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SCHEDULING WITH SEQUENCING FLEXIBILITY

Abstract

We examine the effects of sequencing flexibility on the performance
of scheduling rules. Our findings show that using sequencing
flexibility even to a small extent significantly improves the
performance of scheduling rules. Interestingly, at high levels of
sequencing flexibility, some competing rules outperform the
shortest processing time rule for the mean flowtime criterion.
Also, the performance differences between various rules diminish
significantly. Similar effects were also observed in case of two
due date related performance measures. When a high degree of
sequencing flexibility is available, job based rules outperform
operation based rules. For example, using operation milestones
with due date based rules can lead to a deterioration in tardiness
performance. We also discuss implications of our findings for
manufacturing systems design. '




SCHEDULING WITH SEQUENCING FLEXIBILITY

1.0 INTRODUCTION

Global competitive pressures in the manufacturing sector have resulted in
renewed efforts to improve manufacturing operations. Recently, attention has
focussed on flexibility and its beneficial effects on manufacturing at both
strategic and operational levels. Not surprisingly, technologies such as
Flexible Manufacturing Systems(FMS), Computer Integrated Manufacturing(CIM), and
Robotics have gained a good deal of attention. However, a review of the
literature on flexibility indicates that there are various types of
flexibilities, and some of these flexibilities can be advantageously used
without necessarily investing in capital intensive hardware technologies such
as FMSs. In this paper we investigate the effects of one such type of
flexibility, namely sequencing flexibility, on the performance of a
manufacturing system. Sequencing flexibility is a measure of alternate feasible
sequences which can be used to schedule the operations of a job in a
manufacturing system, even though each operation of the job can be performed on
only one of the machines in the shop. This type of flexibility exists in
conventional manufacturing systems as well as in new technologies such as FMSs.
Our evaluative studies show that using this flexibility can significantly
improve the performance of scheduling rules and of manufacturing systems. A
surprising finding, which is contrary to most early job shop studies, is that
the shortest processing time rule need not necessarily outperform competing
nonparametric dispatching rules for reducing the mean flowtime. This phenomenon
occurs when a large amount of sequencing flexibility is present in the system,
and it is appropriately used for scheduling purposes. Also, there is

substantial reduction in the performance differences between various rules when

sequencing flexibility is used. This is true for the mean flowtime criterion,

as well as for due date related measures such as average tardiness and
proportion of tardy jobs. Also, earlier research indicated that using operation

milestones generally improves the performance of due date based rules such as
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the earliest due date rule, critical ratio rule, and the modified due date rule.
Our studies here show that these conclusions do not necessarily carry over when
sequencing flexibility is available in the system. These findings have

implications for both manufacturing system design and product design.

Our paper is organized as follows. In section 2 we discuss the concept
of sequencing flexibility in detail and show how it can be quantitatively
measured. In section 3 we review the prior literature on using sequencing
flexibility in making scheduling decisions. In section 4 we describe the
procedures and competing rules used in our study to schedule jobs in flexible
environments. Section 5 discusses simulation modeling issues, and also provides
details on how the operation graphs for the jobs are generated. Section 6
provides experimental design details. In section 7 we analyze the simulation
results. Finally, in section 8 we discuss implications of our study for
manufacturing system design, and conclude with future research directions.

Notation and acronyms used in the paper are shown in Table 1.
2.0 SEQUENCING FLEXIBILITY

The term "flexibility" has been used widely in prior research studies.
It encompasses various types of flexibilities such as volume flexibility,
variety flexibility, sequencing flexibility, material handling flexibility,
product flexibility, expansion flexibility, and machine (or routing)
flexibility. Some earlier studies addressed the issue of classifyiﬁg various
types of flexibility (Zelenovic [26], Chatterjee, Cohen, Maxwell and
Miller[1984], and Sethi and Sethi [25]). Also, researchers addressed the issue
of measuring various types of flexibility (Buzacott [7], Chatterjee et
al.[1984], Browne, Dubois, Rathmill, Sethi, and Stecke [6], Carter [8],Brill and
. Mandelbaum [5], and Ettlie{11]).

In this paper we study in detail the effects of sequencing flexibility on
the performance of scheduling rules. Sequencing flexibility refers to the

number of alternate sequences in which the operations of a job can be performed.
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number of operations for job i

arrival time of job i

sequencing flexibility measure for job i.
(the subscript is not used when reference
is made to the concept)

the number of transitive precedence arcs
in the operation graph of job i

shortest processing time rule

first in queue rule (also known as FCFS)
first in system rule

shortest processing time rule

least work remaining rule

earliest due date rule

critical ratio rule

earliest operation due date rule
modified operation due date rule
operation critical ratio rule
maximum successor ratio rule

set of remaining operations of job i

number of remaining operations of job
i(=11])

number of immediate successors to the
current operation of job i

flow allowance factor
due date for job i

processing time for the jth operation of
the ith job

operation due date for the jth operation
of job i

NOTATION

TABLE 1
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It can easily be seen that sequencing flexibility is inherent in product
structure rather than machine hardware. Sequencing flexibility does not depend
on the types of machines. Even when each operation of a job can be performed
on no more than one specific machine in the shop, there can be many alternate
feasible operation sequences. The number of alternate feasible sequences can
range from 1 (when operations have strict serial precedence) to n,! (when no
precedence exists at all among the operations). Hence sequencing flexibility
is present in conventional machining systems as well as with modern technologies
such as FMSs and CIM. However, material handling facilities may sometimes
restrict the use of sequencing flexibility. In most conventional systems,
material handling is largely manual and/or centralized. Hence jobs can be
transported between any pair of machines in either direction, directly or
indirectly. But in automated manufacturing systems, material handling may
restrict certain operation sequencés if access from one machine to another

machine is difficult or impossible.

