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Introduction

in applications involving pooled cross—sectional and time series dafa,
one often has several variables describing individuals (units, firms) which
exhibit cross—sectidnal variability, but little or no time series variability
for each individual. This type of data presents a problem for random coef%i—
cient regression (RCR) pooling. The usual method of estimatién for this model
(Swamy, 1971) is a feasible Aitken procedure in which the first step is tﬁe
estimation of a time series regression for each individual. 1If some explana-
tory variables are fixed or nearly fixed over time fdr one or more individuals,
there are problems in implementing this first step.

This paper provides an extension of Swamy's RCR model to the case where
there may be multicollinearity in some or all of the individual time series
regréssions. The first section of this paper describes an application in
finance which motivates our interest in this problem. In Section Two, we
describe a generalization of Swamy's two-stage estimator of the mean (B) of
the vector of coefficients conditional on known variance-covariance parameters.
Section Three deals with the problem of predicting the coefficients of a
particular individual, again assuming known variance-covariance parameters.

In Section Four, estimation and prediction methods are developed  assuming
unknown variance-covariance parameters. Then we discuss some empirical
results on the finance problem introduced in Section One. A brief summary

of the paper is given in Section Six.
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1. Estimating Cost of Equity Capital

Rate regulation for electric utilities depends heavily on estimates of
the cost of the firm's equity capital. The capital asset pricing model is
one of the many techniques that is used to provide these estimates.

chording to capital asset pricing theory, the cost of equity capital
(in excess of the risk free rate) to firm i in period t is given by E(yit)
in the model

E(yit) = V{E(Ry) (1.1)

Here Ry is the excess return in period t of the market portfolio of all
stocks. Equation (1.1) states that systematic risk, vy;, determines differ-
ential expected returns among securities and that there is a linear relation-
ship between y; and expected return, i.e., cost of capital.

In a rate case application, an estimate of y; may be obtained from a
time series regression of the form

yi = Ry + ¢ (1.2)
where y{ and R are T x 1 vectors of the observed excess rates of return on
the ith stock and the market, respectively, yq{ is an unknown scalar
parameter, and ef is a T x 1 vector of disturbances. The estimate gy of
Yi is then used to help estimate cost of capital to firm i. However, the
question arises as to how well g; predicts the firm's true vyj, which is
what is needed in estimating cost of capital.

We might expect to get better estimates of cost of capital by "comparing”
relevant characteristics of the firm to those of other firms like it, i.e.,
other firms in the industry. As Myers (1978) has noted:

The distinction between iﬁdustry and firm systematic risk is important

in rate cases. It is hard to estimate a regulated firm's cost of capital

if data on only that firm are available. This is true regardless of the
approach taken. It is necessary to broaden the sample.
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Rosenberg and McKibbon (1973) have devised a pooling approach which is
potentially useful for predicting y; for an electric utility. They esti-
mate the systematic risk for firm i in period t using a model in which
systematic risk is assumed to be linearly related to certain accounting
variables,

Yit = WitBy

In this paper we use the recent theoretical results of Bowman (1979) to
help specify the model for systematic risk, and then use a modified Rosenberg-
McKibbon (R-M) pooling approach to predict y; for electric utilities.

Bowman’has shown that there is a theoretical relationship between a firm's
systematic risk y; and the firm's debt ratio. We note that debt ratio is
a variable which exhibits variability across firms, but little or no vari-

ability over time, for each firm. Thus, we investigate the model

Yi = WiBg (1.3)

An which y; is an unknown scalar parameter, Wy is a 1 x 2 vector (including

the intercept) of observations assumed to be constant over time, and B; is

a 2 x 1 vector of unknown parameters.

Then, substitution of (1.3) into (1.2) results in

]

yi = RWyBy + ¢ (1.4)

fl

X181 + 4
where y; and R are T x‘l vectors of observations on each of the N firms and
the market, respectively, and Xj is the T x 2 matrix defined by Xj = RWj.

Note that for each 1, (1.4) is a singular model, because Xj is of rank
1. Now, if we are willing to assume that B; = g (i = 1,2,...,N) multi-
collinearity may not be a problem in the pooling model. But a more reasonable
assumption is that there are firm differences, and so we consider random

coefficient regression pooling.
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RCR is a parsimonious specification that allows for cross-sectional
variation in model parameters. In RCR pooling, each coefficient vector is
considered to be a random draw from the same multivariate normal distribution.
This seems reasonable for a homogeneous industry like the electric utilities
industry.

Random coefficient regression is a promising modeling approach for other
reasons. It is well suited for drawing inferences from a sample to a popula-
tion (see, for example, Dielman, Nantell and Wright, 1980). Also, the
procedure is computationally efficient.

