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Spanning Trees with Fixed Charges

Abstract

This paper analyzes a class of problems in network design that consists
of opening plants and choosing links such that there exists a path from each
customer to at least one of the plants that is open, either directly or
through other customer nodes. The objective is to minimize the total costs
of opening the plants and the chosen links. A two stage procedure is devised.

The first stage reduces the customers to a set of "clusters," considerably
reducing the problem size. The second stage is a branch—and-bound code which
exploits the special structure of the problem and uses an efficient minimum
spanning tree algorithm (Prim's version) to solve the sub-problems at each
note in the branch—and-bound code. Computational results are encouraging:
for most problems of size up to 25 plants and 130 customers, an optimum solu-

tion was found in much less than one minute of CPU time on the DEC-20 system.

Extensions and applications are discussed.



1.0 Introduction and Summary

This paper addresses a special class of plant location problems. The
problem to be considered is as follows: A set of potential plant locations
are given. There is a fixed cost Fi associated with the opening of plant i,
the cost depending upon the plant location. There is a set of customers with
known locations. Also given are the costs of linking any two customers or a
customer and a plant. It is required that each customer must have a path to
at least one open plant. The objective is to minimize the total costs. Some
of the practical problems which can be modeled on these lines are mentioned
below.

Consider the problem of connecting terminals on a wiring board with
ninimum total wire length [10]. The problem is obviously one of finding
minimum cost spanning tree. There exist efficient algorithms for solving the
problem [7, 8, 12]. However, we consider the following modification of the
wiring problem--suppose that the wiring board already consists of some poten-
tial "sites" which are already connected, but there are fixed costs associated
with establishing lead contacts at these points. We wish to minimize the
total costs associated with establishing lead contacts and connecting the
terminals on the board to some lead contact or the other that has been
established.

As another example, consider electrical energy distribution. In an urban
context, the sites where we can locate sub-stations are limited in number.
All potential customers will have to be linked to some sub-station. There
are capital costs associated with opening sub-stations and link costs. We
assume that the marginal cost of capacity of sub—station is constant and the
differences in distributional losses between various configurations is not

significant. In such a case, the problem reduces to one of the above kind.
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As a final example, consider the problem of concentrators (plants)
location in a distributed data processing network with one data processing
facility. We wish to connect the data terminals to any one of the concen-
trations that we locate. The objective is to minimize the total cost of
connecting the concentrators to data processing facility and costs of locating
a path from each remote terminal to any one of the conceantrators that have
been located.

A two-stage procedure is devised to solve the problem. The first stage
reduces the customers in the original problem to a set of "clusters," each of
which can be treated as a pseudo-customer for computational purposes. It is
established that asymptotically the number of "clusters"” equals the number of
plant locations under consideration. The path from one customer to the other
in a given "cluster" is unique and independent of which plants are kept open
in an optimum solution.

The second stage of the procedure is a branch—and-bound code which
exploits the structure of the problem. At any node the sub-problem is reduced
to a minimum spanning tree problem for which there are efficient algorithms
available [7, 8, 12]. A binary branching procedure is followed. We branch by
forcing open or forcing closed an additional plant. This 1s done in a
"greedy” way in the sense that whichever additional plant gives maximum
savings is branched on. Also a pruning rule is developed.

In §3.0 the relation of this problem to the classical Steiner problem in
the plane is discussed. Computational results are encouraging; for problems
of the order of 25 plants and 130 customers, in most cases, optimum solution
was obtained in less than one minute of CPU time on the DEC-20 system.

Results are discussed in detail in §5.0. Scope for further work and possible

extensions of this paper are discussed in §6.0.