In order to study the effects of sequencing flexibility on the performance
of scheduling rules, it is necessary to quantify sequencing flexibility. One
measure of sequencing flexibility is the number of feasible operation sequences
in a job (Gerwin [13] and Sethi and Sethi [25]). The number of alternate
feasible sequences is dependent partly on the number of operations to be
performed. Clearly, if two jobs have the same number of feasible sequences, the
one with a smaller number of operations is more flexible than the one with a
larger number of operations. Hence it is appropriate to scale the number of
feasible sequences with respect to the number of operations in a job.
Rachamadugu and Schriber [20] derived a measure of flexibility, called the
Sequencing Flexibility Measure (SFM) which takes into consideration both the
number of operations, and the number of feasible operation sequences. The

sequencing flexibility measure is defined as follows:



2*TPA;

SFM, = 1.0 -~ ————
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(1)

where n, is the number of operations in job i, TPA, is the number of transitive
precedence arcs in the operation graph of job i,vand SFM, is the sequencing
flexibility measure for job i. The term transitive precedence arcs is used to
represent precedence relations, both explicit and implicit, between all pairs
of operations of a job. The denominator in the above expression is twice the
potential number of acyclic precedence arcs that can exist in an operation graph
of a job. For example, consider the operation graph of a job shown in Figure
1. Though the figure shows only three explicit precedence arcs, an arc
representing the implicit precedence between operations 1 and 3 is not shown.
Hence the total number of precedence relationships (both explicit and implicit),

known as transitive precedence arcs, is four. The SFM for the job shown in

Figure 1 is therefore 0.333. In the case of classical job shops, each job has
a preassigned operation sequence, and hence the SFM valueAis zero. Gonzalez and
Sahni [14], and Bitran, Dada and Sison [4] denote situations in which there are
no precedence restrictions at all as open shops. The SFM value for open shops
is 1. Clearly, the SFM value for most practical situations falls between 0 and

1. We use SFM as the measure of sequencing flexibility in this paper.

3.0 LITERATURE REVIEW

Earlier research studies in job shop scheduling were reviewed by Baker
[1], Conway, Maxwell, and Miller[1967], and French [12]. Most studies in job
shop research treated the operation sequence of a job as given, and fixed. Very
few studies specifically addressed the impact of sequencing flexibility on the
performance of scheduling rules in job shops. Russo [22] studied the effects
of using sequencing flexibility on the performance of scheduling rules. He used
both flowtime, and due date (mean tardiness) related criteria to evaluate the

performance of scheduling rules. His study identifies different levels at



OPERATION GRAPH
Figure 1

which sequencing flexibility can be utilized. He showed that greater the use
of flexibility, the larger is the improvement in the performance of scheduling
rules. His studies were performed at a shop utilization level of 80%. Neimeier
[17] studied the effect of sequencing flexibility on the performance of First
Come First Serve (FCFS) and Shortest Processing Time (SPT) rules at various
levels of sequencing flexibility. His study assigned operations to machines
earlier than necessary, and hence did not fully exploit sequencing flexibility
inherent in the jobs. He concluded that using sequencing flexibility improved
the performance of the rules, and narrowed the performance differences between
SPT and FCFS. However, SPT performed better than FCFS in all his studies. His

conclusions were similar to Russo[1965].

Rachamadugu [19], Rachamadugu and Schriber [20] and Schriber [24]
- investigated the effectiveness of sequencing flexibility on the performance of

scheduling rules in job shops and generalized open shops. In a generalized open

shop, while operations of a job can be performed in any order, a job need not
visit all the machines in the shop. These studies show that, while SPT performs

better than competing rules in conventional job shop studies, better results can
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be obtained by using the Least Work Remaining (LWR) rule in generalized open
shops. However, in most practical situations, manufacturing systems are neither
as restrictive as the classical job shop studied in the literature (SFM value
of 0), nor as flexible as the generalized open shop (SFM value of 1) studied by
Rachamadugu and Schriber [20]. Exploratory studies by Rachamadugu and Schriber

[20] and Schriber [23] were conducted using GPSS/H (Schriber [24]).

Lin and Solberg [16] recently studied flexibility issues in the context

of flexible manufacturing systems. They concluded that utilizing both software

and hardware flexibilities inherent in the system significantly improves the

performance of scheduling rules. However, their study involved combinations of
routing flexibility, sequencing flexibility, and process flexibility. Also,
their findings were based on a specific flexible manufacturing system
configuration. They observed that SPT and FIQ performed better than competing
rules. Their study provides interesting insights into how the managerial
control system can influence the effectiveness of flexibility. Their study did

not explore the effects of flexibility on due date related criteria.

Our research extends earlier studies in the following ways. First, we
isolate and control for the effects of sequencing flexibility. This is
important because sequencing flexibility is independent of the manufacturing
system hardware (unless there are severe material handling restrictions). Hence
it can be used in conventional systems as well as FMSs to improve system.
performance. Second, we address the effect of due date allowance (or flow
allowance) on the performance of various rules when sequencing flexibility is
present. Third, we study the effects of using operation due dates (milestones)

in the presence of sequencing flexibility. This extends the earlier works of

- Kanet and Hayya [15], Baker and Kanet [2], and Baker [3] on operation milestones

to more general situations. We evaluate the performance based on three criteria
which are of practical importance. They are mean flowtime, average tardiness,

and proportion of tardy jobs.
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4.0 SCHEDULING WITH SEQUENCING FLEXIBILITY

We studied the performance of eleven scheduling rules at various levels
of sequencing flexibility. These rules were chosen based on their use in the
literature and their relevance to flexible situations. They are described

below:

1) FIQ - first in queue rule. Whenever a machine is
available, highest priority is assigned to the job
which arrived at this machine earliest. It should be
noted that for prioritization purposes, the latest time
at which a "copy" of the job entered the queue is used.
This rule is also known as the FCFS rule.