In RCR pooling it is assumed that the coefficient vector B4 is fixed
over time. Although not always so, this may be a reasonable assumption in
this application, at least over the relatively short time period of the last
four years. For a portfolio of electric utilities, Warga (1980) has found
that there are dramatic fluctuations in model parameters around the period
of the 1973 oil embargo, but that the parameters are relatively stable after
1975. Using monthly data from 1976-1979, we have a reasonable number of
observations for the iﬁdividual time series regressions.

Overall, random coefficient regression seems to be a good choice of
methodology for the cost-of-capital problem, and so it is the approach that
is used here. Coefficients in (1.4) are assumed to be fixed over time for
each firm, but they are allowed to vary randomly across firms. Specifically,
we model cost of capital by

yi = (RW)By + ¢ (L =1,2,...,N) (1.5)

= XiBy + gy

where B; ~ Np(B, A), Xj = RWj, and g ~ Np(0, oj4I).
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Because Xj is not of full rank, Swamy's (1971) feasible Aitken procedure
for estimating B cannot be used directly. The first step in that method is
the estimation of individual time series regressions. In the next section
we show how to estimate B, conditional on known variance-covariance param-

eters, when there is multicollinearity in the time series regressionms.
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2. Estimation With Known Variance-Covariance Parameters

This section introduces the random coefficient regression (RCR) pooling
model which is useful in many applications including our financial example.
Our version of the RCR model is similar to the pooling models studied exten-
sively by Swamy and others, but features singularity (i.e., multicollinearity)
in the time series datasets describing some or all of the individuals (e.g.,
securities). 1In this section we will describe an extension of Swamy's two-—
stage procedure for computing Aitken's generalized least squares estimators
in the presence of this multicollinearity. Throughout this section, all
variance-covariance parameters are assumed to be known.

Consider the following model:

yi = X381+ (1 =1,2,...,N) (2.1)
where y; and ¢; are T x 1 vectors, X; is a T x k matrix, and B; is a
k x 1 vector. The vector y; and the matrix Xj contain observed variables
characterizing individual i, while B; and ¢; are unobserved random
vectors.

We assume that

(a) Rank (Xi) =vri < k, but rank (X) = k where X' = [X;' Xp' ...

XN'] is th; k x NT matrix comprised of the Xj,

(b) By is Nk(E, A) where A is positive semidefinite,

(c) € is Np(0, oj4I) with o34 > 0, and

(d) Bys e++» Bys €15 +e+e, €y are mutually independent.

In addition, throughout this section and the next, it is assumed that oj;

and A are known.
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Equation (2.1) can be rewritten as

yi = X{B + uj where « 2.2)
uj = X3(B; - B) + g

Here uy is Np(0, @) with known variance-covariance matrix
Q = X3MX' + o441,

and u; ... uy are mtually independent. Since X is of full rank, the best

linear unbiased estimator of B is uniquely determined by Aitken's generalized

least squares estimator:

N N
b = ( X Xi'ﬂi—lxi)—l z Xi'ﬂi-lyi’ (2.3)
i=1 i=1

Moreover, the variance-covariance matrix of the estimator b, denoted here as

C, is
_ N
Cc = ( z Xi'ﬂi—lxi)—l.
i=1

We now turn to the case that each X;j is of full rank, i.e., rj = k.
This situation has been extensively studied by Swamy (1971). Swamy shows that
b can be efficiently computed following a two-stage procedure. In the first
stage of this procedure, ordinary regression statistics are calculated which
summarize the time series observations of each individual. In the second
stage, these N sets of time series regression statistics are pooled to estimate

the population parameter B.

Specifically, in the first-stage time series analysis of each individual

i, the following statistics are calculated:

]

bj = (X1'X;)71xy'y;  and

Cy A+ oii(xi'xi)"l.
Here by is the vector of ordinary regression coefficients summarizing the

time series data describing individual i, and Cy is the variance-covariance
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matrix of by taking into account both the variance of B; around B and

also the conditional variance of bj as an estimator of Bj:

E(b; - B)(by - B)"

Ci

E(B;-B)(By1-B)' + E[(bj—B;)(bi~-B1) "' |81,
Swamy's second-stage, cross-sectional analysis follows from the GLS represen-

tation of B (2.3) together with the identities

Xy ! szi“lxi Ci—l and

X' lyy = Cy7lby.

In fact,

b

N N
(Ve H Yeglby  and ' (2.4)
i=1 i=1

N
( Jci L
i=1

4

So in the second stage, b is. calculated a575 weighted avefage of the by.

The computational advantage of (2.4) over (2.3) is‘substantial since (2.3)
involves the inverse of each @ which is a T x T matrix, while (2.4) in-
volves the inverse of matrices of size k x k.

In many applications, including the finance example described in Section
One, Swamy's two-stage procedure cannot be directly applied since the X; are
of less than full rank (i.e., multicollinear) so that the bj are undefined.

The remainder of this section describes a generalization of Swamy's
two—-stage procedure which preserves its intuitive appeal and computational
advantages gnd is applicable to the multicollinear case in which some of the
r; are less than k.