2.0 Problem Statement

Let i €1 represent the set of potential plant locations
11| = m
j € J represent the set of customers
|3 = n
Fi fixed cost of opening the plant at i
dij (= dji) cost of the link between i and j

Since establishing a link between two plant sites has no

meaning, we set dij =¥ i,jE€ I.

y, = 1 if plant i is opened
1 0 otherwise

Si Set of all customers with a path to plant i

C(Si) represents the cost of minimum cost spanning tree for

s, U1}
(y; =0 =8, =9 and C(5,) = 0)

The problem can be stated as follows (P)

m m
min izl C(Si) + 121 Fiyi (1)
s.t. U 5, =3 (2)
i€1
Is;] <nyY, ¥i€I 3)
y; = 0 orl

In an optimum solution, Si are disjoint sets since any solution in which
a customer is linked to more than one plant can be improved upon by removing
at least one link. Thus, in an optimum solution, each customer will be
assigned to only one plant. A beneficial result of such a solution in the
electrical energy distribution problem cited in the introduction is that the

configurations will be radial, thus eliminating the need for switching.
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3.0 Some Comments on Problem Formulation

In the problem as stated in (P), it has been implicitly assumed that the
feasible solution set consists of only trees which can branch at customer
locations. However, in reality, such is not necessarily the case. As an
illustration, consider the three points shown in figure 1. The MST shown in
figure 1 is longer than the tree shown in figure 2. Node 5 in figure is
known as Steiner Point and the tree in figure 2 is known as Steiner Tree.
Though the Steiner Tree problem has been the subject of considerable inves-
tigation [2, 4[, 11], the problem becomes complex for n > 3.

Though, in reality, our objective would be to find a solution that mini-
mizes the sum of fixed charges associated with opening the plants and the cost
of minimum Steiner Trees that span the plants and customers, because of the
complexity of Steiner Tree problem, we confine our attention to the problem
(P). However, we note that the optimum solution obtained for (P) in fact
becomes upper bound for the Steiner Tree problem. It has been pointed out by
Gilbert and Pollak [6] that in the Euclidean plane, the ratio of the lengths
of minimum Steiner Tree to MST cannot be less than Y3/2. This result pro-
vides us an idea of the extent to which the solution obtained for our problem
deviates in the worst case from the optimum solution for minimum cost Steiner

Tree problem.

120 [

120

Figure 1 Figure 2



4,0 A Solution Procedure

The solution procedure presented here consists of two stages. At the
first stage, the problem data is preprocessed so that the number of customers
is reduced to a smaller number of “clusters" which can be treated as "pseudo-

customers” for computational purposes. This has the following implications—-

(i) The path from one customer to the other within the same cluster
is unique and is independent of which plants are kept open

in an optimum solution.

(ii) Since the number of clusters of customers is generally much less
than number of customers, the computational time required to
solve the minimum spanning tree problem at each node in the

second stage of the solution procedure is considerably reduced.

In the second stage, we use a branch—and-bound method on the processed
data from stage I to determine which plants are to be kept open in an optimum

solution.

4.1: Stage 1

An intuitive explanation of the stage I clustering procedure is as
follows: any customer whose closest neighbor is not a plant site will not be
linked to a plant directly in an optimum solution. Further, once we decide
on which plants are to be kept open the solution to the problem is obtained
using the minimum spanning tree algorithm. The minimum spanning tree algo-
‘rithm version of Prim [7, 13] can be initialized at any node and if we were to
initialize at a customer location whose closest neighbor is not a plant, then
the link with the least cost and with this customer node as a vertex will

always be in an optimum solution. However, as is clear from the argument,
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this is independent of which plants are kept open. Let the vertices of such
a link be a and b. Link (a,b) will always be included in an optimum solution.
Now, we can collapse vertices a and b into one cluster (or sub—tree), say c.
We grow the cluster till the closest neighbor to a cluster is a plant site.
The procedure is applied to all customer nodes.

A description of the Pre-processor, along with the proof of the procedure
and some asymptotic results is given below.

Let F represent a spanning forest of J. Initially F consists of m com—
ponents (clusters), with each customer being a component denoted by j, j=1 to

m. Let Tj represent all the vertices (customers) in j.