2) FIS - first in system rule. Highest priority is
assigned to eligible operations of the job which
entered the system earliest.

3) SPT - shortest processing time rule. Highest priority
is assigned to the job which requires the least
processing time at the machine.

4) LWR - least work remaining rule. Highest priority is
assigned to the job which has the least total remaining
work to be performed in the system.

5) EDD - earliest due date rule. Highest priority is
assigned to the job with the earliest due date.

6) MDD - modified due date rule. Highest priority is
assigned to the job with the earliest modified due
date, where modified due date equals the maximum of the
job’s due date, and the earliest finish time of the job
(Baker [1984]).

7) CR - critical ratio rule. Highest priority is assigned
to the job with the least ratio of remaining time until
due date (dynamic slack) to the remaining processing
time.

8) EODD - earliest operation due date rule. Highest
priority is assigned to the job with the earliest
operation due date.

9) MODD - modified operation due date rule. Highest
priority is assigned to the job with the earliest
modified operation due date.

10) OCR - operation critical ratio rule. Highest priority
is assigned to the operation which has the least ratio
of operation slack to the operation time.

11)  MSUC - maximum successor ratio rule. MSUC value for
each queued operation is determined as follows:



IMM. + 1 \
MSUC,= —Z1— (2)
J REM;

where IMM, is the number of immediate successors of
operatlon j, and REM, is the total number of remaining
operations of the job i. Numerator is incremented by
1 to ensure that the last operation of a job is not
orphaned. Since an operation with large ratio tends to
make eligible for assignment a large proportion of its
successors, it is anticipated that it will lead to
faster completion of the job.

Earlier job shop studies found that using operation milestones instead of
job due dates resulted in improvement of scheduling rules. We extended this
scheme to flexible sequencing situations. In job shop studies, the operation
sequences for jobs are fixed, and hence the operation due dates could be set at
the time of job arrival (Kanet and Hayya [15], Baker [3]). When sequencing
flexibility is used in scheduling the jobs, it is not known apriori in which
sequence the operations will be executed. Hence the operation due date for an
operation needs to be computed whenever it becomes eligible for assignment.
Also, Baker [3] found a total work content procedure to perform better than
competing alternatives for setting due dates. We used this scheme to set the
job due dates, as well as operation due dates. Operation due date for the jth

operation of job i (ODD;;) is given by the following expression-

D, - a;
ODD;; = a; + ‘;'—" (pj; + E Py;)

171 (3)
§:<pk1 P

where a, is the arrival time of job i, I, represents the set of remaining
operations of job i, D, is the due date of job i, and p;, represents the
processing time for the jth operation of job i. Clearly, schedules generated

using operation due dates and job due dates need not be identical. Note that

- (38) results in the same operation milestones as those suggested by Kanet and

Hayya[15] and Baker [3] for classical job shops. However, (3) extends those
concepts to more general situations in which we have no apriori knowledge of the
sequence to be used in dispatching the jobs. Other operation due date setting

procedures are possible, but they are not explored here.
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5.0 MODELING ISSUES

Modeling sequencing flexibility proved challenging. In our approach,
whenever a job had more than one eligible operation (an operation whose
predecessor operations had been completed), a copy of the job was created for
each of the eligible operations. Each copy joined the virtual queue at the
machine at which the corresponding operation had to be performed. When
processing began on any one of these operations, all other copies of the job
were destroyed. This accommodated the assumption that no two operations of a
job can be carried out simultaneously. Later, when the ongoing operation was
completed, copies of the job were then created for each remaining eligible
operation, and so on, until all operations had eventually been completed. The
set of steps followed in moving a job through its life cycle is summarized in

the flowchart in Figure 2.

Next we describe the generation of operation graphs. First we determine
the number of operations for a job. Each operation of a job is assigned a
number. Next we randomly sample two integers x and y in [1,n;] such that x=y.
Without loss of generality assume that x<y. If a transitive precedence arc
already exists between x and y, then x and y are discarded, and a new random
pair of operations is sampled. Else, a direct precedence is imposed between the
operations x and y, with x preceding y. This ensures that the operation graph
is acyclic. Also, implicit precedence arcs are recognized by making x (and all
its predecessors) be predecessors of y (and all its successors). This process
is repeated until enough transitive precedence arcs are generated, as needed by

the sequencing flexibility measure value (equation 1, section 2).

As an example, consider how we can derive the operation graph shown in
Figure 1. 1Its SFM value is 1/3. Hence we need to generate four transitive
precedence arcs (equation (1), section 2). Suppose that the first chosen random

pair is (4,1). We set a precedence restriction that 1 should be done before 4.
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/ Determine Job Requirements
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3. Due Date
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one copy per assignable operation
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JOB LIFE CYCLE IN THE SIMULATION MODEL

Figure 2
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Let the next chosen random pair be (2,3). We set a precedence restriction that
2 should precede 3. Let the next randomly chosen pair be (1,4). Since a
precedence relation exists between (1,4), we discard this pair, and sample
again. Let (2,1) be the next chosen pair. We set a precedence restriction that
1 should precede 2. Since a precedence already exists between 2 and 3, this
results in an additional transitive precedence arc, (1,3). Now we have four
transitive precedence arcs, (1,2), (2,3), (1,3), and (1,4). Hence the operation

graph is now complete.

6.0 EXPERIMENTAL DESIGN

We modeled a shop with 10 machines. Each arriving job consisted of a set
of operations to be performed, the number chosen from a discrete [4,8] uniform
distribution. Every operation of a job is assigned randomly to a machine.
Hence, a job may visit a machine more than once. Operation processing times
were sampled from a negative exponential distribution with mean of 5.0 time
units. Rachamadugu and Schriber [20] and Lin and Solberg [16] found that
performance differences between scheduling rules were not significant at low -
utilization levels. Hence the mean interarrival time was set at 10/3 time units
so that the shop utilization was high (90%). Interarrival times were also

sampled from a negative exponential distribution.

