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ABSTRACT

We analyze the problem of scheduling jobs against a common due date. Both early
and tardy jobs are penalized. Earliness and tardiness penalties are different and
proportionate to the processing times of the jobs. Firstly, we provide a dominance
condition for optimality when jobs have different due dates. This result is then used to find
an optimal sequence for the common due date problem. We show that the Longest
Processing Time (LPT) rule yields an optimal sequence. Also, optimal sequence is
independent of the due date. Further, optimal start time of the sequence can easily be
determined (newsvendor approach). Thus, this is one of the very few instances when
optimal solution can be found in polynomial time even when the common due date is
restrictive. Extensions to the problem of setting a common due date are also discussed.
We illustrate the procedures with numerical examples. We also provide future research

directions.



SCHEDULING JOBS AGAINST A COMMON DUE
DATE WITH PROPORTIONATE PENALTIES
Intreduction

Increasing emphasis on J-I-T has led the researchers to focus their attention on
scheduling jobs as close to due dates as possible. Under this environment, jobs are not
necessarily started early even if the machine is available (Ashton and Cook 1989). Thus
inserted idle time may exist between the jobs and also at the start of the sequence. Jobs are
penalized for both earliness and tardiness. Such a measure of performance is not regular in
the sense that delaying the start of a job may yield better solutions. For definition of
regular measure of performance, see Baker (1984). For a good survey of earlier studies on
due date related problems, see the review paper by Baker and Scudder (1989a). Among
these problems, a special class of problems has attracted considerable attention. These are
known as Common Due Date (CDD) problems. Jobs have a common due date in this
environment. For example, shipping schedules may warrant having a common due date
(Chaircraft Corporation--HBS case study). Baker and Scudder (1989a) provide a helpful
taxonomy of the CDD problems.

In this paper, we study CDD problems in which earliness and tardiness penalties
are proportionate to the processing times of the jobs. HoWever, the constants of
proportionality can be different. We generally expect the tardiness to be penalized more
heavily than earliness penalty. However, our analysis and results remain valid even if this
condition is not satisfied. In the next section, we provide a brief review of prior research
on related problems. Subsequently, we provide a formal definition of the problem and
derive characteristics of dominant solutions for a general version of the problem when the
jobs have different due dates. We then make use of this property to characterize optimal
solutions for the common due date problem. Next, we exploit the convexity property of
the criterion to determine optimal start times of the jobs in the sequence. We show that the
LPT rule yields an optimal sequence. It is noteworthy that the sequence is independent of

the due date. We illustrate the concepts using a numerical example. Next, we provide



extensions to the situation where decision maker has control over the due date setting.

Lastly, future research directions are provided.

Prior Research

Kanet (1981) initiated the early study on scheduling jobs with a common due date.
He assumed that the due date was "unrestrictively" late and all jobs had the same earliness
and tardiness penalty. Subsequently, other researchers analyzed various versions of this
problem such as restrictive due dates, multiple processors, different or identical penalties
for earliness and tardiness and restrictions on start times of optimal sequence
(Sundararaghavan and Ahmed (1984), Bagchi, Chang and Sullivan (1987), Bagchi,
Sullivan and Chang (1986), Hall (1986), Emmons (1987), Raghavachari (1986), Szwarc
(1989), Yano and Kim (1989), Hall and Posner (1989), and Hall, Kubiak and Sethi
(1990), among others). Though the measure of performance is not regular, optimal
solutions to these problems have the property that there is no inserted idle time between the
jobs in an optimal sequence. Idle time, if any, appears at the start of the sequence in an
optimal solution. For a comprehensive review of these problems, the reader is directed to
the survey paper by Baker and Scudder (1989a).