Define
d. = min min d if j, qg F
Jq us
perT, sec T
c i e q
= min d if JEF

The procedure is as follows:

Begin
0 Set up the spanning forest F with each customer j € J as a
component,
1 REVK « n
2 2«1

3 Find ninimum dqu' If q £ 1, go to step 6

4 L« +1

5 If 2 {n go to 3. Otherwise go to 9.
6 Merge Tz and Tq i.e., assign all customers in Tq to TQ
7 n+n-1

8 If n < REVK, go to 4



9 If n < REVK go to 11

10 Stop
11 REVK « n, go to 2.
End

*
Let j be a component (cluster) in F. We determine q such that

djq* = min dy € F/Tj
aEel

If q*g F, let djq* = dij .?.(-:Tj, ke Tq*. It is shown in [3] that the link
(2,K) is a link in the minimum spanning tree. The proof idea is as follows:
Suppose at some stage we have components which are part of an optimum solution.
To arrive at an optimum solution, all components must be connected. Consider
any component, Tj‘ This must be linked to some other component. Suppose
(%,k) is not in optimum solution. This implies that there is an alternative
path from Tj to Tq* consisting of some link other than (2,k) in the optimum
solution. However, this contradicts optimality since such a solution can be
improved by including (%£,k) and eliminating the other link incident at one
of the vertices in Tq. We note that this is true regardless of which Tj in F
is under consideration. Also, note that whenever the closest node or cluster
to any Tj in F is a potential plant location side, we stop "growing" Tj.
Otherwise we merge components Tj and Tq*. Thus the components so formed will
always be a part of an optimum solution, regardless of which plants are kept
open in an optimum solution.

This procedure generally reduces customers to a small number in problems
where the number of customers is large, as is likely to be the case in prac-
tical problems. This reduces the computation time for the branch-and-bound

code.
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An interesting result in problems where customers and plants are

randomly located follows:

Proposition: When the number of customers is very large, and the plants and
customers are randomly located, the number of "clusters" asymptotically

reduces to the number of plants.

Proof: Let m be the number of plants and n be the number of customers.
Since plants and customers are randomly located, probability that a customer

has a plant as closest neighbor is

_—n_
m+n-1

« + Expected number of customers having plants as the closest neighbors

B = mn - m
m+n-1 1+ m-1

n
Lim E =m
n+o
Additionally, this implies that, asymptotically, as n becomes large in
problems where plants and customers are randomly located, not more than m
customers are directly linked to any one plant in an optimum solution.

We apply the branch—and-bound code developed in stage II after the data

has been pre-processed through stage I.

4.2 Stage II - Branch and Bound Methodology

We note that yis are strategic variables in the problem, i.e., once we
find which plants are open, the problem of determining which links are to be
established is easily solved using minimum cost spanning tree algorithm, as
will be explained later in this section.

A branch-and-bound code is developed to solve the problem using depth-

first strategy in order to minimize the storage requirements. Lower bounds
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at various nodes on the branch-and-bound tree are obtained using the Minimum
Spanning Tree algorithm. Consider any node K on the branch-and-bound tree.
Let
o Trepresent the set plants forced "closed" i.e.,
y; = 0% ieg KO
K, represent the set of plants forced "open" i.e.,
Vi =1V1QK1

KZ represent the set of plants which are free to be

open or closed K, I/(KO[J k)

LB represent the lower bound on the value of the problem
at node K

UBy  represent the upper bound on the value of the problem

at node K

LB, represent the value of the problem with Fi =0viEl

Lower Bound Evaluation

LB, : + ) F
k' iGKli

Ly represents the cost of minimum cost spanning tree with all plants in
KllJ K2 being kept open at zero cost and plants in KO being closed. This can
easily be done using efficient minimum cost spanning tree algorithms. Con-
siderable amount of flexibility exists in the choice of the algorithm.

Two of the widely publicized algorithms are by Prim [7, 13] and Kruskal
[8]. Prim's algorithm basically starts at any node and gradually builds the
tree by successively including a node in the tree that is closest to the tree
and not already included in it. Kruskal's algorithm, on the other hand,

starts with a completely disconnected graph. It orders links in ascending
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order and then starting from the top of the list, gradually adds links such
that no closed circuit is formed and n - 1 links are added in the tree (n is
the number of nodes in the graph). From computational effort point of view,
Prim's algorithm has a worst case bound of 0(n2) and Kruskal's algorithm has a
worst case bound of 0(n3)‘ As pointed out by Bradley [1], for direct imple-
mentation, Prim's algorithm is better unless the network is relatively sparse.
As can be seen, when the network is dense, considerable effort is expended
in sorting the links in Kruskal's algorithm. However, it has been reported
[1] that with the use of new sorting techniques, Kruskal's algorithm gives
good results for both sparse and dense networks.