There are three factors in the experiment: the level of sequencing
flexibility (expressed as the SFM), the flow allowance factor(FAF), and the
scheduling rule. SFM values can range from 0 to 1, the former representing no
sequencing flexibility (almost all classical job shop studies fall in this

category) while the latter permits operations of a job to be performed in any

~order (open shops and generalized open shops). Because product structures in

practice do not necessarily fall at the two extremes, we varied SFM values from
0 to 1, in increments of 0.2. Hence we have six SFM values. Flow allowance
factors were set at 0.25k, 0.5k, 1k, 2k, and 4k, where k is the ratio of the

mean flowtime to the mean processing time in an M/M/1 system. Since interarrival
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times and processing times are negative exponentially distributed, it can easily

be verified that k equals 10 in an M/M/1 system.

A full factorial design was used to study the performance of the various
scheduling rules. With six SFM values, five flow allowance factors and eleven
scheduling rules, this resulted in 330 experimental settings. A single
replication was performed for each experimental setting. For purposes of
testing for steady state, a replication was partitioned into a sequence of 12
consecutive, nonoverlapping batches, each corresponding to 20,000 time units
(approximately 6,667 jobs). The performance measures of interest were then

averaged over the last 10 batches, giving the results reported here.

Common random numbers were used in each experiment so that matched-pair
comparisons of the performance measures for any two scheduling rules could be
made. This was done by dedicating independent random number generators to each
source of randomness in the model. The net effect was that from experiment to
experiment, any given job moving through the system had the same time of
arrival, the same number of operations, the same set of required machines, and
the same set of operation times. This approach sharpens the contrast in the

performance measures achieved by the alternate scheduling rules.

The model used to produce the results reported here was written in SIMAN
(Pegden, Shannon, and Sadowski [18]) and was supported in part by subroutines
coded in Fortran 77. The experiments were run on an Hitachi Data Systems 9080

computer.

7.0 SIMULATION VERIFICATION AND VALIDATION

We used three aspects of our study to verify and validate the simulation
results. First, we compared the realized overall machine utilization with the
expected overall utilization. While the expected machine utilization was 90%,

the realized mean machine utilization was 90.1%, and the range was 89.2-91.6%.
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Second, we tested the batch mean flowtimes in each experiment for
autocorrelation using the Durbin-Watson statistic. In all cases, the existence
of autocorrelation could not be confirmed for the batch mean flowtimes at a
significance level of 5%. Details are shown in table IA, Appendix A. Similar
results were observed for the mean tardiness and proportion of tardy jobs, with
some exceptions. These exceptions occurred when the tardiness and the
proportion of tardy jobs were driven to very small values (close to 0, when flow
allowances are large). Also, in cases where measures were identical, the
Durbin-Watson statistic could not be computed. Third, the special cases of zero
SFM value correspond to classical job shop studies. Our results for these

special cases are similar to those derived by earlier researchers.

7.1 ANALYSIS OF RESULTS

Now we analyze the simulation results. Detailed results are provided in
Appendix B.  First, we discuss how flexibility affects the mean flowtime
performance of the rules, and then we discuss the implications for due date

related criteria.

Figure 3 compares the mean flowtimes for scheduling rules at different
flexibility levels. FIQ was excluded from Figure 3 since it performed worse
than FIS under all settings. Also, the MSUC rule was eliminated from the figure
since its performance was worse than well known rules from the prior literature.
Results for due date based rules are shown at a flow allowance level of 1, which
corresponds to the average flowtime for a job with average processing time.
Note the beneficial effects of using sequencing flexibility. All rules
included in our study improve their flowtime performance as the SFM value
increases. It is also clear that even a some sequencing flexibility provides
improvements in the mean flowtime performance. Relative to classical job shops,
Table 2 lists the reduction in flowtimes for various rules at SFM values of 0.2
and 1. With the exception of the operation critical ratio rule(OCR), rules

which perform poorly at 0 flexbility level achieve large improvements at an SFM
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level of 1.0. For example, an arbitrary rule such as FIS improves its mean

flowtime by 52.25% while the improvement for SPT is only 23.68%.

Reduction in mean flowtime in
Mean flowtime comparison with no flexibility
at SFM=0 (in percent)

Scheduling Rule (job shops) SFU = 0.2 SFM = 1.0
FIS 301.68 17.78 52.25
MAX SUC RATIO 297.62 24.42 63.84
CR’ 276.41 9.73 24.07
EDD’ 258.63 20.82 55.91
OCR 254,83 4.84 10.83
MDD" 249.23 19.99 55.35
EODD’ 213.96 11.82 36.84
LWR 203.21 15.57 59.93
MODD’ 196.76 9.34 32.53
SPT 132.80 7.28 23.68

Note: the performance of rules marked * is reported at a flow allowance factor of 1

PERCENT REDUCTION IN MEAN FLOWTIMES
TABLE 2

Classical job shops have an SFM value of 0. While SPT performs better
than competing rules in classical job shops (see a recent survey by Ramasesh
[21]), least work remaining rule provides superior performance at high SFM
values. Earlier job shop studies did not address perfect sequencing flexibility
(SFM=1). Hence those studies did not uncover the superior performance of LWR

at high SFM values.

We also studied the interaction between the flowtime performance of due
date related rules and various FAF values. As flow allowance increases, due
date based rules improve their due date performance. However, earlier research
did not focus on the effects of flow allowance on flowtime performance of due
date based rules. First, we consider the EDD rule. Clearly, at very low flow

allowances, priorities assigned by EDD and FIS are similar. If FAF is zero, EDD
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reduces to FIS. However, EDD imitates LWR at very large flow allowances. Hence
the flowtime performance of EDD improves as FAF increases, and is also bounded

by LWR and FIS, as shown in Figure 4.

