

Remark 2: If a job with the highest w/p ratio has processing time greater than
its due date, then there exists at least one optimal sequence in

which it is scheduled first.
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Proof: The proof is by contradiction. Let k be the index of such a job.
Among all optimal sequences consider one in which Jk is started at
the earliest. Let some job Ji immediately precede Jk in the sequence.
Since the sequence under consideration is optimal, it can be easily
verified that Wi/pi equals wk/pk and J; is either tardy or just on time
Hence Ji and Jk can be interchanged without increasing the objective
function. This contradicts the assumption that Jk was started as early

as possible. Hence there exists at least one sequence in which Jk is

the first job.

Remark 3: If there exists an optimal sequence for the weighted tardiness
problem in which all jobs are tardy, such a sequence is generated

by the Weighted Shortest Processing Time rule.

Proof: Recursive application of Remark 2 yields the proof.

Remark 3 generalizes a similar theorem for the unweighted case (Theorem
2.11, p. 36, Baker 1974). Note that Theorem 2.3 used by McNaughton (1959) is
a special case of the above remark, Remark 3 is same as the Theorem 2.4

suggested by McNaughton (1959). However, we provide a simple proof.

Acknowledgement

We wish to thank an anonymous referee for pointing out that the current
version of Proposition 1 is a stronger version of the result claimed by Morton
and Rachamadugu (1982). The author is grateful to referees for many helpful
and constructive suggestions. This research was supported by the Graduate

School of Business at The University of Michigan, Ann Arbor, Michigan.



-6—

REFERENCES

Baker, K. R. 1974. Introduction to Sequencing and Scheduling. John Wiley &
Sons, New York.

Baker, K. R., and Bertrand, J. 1982. A dynamic priority rule for scheduling
against due-dates. Journal of Operations Management. 3, 37-42.

Emmons, H. 1969. One machine sequencing to minimize certain functions of job
tardiness. Opns. Res. 17, 701-715.

McNaughton, R. 1959. Scheduling with deadlines and loss functions. Mgmt.
SG’I:. 6, 1-12.

Morton, T. E., and Rachamadugu, R. V. 1982. Myopic heuristics for the single
machine weighted tardiness problem. GSIA Working Paper, Carnegie Mellon
University, Pittsburgh, PA.

Picard, J. D., and Queyranne, M. 1978. The time dependent traveling salesman
problem and its applications to the tardiness problem in one machine
scheduling. Opns. Res. 26, 86-110.

Potts, C. N., and Wassenhove, L. N. V. 1985. A branch and bound algorithm
for the total weighted tardiness problem. Opns. Res. 33, 363-377.

Rinnooy Kan, A. H. G., Lagweg, B. J., and Lenstra, J. K. 1975. Minimizing
total costs in one machine scheduling. Opns. Res. 23, 908-927.