For our purpose, we have used the Prim's algorithm as structured by
Whitney [7]. The choice was made primarily because of the simpliéity of the
algorithm and its relatively better performance over Kruskal‘é algorithm for

dense networks. The problem data was modified by creating a super node 0

such that
doi =0 ¥ i€1
d .= % jE€J
o]
dij=°° ¥ iEKO, jed.

After modifying the data at each node in the above mentioned fashion,

the minimum cost spanning tree algorithm is directly applied.

Upper Bound Evaluation

An obvious upper bound for the solution at node K is

UB, =L, + Y F

i
iE%U%

However, we can improve the upper bound using the following procedure:
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Consider any plant i €E'K2 and all the customers who are directly linked

to i in the solution LBk. Evaluate the possibility of closing the plant i
and assigning all customers directly linked to plant i to the plants in Kl.
If the resulting increase in costs of the links is less than Fi’ then plant
i is closed and UBK is improved. This process can be repeated for all nodes
i.€E.K2.

A modification of the above procedure would be to consider linking up
customers directly connected to plant i € K2 to either the plants in Kl or
customers who are directly connected to plants in Kl' This may improve the
tightness of the bound, but would likely be computationally more expensive.
[In the code that has been developed, the former procedure has been used. It
seems to yleld fairly good results. After utilizing the above mentioned
procedures in one form or the other, we know which plants are to be kept open
in the solution for the upper bound. Let K3 represent the set of these plants.

K, 2K,.]

B;Enching

Consider any plant i.e;Kﬁ/Kl. Estimate the savings realisable by closing
plant i by reassigning all customers directly linked to i to the alternative
cheapest plant in K3/i. For all plants in K2/K3’ which are already closed
in the Upper Bound solution for node K, the saving due to closing is treated
as 0. Branch on the plant that offers maximum savings.

If maximum savings is non-negative (say, for plant q), branch with
(K + 1)0 = KO Uq and (X + 1)1 = Kl (i.e., plant q is "closed" at node K + 1)
and KO = KO, K1 = Kl LJq. Similar extensions apply when maximum savings is

negative.
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Pruning

Let ﬁﬁ'represent currently available best upper bound. We can prune the
tree at any node K is
LBy + | F >TB

igkx
< 1

Needless to say, the node K is fathomed if LBK = UBK.-

5.0 Computational Study

A computer code was written in FORTRAN IV for the above mentioned branch-
and-bound procedure and tested out on randomly generated problems on the
DEC-20 systenm.

The problem generator essentially locates a random number of plants and
customers in a random way on a square of side length 200 units. The link
costs were made proportional to the Euclidean.distance between the nodes plus
a random value imposed on it which was, in turn, a random variable with
uniform distribution (mean: O, variance: Euclidean distance2/3). For each
of the above sets of data, three problems were created, each with fixed
charges for plants being generated randomly using uniform distributions
(0, 150), (0, 300) and (0, 600). The number of links in the problems were
chosen randomly from a uniform distribution (O, m+nC2).

Table 1 provides the computational results which are encouraging. Except
in one case, the optimum solution was found in less than one minute of CPU
time for problems of the order of 25 plants and 130 customers. Obviously, as
we decrease the fixed charges, the computation time for the branch-and-bound
code increases. It is to be noted that the computation time at the clustering
stage is independent of the fixed charges. However, the time for the branch-

and-bound code depends on the number of plants and number of "clusters.”
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Figure 3 provides scatter plot for the ratio of number of clusters to number
of plants against the number of customers. As has been proved earlier, this
ratio should asymptotically approach 1.0. 1In the case of test problems, the
average of this ratio was 1.129. We also note from Table 1 that the propor-
tion of nodes generated on the branch—-and-bound tree decreases as the number
of plants increases. This is a necessary feature for the branch-and-bound
code to be effective.