Now we consider the performance of the CR rule for the mean flowtime
criterion (Figure 5). At any SFM value, CR performs worse as the FAF increases.
It is interesting to note that EDD and CR perform in opposite ways for the
flowtime criterion as FAF increases (compare Figures 4 and 5). As FAF
decreases, jobs tend to have negative slack, and hence CR assigns jobs with a
small amount of remaining work higher priority. When FAF values are large, slack
tends to be positive, and hence jobs with the most remaining work are assigned
higher priority, unless the queue at the machine has some tardy jobs. This
explains the deteriorating performance of CR at high FAF values. Though large
FAF values improve the tardiness performance of the CR rule, those benefits are
partly offset by an increase in inventories. This aspect of CR merits further

investigation.

Next we consider the flowtime performance of the modified due date rule.
By definition, it is clear that MDD tends to imitate\LWR at low FAF values.
However, at high FAF values, MDD behaves more like the EDD rule. These patterns
are evident from Table 3, which compares the performance of these rules at

different SFM values.

Kanet and Hayya [15] noted that using operation due dates reduces the
flowtime for job due date based rule such as EDD and the slack based rules in
classical job shops. Our results lead to somewhat different conclusions, as
shown in Figure 6, 7, and 8. In the case of EDD and EODD (Figure 6), our
study reaffirms Kanet and Hayya [15] conclusions for the classical job shop.
However, where flow allowances are large, setting operation due dates results

in deteriorating performance even when small amounts of sequencing flexibility
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SFM VALUE

Flow Allowance 0.0 0.2 0.4 0.6 0.8 1.0
LWR 203.21 171.55 147.81 120.75 99.71 81.43

Low
(0.25) MDD 209.37 173.27 154.74 124.96 104.65 87.59
EDD 212.24 177.23 162.37 140.29 124.87 | 109.41

High
(4.0) MDD 213.51 177.60 160.61 138.57 123.70 | 107.99

Comparison of MDD with LWR and EDD
(mean flowtime)

Table 3

is present. At extremely high SFM values, operation milestones worsen the
performance of EDD for all FAF values in our study. ~Similar patterns can also
be observed for MDD (Figure 7). In the case of critical ratio rule, using
operation due dates can increase mean flowtimes even in classical job shops
(Figure 8). This has implications for tardiness performance as well, as

discussed below.

Next we discuss the performance of rules for due date related criteria.
Since FIS, FIQ and MSUC performed significantly worse than competing rules,
their tardiness performance is excluded from further analysis. Figure 9 shows
the average tardiness results for competing rules at a low FAF value of 0.25.
We note that as the SFM value increases, performance differences between the
rules diminish significantly. At low SFM values SPT and MODD perform extremely
well. However, when the SFM value is high, MDD outperforms competing rules.
This is not surprising, since in tight due date settings MODD and MDD emulate
SPT and LWR respectively. Our prior analysis indicates that while SPT yields

the smallest flowtimes at low SFM values, LWR results in the least flowtime at
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high SFM values. This explains the superior performance of MODD at low SFM and
MDD at high SFM values. Similar patterns can also be observed for the CR and
EDD rules. While operation due date versions perform well at low SFM values

(classical job shops), job due date versions dominate at high SFM values.

Figure 10 shows the tardiness performance of rules when FAF raised to 1.
Whereas SPT and LWR were competitive at the low FAF of 0.25, they are clearly
dominated by due date based rules when the FAF is 1. Once again, we note that
performance differences between various due date related rules diminsh Fapidly
as the SFM increases. MODD performs the best at low SFM values, while MDD
dominates the other rules at high SFM values (also see shaded cells in Table
IIB, Appendix B). In open shops, MDD outperforms other rules. However,
performance differences between MDD and MODD at this SFM value are
insignificant. Increasing flow allowances beyond 1 results in all due date
rules performing well, with the differences becoming insignificant from a
practical point of view. For details, see Table IIB, Appendix B. However, at
high flow allowance values (FAF = 2 or 4), operation milestone versions are
clearly dominated by job due dates versions of rules for all SFM values.
Earlier, this was commented on by Baker and Kanet [1983] for job shops. Our
study shows that those conclusions can be generalized to precedence constrained

job networks.

MODD is a good choice for reducing tardiness at all flow allowance values
when sequencing flexibility is low. However, at high sequencing flexibility
levels, better results can be achieved by using the MDD rule. Our study not
only reaffirms earlier research conclusions that MODD is a good choice for
classical job shops, but also extends its usefulness to situations where
sequencing flexibility exists in the system. At extremely high SFM values, MDD
is a better choice than MODD.
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We evaluated the performance of the scheduling rules for the proportion
of tardy jobs. This measure is also of interest to practitioners. For example,
in some industries such as the furniture industry, it is a common practice for
the manufacturer to incur freight expense if the delivery-is late. Then the
proportion of tardy jobs is a better surrogate for profits than tardiness.
Figure 11 shows the proportion of tardy jobs for the rules at a low FAF value
of 0.25. It is clear that all rules improve their performance as the SFM
increases. SPT outperforms all other rules at low SFM values (=0.6), and LWR
performs the best at high SFM values. Superior performance of SPT for the
proportion tardy Eriterion was noted earlier by Baker [3] for classical job
shops. Our study extends its validity for low sequencing flexibility situations
as well. In fact, while operation based rules perform better at low SFM values
(job shop situations), job based rules perform better at high SFM values.
However, we note that, unlike other measures, there is little convergence in the
performance of rules as the SFM is increased. Figure 12 shows the results for
a flow allowance value of 1. Clearly, SPT dominates the other rules for job
shop situations here. However, the reader will note that MODD provides not only
comparable performance for job shops, but dominates other rules for low SFM
values (=0.6). However, MDD provides superior performance for high SFM values
(z0.8). Though slack based rules are known to perform well at large flow
allowances for job shops (for the proportion tardy criterion), absolute
magnitudes of the values are already so small that the performance differences
between MDD/MODD and slack based rules are of little practical importance. At
higher flow allowances, performance differences between the rules diminish

rapidly. Details are shown in Table IIIB, Appendix B.