Another parallel stream of work, relaxing the commonality of due dates, was
studied by Fry (1984) and Fry et al. (1987). They used arbitrary penalties and job
dependent due dates. Under these circumstances, jobs may have idle times inserted
between them and/or at the start of the sequence. Abdul-Razaq and Potts (1988) and Ow
and Morton (1989) studied the special case where no inserted idle time was permitted.
Garey, Tarjan and Wilfong (1988) studied the case in which each job has "symmetric"
penalty--i.e., earliness penalty equals tardiness penalty. They also showed that the
problem is NP-complete. Yano and Kim (1989) studied the case where earliness and
tardiness penalties are proportionate to the processing times of the jobs. Arkin and Roundy
(1988) analyzed proportionate weighted tardiness case. In their analysis, earliness was not



penalized. However, due dates could be different. Reader is directed to the survey article
by Baker and Scudder (1989a) for a review of these prior studies.

Problem Statement

In the situation studied here, jobs have a common due date. Since the value added
to a job is generally proportionate to the processing time of the job, we set earliness and
tardiness penalties as proportionate to the processing times of the jobs. Thus the penalties
for the jobs could be different since jobs may have different processing times. The
constants of proportionality for earliness and tardiness need not be equal. Thus, in our
case, each job can have a distinct earliness and tardiness penalty. However, jobs have a
common due date. Further, we impose no restrictions on the common due date. Next, we
define the notation used in the paper.
J = Job index, i=1, 2, ..., n (without loss of generality, assume that the jobs are

index as per longest processing time rule, p 12Pp2 P3 2Py - Pn)

d. : Due date forJ ; (when jobs have identical due date, subscript will be omitted)
p; : Processing time for Ji

P : makespan
n
= Y p.
=i

w, : Tardiness penalty for J,
= op;, 0.2 0
h. : Earliness penalty for J,
= Bp;, B 20
[k] : Index of the job occupying kth position in a sequence
C. : Completion time of J i
x . max (0, x)
T, : Tardiness of J i
= C-d)°



E : Earliness of J,
- +
=¢-C)
; * Slack for Ji
=4-p
t : Start time of a job on the machine

Qij : min(pj, (di -t- pj )+) (reverse the notation for jS)

e Wil i, N ¢
eij : p—l 1- SJJ (1 + ;) (reverse the notation for eji)

i
(This is priority value for J i in comparison with Jj if the start time for the next
job on the machine is t)

L Start time of job 5 in a schedule

gi(t) : Penalty incurred by J i if its start time is t

p=1
g® ifk=1.

i R-1
G.(t) : X t+ Y ifk>1

Our problem can be stated as follows:

n
(PR) min kél(w[k] T + g E[k])

s.t. C[E] ZC[E-I] +p[£] =2 .,n
Cy2Pp;
C[E] + E[IE] - T[E] =d g=1,..,n

Consider optimal solutions to (PR). For any positive values of YK and h[k]’ it

can easily be shown that the following remark is valid.

Remark 1: In an optimal solution to the problem (PR), there is no inserted idle time

between jobs. Idle time, if any, appears at the start of the sequence.



In the next section, we characterize a set of dominant solutions for the general
version of PR where each job may have a different due date and no idle time is permitted to
be inserted between two consecutive jobs. Call this problem as GPR. Clearly,
PR € GPR. We then derive optimal solutions for PR using the characterization developed

for GPR.

Dominant Soluti
LetJ, and Jj be adjacent jobs in an optimal solution to GPR.

Proposition 1: In an optimal solution to GPR, job J. precedes Jj if the following

conditions hold good

w. w. h h
i) P, 2 pj , (ii) pj < pj’ (iii) di < dj and (iv) s <s i + (wjpj - iji)/(hi + Wi)
Proof: Ow and Morton (1989) developed an adjacency condition for optimality when no
inserted idle times are permitted between two consecutive jobs. The condition

identified by them is
wipj - Qij (wi + hi) 2 wjpi - jS (wj + hj)

Above condition can be rewritten as

. Q.. h. . Q.. h.
Wil i) Vi iy d
P; Pj Wi Pj P; Pj

t
0.