Table 2 provides the regression results for the computation times for
the range of problemé that have been tested. At the clustering stage of
computation time for the range of problems tested seems to be of the order
of (plants)o'40 (customers)l'sz. As noted earlier, the computation time for
the branch—and-bound code depends on the number of "clusters” and the number
of customers. However, asymptotically, the number of "clusters” will approach
the number of "plants.” This implies high degree of correlation between the
number of "clusters" and the number of plants. (0.835 for test problems).
So, for prediction purposes, we may as well take only the number of plants

as the independent variable. These observations are evident from Table 2.

6.0 Conclusion

Preliminary results indicated in §5.0 seem to be encouraging. We have
used the basic version of Prim's algorithm in its simplest form [7] for esti-
mating the minimum cost spanning tree. However, for problems of much larger
size than the ones we have tested (say, of the order of 600 customers or so)
we could use more sophisticated versions of the algorithms available [1] using
recent developments in sorting and storing techniques.

In electric power distribution problems, the aim would be to achieve

overall optimization—-—minimizing the sum of capital and operational costs.
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Table - 2

Results of Regression Analysis

for Pre-Processor

log (CPU Time) = -10.374 + 0.4092 log(no. of plants) + 1.825 log(no. of customers)

(.853)  (.0478) (.186)
R% = 0.916

0.908, adjusted for degrees of freedom

For Branch and Bound Code

R2, adjusted

MAXF REGRESSION EQUATION R2 for degrees of
, ' freedom
150 log(CPU Time) = -8.725 + 2.769 log (no. of plants) 0.897 0.886
(.71)  (.457)
+ 0.781 log(no. of clusters)
(.382)
300 log(CPU Time) = -8.194 + 2.591 log(no. of plants) 0.884 0.872
(.667) (.429)
+ 0.531 log(no. of clusters)
(.359)
600 log(CPU Time) = -7.709 + 2.325 log(no. of plants) 0.912 0.908

(.564) (.363)

+ .496 log(no. of clusters)
(.303)

Note: Bracketed figures indicate standard deviation of the coefficients.

Number of observations: 22
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In such cases, our procedure can be used to arrive at "good" solutions, though
not necessarily an optimum solution. The procedure would be as follows:
Disregard distribution or operational costs and arrive at the configuration
which minimizes the total capital costs by the procedure in this paper.

Having decided which "plants” (sub-stations) are to be kept open, use the
procedure suggested by Gabow [l14] for listing the spanning trees in the
increasing order of link costs. We can proceed down the list and calculate
operational costs using network based codes and stop when the sum of opera-
tional costs and capital costs is minimum. This procedure may not be appli-
cable when the demands vary considerably among customers.

In the problem we have addressed, no constraints were imposed regarding
the number of plants that can be opened. It is possible to consider an exten-
sion of this work to such a problem. In this case, the Pre-processor still
remains effective and the branch-and-bound code can suitably be modified. We
note that even in this case, in an optimum solution, no customer will have a
path to more than one plant. Further, the computation times for branch—and-
bound code will reduce since we do not have to search beyond the kth level in
the branch-and-bound tree where k is the maximum number of plants that can be
opened. More difficult extensions are the case where the plants have bounds
on capacities and where plants have bounds on capacities, it is clear that in
the optimum solution a customer could have paths to more than one plant. This
is shown in an example in Figure I in the Appendix. 1In the case where plant
capacities exhibit economies of scale, it is clear that in the optimum solu-
tion no customer will have a path to more than one plant. However, the
clustering procedure will not be valid. An example for this case is shown in

Figure II in the Appendix. These cases merit further investigation.
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APPENDIX

Fixed Charge: 5 Fixed Charge: 4
Capacity HE ) Capacity ¢ 55

40 units

30 units ¥

™ 50 units

FIGURE I

Example for the case where plants have capacity limits and
customers have paths to more than one plant in the
optimum solution.

Double lines indicate the optimum configuration and all
customers have paths to both plants A and B.

cont'd
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FIGURE II

0.5 per unit

R

1 per unit

capacity -
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50 units

Example for the case where plants have Economies of Scale

As per clustering stage, 1, 2, and 3 form a cluster and 4
and 5 form a cluster. However, in the optimum solution,
1 and 2 form a cluster and 3, 4, and 5 form a cluster.

Double lines indicate the optimum solution.