8.0 CONCLUSIONS

We investigated the effects of sequencing flexibility on the performance
of scheduling rules. The performance measures included mean flowtime, average
tardiness, and proportion of tardy jobs. When sequencing flexibility is used,

the least work remaining rule performs better than the SPT rule to reduce the
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mean flowtime (and inventories). The practical importance of this criterion
warrants its investigation using an approximate analytical model if an exact
model is mathematically or computationally intractable. Though it is
intuitively clear that using flexibility.would improve the performance of the
rules, our study found that the differences between the rules also diminish
significantly at high flexibility values. Our investigations also highlighted
the effects of flow allowance on the flowtime performance of EDD and CR. While
the earliest due date rule improves its performance as flow allowance is

increased, critical ratio rule performance worsens.

Our analysis also included performance of the rules for the mean tardiness
criterion. All rules improve their performance as more sequencing flexibility
is used. While our study reaffirmed conclusions of earlier researchers that
MODD performs well for job shops, we found that this performance carries over
to situations where sequencing flexibility is also used. However, at high SFM
values, MDD performs better than its operation due date version. We also
analyzed the performance of rules for the proportion tardy criterion. For this
measure, there was no distinct choice. Depending on the flexibility and flow
allowance parameters, one of four rules (SPT, LWR, MODD, and MDD) performed best

in our studies.

Our study also has implications for the design of production planning and
control systems, manufacturing information system design, and product design.

We elaborate on these issues below.

A major factor in the design of shopfloor control systems is the choice
of appropriate dispatching rules. Our study indicated that when sequencing
flexibility is present and used, differences between various dispatching rules
diminish significantly. Hence, when shopfloor control systems use sequencing
flexibility, the focus can shift to other relevant criteria such as load

control, predictablility of flowtimes, schedule stability, etc.
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Evaluative results provided in this paper are also useful in economic
justification of investments in manufacturing information systems. In order to
use sequencing flexibility, it is necessary to have a realtime manufacturing
information system which is capable of assessing machine and job status, and to
make choices among alternatives. Our study indicates that using sequencing
flexibility results in inventory reduction (through decrease in mean flowtime)
and improved customer service through decreases in tardiness. These benefits can
be quantified and used in the economic justification of investments in

manufacturing information systems.

Finally, our analysis has interesting implications for product design.
If the density of operation graph can be reduced at the product design stage,
it can lead to improvements in shop floor operations. Product designers need

to take this into consideration while choosing among alternate product plans.
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APPENDIX A
Table IA: Durbin-Watson Statistic for Mean Flow Time

Scheduling Sequencing Flexibility Measure

Rule 0.00 0.20 0.40 0.60 0.80 1.00
FIQ 2.684 2.650 2.501 2.650 2.445 2.495
FIS 2.959 2.546 2.503 2.651 2.491 2.523
SPT 2.958 2.499 2.438 2.623 2.491 2.509
LWR 2.955 2.294 2.324 2.523 2.271 2.581
EDD(.25) 2.856 2.615 2.446 2.600 2.428 2.482
EDD(.50) 2.873 2.316 2.353 2.676 2.397 2.456
EDD(1.0) 2.857 2.156 2.346 2.559 2.472 2.347
EDD(2.0) 2.806 2.374 2.423 2.508 2.438 2.302
EDD(4.0) 3.113 2.418 2.466 2.426 2.424 2.354
OCR(.25) 2.830 2.679 2.322 2.570 2.535 2.353
OCR(.50) 2.680 2.620 2.289 2.478 2.497 2.304
OCR(1.0) 2.776 2.365 2.227 2.443 2.373 2.444
OCR(2.0) 2.619 2.386 2.266 2.409 2.315 2.533
OCR(4.0) 2.858 2.389 2.155 2.489 2.393 2.543
CR(.25) 2.873 2.264 2.501 2.545 2.398 2.376
CR(.50) 2.769 2.236 2.303 2.500 2.322 2.349
CR(1.0) 2.852 2.306 2.315 2.566 2.427 2.494
CR(2.0) 2.798 2.648 2.251 2.576 2.547 2.505
CR(4.0) 2.845 2.614 2.431 2.615 2.395 2.537
EODD(.25) 2.864 2.674 2.430 2.648 2.585 2.465
EODD(.50) 2.911 2.683 2.5%4 2.732 2.600 2.437
EODD(1.0) 2.730 2.645 2.485 2.618 2.566 2.415
EODD(2.0) 2.462 2.616 2.235 2.561 2.456 2.212
EODD(4.0) 2.312 2.402 2.340 2.532 2.383 2.359
MODD (.25) 2.841 2.511 2.399 2.629 2.544 2.433
MODD (.50) 2.895 2.600 2.393 2.472 2.388 2.395
MODD(1.0) 2.823 2.561 2.437 2.648 2.573 2.441
MODD (2.0) 2.514 2.495 2.272 2.561 2.456 2.212
MODD(4.0) 2.612 2.402 2.340 2.532 2.383 2.359
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MSuC 2.515 2.581 2.566 2.803 2.491 2.779
MDD( .25) 2.832 2.429 2.420 2.695 2.580 2.558
MDD (.50) 2.940 2.141 2.400 2.458 2.391 2.464
MDD(1.0) 2.784 2.169 2.392 2.595 2.432 2.425
MDD (2.0) 2.744 2.282 2.390 2.440 2.432 2.277
MDD (4.0) 2.980 2.312 2.465 2.512 2.415 2.347
Note: The numbers in parenthesis indicate flow allowance factors used to

determine due dates.
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APPENDIX B
Table IB: Mean Flow Time