. t
ie., Oi- 2 ;

Y

Gtij and e;i for various values of t are shown in Figure 1.
jti for all values of t. From

Figure 1, it is clear that this will be the case if the priority value for J a dj - pj exceeds

wipy

J, will precede J i in an optimal solution if Otij 20



Figure 1

: Yi WI/PI
Le., di'pi'pj(hi+w) [(h +w)/p1pj]5d P;

Sd Pj (wh +w )

.p. - W.p.
Si58_+(w_11__1_1)

j h, +w,

This completes the proof. |

Next, we apply Proposition 1 to PR by setting di = d for all i in proportionate

penalty environment.

Lemma 2: LPT rule yields an optimal sequence for problem PR.



-

Proof: Set Wk = %Pk] ’h[k] = Bp[k] and d; = d for all k in Proposition 1. Note that
any pair of jobs satisfies (i), (i) and (iii). If p; > pj, then (iv) is automatically
satisfied. Further note that the relationship is transitive--i.e., eij > ejk =0, >

ij. Hence LPT rule yields an optimal sequence. This completes the proof. |

Note that in the above proof, we have made no reference to or put restrictions on
the common due date. Thus, LPT yields optimal sequence for any common due date
problem when earliness and tardiness penalties are set proportionate to the processing times
of the jobs. |

A graphical explanation for the optimality of LPT sequence is provided in Figure 2.

Priority values 8;; and 8; are shown in Figure 2 for J; and .

k....-..-..-..-....... [y,

d-p; - pj

d

t ——

]
=

Figure 2

From Figure 2, it is clear thatatt<d - p, - pj, either job can precede the other.
Similarly, att>d - P} either job can precede the other. In the range d - p; - pj Stsd- P
¥ (longer job) precedes the Jj (shorter job). This analysis implies that there is an optimal



sequence in which J ; precedes J i irrespective of the start times. Thus LPT sequence is
optimal for any proportionate penalty CDD problem. This result generalizes and extends
similar result derived by Hall and Posner (1989). It may be noted that there are multiple
optimal sequences for this problem. It can easily be verified that in a given sequence, all
jobs which are early or on time can be sequenced in any order without violating optimality.
Similarly, all jobs with start times greater than or equal to the due date in an optimal
sequence can be executed in any order. Let n, denote the cardinality of the latter set of
jobs. We can construct at least n, 'n-1- n2) ! alternate optimal sequences.

Though LPT rule yields an optimal sequence, it is not V-shaped. (Weakly) V-
shaped property implies that all jobs which are strictly early or on time are in LPT sequence
and all jobs starting after the due date are in SPT sequence. It can easily be seen by the
reader that we can indeed construct an alternate optimal sequence which is weakly V-
shaped. Details are omitted for the sake of brevity. However, for our subsequent analysis,
it is assumed that the LPT sequence is used as the optimal sequence.

Next, we discuss the issue of optimal start times of the jobs in the optimal sequence
under consideration. Invoking Remark 1 and Lemma 2, it is clear that once we define the
start time of the longest job in the sequence, optimal solution has been obtained. In the

next section, we develop a procedure for determining the optimal start time.

Optimal Start Ti

Let gi(t) be the penalty incurred by Ji if its start time is t. Clearly, for any given due
date gi(t) is a convex function of t. Since we know that (i) there is no inserted time
between the jobs, (ii) LPT is an optimal sequence, and (iii) jobs have been indexed in LPT

sequence, total penalty for starting the optimal sequence at time t is given by

k-1 n-1
Gn(t) = gl(t) + g2(t+p1)+ g3(t+p1 +p2) +gk(t + 3 pﬂ) gn[t + Y Py

R=1 R=1

n i-1
Y oglt+ Y
= Ie=1pje

|



Note that each of the above terms is convex. Since the sum of convex functions is
convex, Gn(t) is also convex. This simplifies our analysis. Since we are minimizing a
convex function, ensuring local optimality guarantees global optimality. Let t* be the
earliest optimal start time for the first job in the sequence. Then, local optimality requires

that
G (t* + At*) -G ()20
Left hand side (LHS) of the above expression is the increase in cost due to marginal

right shift of the sequence by At* time units. Let K be the first tardy or on time job in an

optimal schedule (either Figure 3 or Figure 4)