Scheduling Sequencing Flexibility Measure “
Rule 0.00 0.20 0.40 0.60 0.80 1.00
FIQ 309.80 262.23 241.90 206.67 181.44 156.55
FIS 301.68 248.02 223.64 183.72 161.67 142.06
MSUC 297.62 224.92 187.58 150.60 127.08 107.63
SPT 106.29 101.36
LWR 203.21 171.55 147.81 120.75 |
OCR(.25) 177.34 160.43 152.26 138.27 129.24 121.14
CR(.25) 260.45 211.23 186.65 152.20 129.69 112.77
EODD (.25) 274.24 223.36 200.65 169.07 152.18 137.72
EDD(.25) 290.74 236.64 209.52 172.87 149.66 129.77
MODD(.25) 134.95 126.09 122.36 114.39 109.14 103.69
MDD(.25) ©209.37 173.27 154.74 124.96 104.65 87.59
OCR( .50) 193.19 179.06 172.54 162.41 155.04 149.63
CR(.50) 262.87 214.76 196.07 169.15 156.02 145.31
EODD ( .50) 241.01 201.19 184.37 162.58 149.21 137.07
EDD(.50) 276.93 223.94 198.60 162.89 140.22 121.74
MODD( .50) 159.84 149.64 144.89 134.98 127.84 120.68
MDD (.50) 229.39 189.26 168.85 140.92 121.45 105.65
OCR(1.0) 254.83 242.51 239.42 231.04 228.89 227.22
CR(1.0) 276.41 249.49 241.17 226.24 219.39 209.89
EODD(1.0) 213.96 188.67 178.28 160.26 148.06 135.15
EDD(1.0) 258.63 204.77 180.89 150.70 131.15 114.03
MODD(1.0) 196.73 178.36 169.44 155.98 144.30 132.72
MDD(1.0) 249.23 199.40 175.72 147.10 127.63 111.28
OCR(2.0) 371.97 360.46 360.14 350.54 346.18 342.27
CR(2.0) 347.37 328.11 328.22 309.88 304.43 293.61
EODD(2.0) 280.76 187.19 177.42 159.62 147.09 132.40
EDD(2.0) 230.63 187.37 167.35 142.717 125.57 109.88
MODD(2.0) 207.85 186.55 177.19 159.62 147.09 132.40
MDD (2.0) 230.60 188.80 167.90 141.63 124.32 108.49




37

Scheduling Sequencing Flexibility Measure

Rule 0.00 0.20 0.40 0.60 0.80 1.00
OCR(4.0) 498.22 492.07 486.64 471.85 467.70 465.44
CR(4.0) 426.83 410.24 409.03 391.16 383.82 373.178
EODD(4.0) 210.99 188.58 179.87 161.82 147.32 130.25
EDD(4.0) 212.24 177.23 162.37 140.29 124.87 109.41
MODD (4.0) 210.99 188.58 179.87 161.82 147.32 130.25
MDD (4.0) 213.51 177.60 160.61 138.57 123.70 107.99

Note: The numbers in parenthesis indicate flow allowance factors used to

determine due dates.

Shaded cells indicate minimum values for each column.
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Mean Tardiness

Scheduling Sequencing Flexibility Measure "
Rule 0.00 0.20 | 0.40 0.60 0.80 1.00
FIQ(.25) 235.14 187.79 167.55 133.06 108.68 85.22
FIS(.25) 226.90 173.56 149.50 110.71 90.29 73.01
MSUC(.25) 225.26 154.65 118.53 83.44 62.26 45.79
SPT(.25) 62.33 54.74 52.54 46.57 44.04 41.48
LWR(.25) 131.00 101.06 79.15 54.87 37.44 23.28
OCR( .25) 102.54 85.80 77.62 64.20 55.62 47.97
CR(.25) 185.61 136.44 111.85 77.74 55.69 39.46
'EODD(.25) 199.40 148.72 126.11 95.15 79.17 65.99
EDD(.25) 215.92 161.99 135.07 77.48 59.95
MODD ( .25) s 38.66
MDD (.25) 134.87 99.08 81.09 52.63
FIQ(.50) 166.79 123.73 104.94 76.28 58.17 42.28
FIS(.50) 156.64 108.21 88.73 58.73 46.05 35.69
MSUC(.50) 173.73 113.78 82.69 53.52 37.91 26.75
SPT(.50) 33.68 30.66 30.89 27.89 27.29 26.217
LWR(.50) 87.18 65.70 49.95 32.72 21.79 12.89
OCR(.50) 49.21 37.63 32.77 25.45 20.70 16.49
CR(.50) 114.43 68.38 51.29 28.83 19.86 13.38
EODD(.50) 96.62 62.32 35.54 29.02 23.49
EDD(.50) 130.28 82.08 27.20 15.81
MODD ( . 50)
MDD ( .50)
FIQ(1.0) 76.99 49.92 39.82 25.32 18.53 12.56
FIS(1.0) 64.58 38.38 30.15 17.82 14.04 10.44
MSUC(1.0) 114.14 73.88 50.95 29.73 20.31 13.78
SPT(1.0) 17.79 16.43 16.99 15.41 15.44 14.73
LWR(1.0) 49.64 37.20 28.00 17.38 11.76 6.55
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Scheduling Sequencing Flexibility Measure

Rule 0.00 0.20 0.40 0.60 0.80 1.00
OCR(1.0) 9.67 6.34 5.40 3.65 3.21 2.30
CR(1.0) 15.80 6.77 5.19 3.07 2.72 1.75
EODD(1.0) 12.48 6.69 3.93 2.85
EDD(1.0) 3.49 2.21
MODD(1.0)
MDD(1.0)
FIQ(2.0) 18.23 10.42 7.71 4.47 3.14 2.13
FIS(2.0) 12.47 6.76 5.08 2.74 2.20 1.61
MSUC(2.0) 59.48 40.51 26.76 13.79 9.28 6.25
SPT(2.0) 7.64 7.29 7.64 6.84 7.12 6.55
LWR(2.0) 21.65 16.51 12.54 7.03 5.32 2.66
OCR(2.0) 0.54 0.27 0.16 0.14 0.14 0.18
CR(2.0) 0.12 0.10 0.10 0.10 0.10 0.10
EODD(2.0)
EDD(2.0)
MODD (2.0)
MDD (2.0) ¥
FIQ(4.0) 2.10 1.20 0.83 0.42 0.31 0.16
FIS(4.0) 1.17 0.57 0.47 0.21 0.16 0.10
MSUC(4.0) 22.62 17.29 11.22 5.23 3.59 2.53
SPT(4.0) 2.23 2.27 2.49 2.09 2.35 2.02
LWR(4.0) 5.87 4.78 3.99 1.60 1.76 0.81
OCR(4.0) 0.03 0.03 0.03 0.04 0.04 0.05
CR(4.0) 0.03 0.03 0.02 0.03 0.03 0.03
EODD (4.0)
EDD(4.0)
MODD (4.0)
MDD (4.0)

Note: The numbers in parenthesis indicate flow allowance factors used to

determine due dates.

Shaded cells indicate minimum values for each flow allowance setting.
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Table IIIB: Proportion Tardy (%)

Scheduling Sequencing Flexibility Measure
Rule 0.00 0.20 0.40 0.60 0.80 1.00
FIQ(.25) 98.5 97.2 96.5 93.8 89.8 83.6
FIS(.25) 99.2 97.9 96.2 91.7 85.5 77.7
MSUC(.25) 87.1 78.3 73.0 66.2 58.6 48.6
SPT(.25) 37.9 32.4
LWR(.25)
OCR(.25) 98.4 97.3 96.0 93.5 90.2 86.3
CR({.25) 59.6 99.1 98.5 96.4 92.7 87.3
EODD(.25) 99.5 98.3 97.0 93.3 87.6 80.3
EDD(.25) 99.3 98.2 96.3 91.5 82.6 71.3
MODD (. 25) 82.7 75.6 70.2 63.5 55.2 47.7
MDD(.25) 94.5 89.9 83.7 72.17 57.2 42.0
| FIQ(.50) 86.4 80.0 75.1 66.6 56.7 46.6
FIS(.50) 90.3 81.3 73.6 60.3 50.5 42.0
MSUC(.50) 58.8 44.9 38.1 30.9 24.7 18.3
SPT(.50)
LWR(.50)
OCR(.50) 79.7 71.7 65.8 57.5 49.3 44.4
CR(.50) 94.7 86.3 78.8 64.3 53.3 45.1
EODD(.50) 83.5 69.6 59.8 48.0 38.5 32.3
EDD(.50) 90.3 77.1 64.6 45.9 32.8 24.5
MODD (. 50) 33.5 26.9 24.6 20.0 17.3 15.5
MDD (.50) 78.4 59.9 44.8 28.1 17.0 10.9
FIQ(1.0) 49.7 38.7 33.4 24.7 18.9 13.9
FIS(1.0) 51.1 36.7 30.5 20.5 16.2 12.7
MSUC(1.0) 31.3 21.1 16.2 12.0 9.0 6.1
SPT(1.0) 4.2 3.8 3.8 3.5 3.4 3.3
LWR(1.0) 10.1 7.6 5.6 3.7 2.3 1.5
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Scheduling Sequencing Flexibility Measure
Rule 0.00 0.20 0.40 0.60 0.80 1.00

OCR(1.0) 27.0 19.6 17.1 13.8 12.7 12.9
CR(1.0) 35.4 20.2 16.8 13.2 12.1 10.4
EODD(1.0) 15.6 9.9 8.2 6.0 5.3 3.9
EDD(1.0) 9 _8:7. 4.6 3.2
MODD (1.0) 2.2 1.8
MDD(1.0) 21.6 8.0 4.6 2.7

| FIQ(2.0) 13.4 8.7 7.0 4.4 3.2 2.3
FIS(2.0) 11.9 7.4 5.7 3.5 2.8 2.1
MSUC(2.0) 12.9 8.5 6.1 3.9 2.7 1.7
SPT(2.0) 1.2 1.1 1.1 1.1 1.1 1.0
LWR(2.0) 3.0 2.2 1.6 1.0 0.7 0.4
OCR(2.0) 3.4 2.8 2.6 2.6 2.8 3.3
CR(2.0) 2.2 2.0 2.0 1.9 1.9 1.9
EODD(2.0)
EDD(2.0)
MODD (2.0)

L=MDD(2.O)
FIQ(4.0) 1.7 1.0 0.8 0.5 0.3 0.2
FIS(4.0) 1.3 0.7 0.6 0.3 0.2 0.2
MSUC(4.0) 4.0 2.8 1.8 1.0 0.6 0.4
SPT(4.0) 0.3 0.3 0.3 0.2 0.3 0.2
LWR(4.0) 0.6 0.5 |. 0.4 0.2 0.2 0.1
OCR(4.0) 0.5 0.6 0.6 0.7 0.7 1.0
CR(4.0) 0.5 0.5 0.5 0.5 0.5 0.5
EODD (4.0)
EDD(4.0)
MODD (4.0)
MDD (4.0)

Note: The numbers in parenthesis indicate flow allowance factors used to

determine due dates.

Shaded cells indicate minimum values for each flow allowance setting.