k Jk+1 Jk+2 Xk Ik+1

d d

Figure 3 Figure 4

In either case, increase in cost due to the right shift of the sequence by one time unit

is equal to
n K-1 n K-1
w - Yh =0 Yp - X

q:K q g=
n n
-B P -

-BP+ (o + B) }l} .
q=

Hence
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o+ P

n
t*{-BP+(a+B)q§KP }>0=> % P ( : )P

Let K* be the shortest job satisfying the above condition. Optimal start time t* is
given by
K*
=
If the above quantity is negative, clearly optimal start time is (. (This can be

established rigorously by defining gi(t) to be arbitrarily large for all i for t < (. Details are

omitted here for the sake of brevity.) Hence

K*
t*=max{0, d - ¥ p.
i=1 1

Next, we illustrate our results using a numerical example.

Numerical Illustration

Consider a four job problem p, =9, P,=7,p3= 4,andp, =2. Leta.=6, B=1
and d = 21. Using LPT, optimal sequence is given by J 1795 13 -J 4 Choose K* such
that

=2K*pq 2 1 i 6(9+7+4+2)
> 2211
K* =3,

Hence optimal start time is given by
max(0,21-(9+7+4))=1.

Details are shown in Figure 5.
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Consider the same problem with d = 11. Optimal sequence is invariant with respect
to the due date. Hence optimal sequence still remains the same--J, -J, - J5 - J,. Optimal

start time is given by

max(0, 11 - 16) =0.

T T2 13 174 | Penalty = 150

23 t —

Figure §

Next, we extend our analysis to the situation where the decision maker has control
over due date setting. Obviously, setting a large due date puts the manufacturer at a
competitive disadvantage. Hence a reasonable composite measure for due date setting and

measuring penalties for deviating from that due date can be stated as follows--

n
(PR) mmZ(d):yd+k§1(w[k] Trg * Mg E[k]) (5)
s.t. C[Q] ZC[Q-l] +Pg) £=2,.,n
Cu1*Pa;
Croy* Epey~ Trey =4 £=1,.,n

It is clear that in an optimal solution to (5), there will be no inserted idle time at the
start of the sequence. This is true for any arbitrary positive values of W, hi and y. Proof is

by contradiction and omitted here for the sake of brevity. For arbitrary values W, hi and v,



there are no known polynomial procedures for solving this problem. In such a case,
optimal sequence itself will be dependent on the due date. However, in our case
(proportionate penalties), LPT yields an optimal sequence and it is independent of the due
date. Also, it can easily be verified that in our case Z(d) is a convex function of d. Hence
local optimality of LPT sequence with respect to d will ensure global optimality of Z(d).
Further, since penalties are piecewise linear with slopes changing at completion times,
optimal due date will be either at zero or coincide with the completion time of a job (for
other approaches to due date setting for a given sequence, see the papers by Quaddus

(1987) and Baker and Scudder (1989b)). Let d* be the earliest optimal due date and k** be

-12-

the job which completes at d*. For d* to be optimal,

ie.,

example cited before. Suppose that y = 64. In this case, we choose longest job k** such

that

Z(d* + Ad¥) - Z(@*) 2 0

( n ) [k** )
-0 + +v20
q=k§*+1pq B q§1 Pq |t

k**

-ocP+(oc+B)(21 pq)+'¥20

% %k
(a+B)C§1 pq)ZaP-y

Kk 0P -y
Set d*such that ), p
=] q o + B

1\

Y

v

&

If the above quantity is negative, d* = . As an illustration, consider the numerical

8

o+ p

)
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Set due date as 16.

Conclusions

In this paper, we have analyzed the problem of scheduling jobs against a common
due date in proportionate penalty environment. We have shown that LPT yields an optimal
sequence for this problem. Further, this is true irrespective of whether the due date is
restrictive or unrestrictive. This is the one of the very few known instances where
polynomial time solution can be found for the CDD problems when the due date is
restrictive. Further we extended our analysis to the situation where the decision-maker has
control over due date setting. We are currently exploring extensions of our procedures to

multiple processors situation.
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