This generalization utilizes the rank factorization (Rao, 1973; p. 19)
of each X; with rank ry less than k. Using the rank factorization, we

compute matrices Ry and Wy such that Xj = RjWj, where Ry is of size
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T x r{ and is of full rank ry, and Wy is of size ry x k and is also of
rank ri. (If Xj is of full rank k, we take R; = Xj and Wy = I.)

Then we make the following definitions:

Yi = Wj_Bj_, (2'5>
gi = (Ri'Ri)_lRi'yi, and
Hy = WyMg' + o534 (Ry'Ry)7L.

To motivate these definitions, we note that the model (2.1) can be rewritten as
yi = Rivg * &
and g is ﬁhe ordinary least squares, time series estimator of y; with
variance-covariance matrix Hy 1f the variability of y; is taken into
account.
By employing these definitions and a matrix idéstity of Rao (1573, exer-—

cise 2.9, p. 33), we obtain the identities

Xi' Qi-lxi Wi 'Hi-IWi and (2.6)
X;'9 g

These identities together with (2.3) give

Wy 'Hyleg

N N

b= ( Jwy'Hi~twg)L §owgtHgley, (2.7)
i=1 i=1

_ N

C = () w'ag~tupl.

i=1
So Swamy's second-stage weighted average (2.4), which is only applicable
if each Xj is of full rank, generalizes to (2.7) which represents the best
linear unblased estimator b as a cross—sectional, generalized MANOVA estimator
in which the gi, computed from the time series regressions, play the rolg of
a vector of observed dependent variables, the Wi are matrices of independent

variables, and the H; represent the variance-covariance matrices of the
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observations gj. The form of (2.7) is consistent with the fact that each
gy is Nri(Wiﬁ, Hi{) and g, ..., gy are mutually independent.

The rank factorization of each Xj plays an essential role in this
representation of b. The first factor Ry, 1s used only in the ith firgt-
stage time series regression, i.e., in the computation of g{ and Hj. These
statistics from the N timé series regressions are used in the second-stage
pooling in conjunction with the set of second factors Wiy which determine the
relationships between the observed g; and the underlying ;. Hence the
two factors of X; are related respectively to the two stages of analysis;
the Ry comprise the time series observations on each individual, and the set
of Wy, together with the time series regression statistics gi and Hj,
comprise the cross-sectional information characterizing the sample of
individuals.

In concluding this section we note that in many applications involving
cross—-sectional time series dataséts, including our finance example, it is
natural to formulate a model which has two components corresponding to the
time series and cross—sectional stages of analysis (see, for example,
Amemiya (1978) and Hanushek (1974)). In these cases, the rank factorization
may arise naturally.' In the situations that we have in mind, a time series
model, say

yi = Rivg + €f,
is specified to represent the process generating the time series observations
of each individual i (i =1,2,...,N). Here each Ry is T x rj and of full
rank rj, and y; is a r{ x 1 vector of time-invariant, unobserved char-
acteristics of individual i. A second cross-sectional model,

Y1 = WiBi,

is specified which expresses the unobserved y; as an observed linear
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transformation Wy of a vector B; (k x 1) of unobserved, time-invariant
characteristics of the individual. These vector B{ are assumed to com—
prise a random sample from a multivariate normal population with unknown mean
B and known variance-covariance matrix A.

If the cross-sectional model is imbedded into the time series model, we
obtain the RCR model (2.1) where each Xj is singular, having rank decom-

position X; = RyWj.
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3. Predicting With Known Variance-Covariance Parameters

In many applications, there is a need to predict the value of B; (a
k x 1 vector) for a specific individual i. For example, in our finance
application, interest is in predicting the Bj which represents the ith
security's characteristics that determine its systematic risk in conjunction
with' its observed characteristics Wy.

In this section we consider the problem of efficient prediction of 8.
We assume that the RCR model (2.1) is applicable to an available pooled cross-
sectional time series database describing a sample of N individuals, and that
all variance-covariance parameters are known. The case that each X; is of
full rank is discussed first, followed by the case where some or all of the
X; may be less than full rank.

A natural predictor of B; when Xj is of full rank is the OLS pre-
dictor, by = (X;'X;)71X;'y;, based on the ith individual. b; is
unbiased, and of all predictors that are linear in yi, it is the most effi-
cient. However, as Kadiyala and Oberhelman (1979) note, bj uses information
only on the ith individual and ignores information about all of the other
individuals. Therefore, they consider predictors of B; which are linear
in y, i.e., of the form A;y where Aj is a (k x NT) matrix of constants.
They show that the unbiased, linear predictor of Bj with the léwest mean
squared error is given by

ey = b+ AXy'97lyy - A%y oTIRgD (3.1)
which simplifies to

ey = ACA + oy1 (X1'X) 1) by + Copg Ry 'X) 1A + 03X 'X)™DHIF (3.2)

As Kadiyala and Oberhelman have observed, equation (3.2) has an intuitive

interpretation. The predictor is simply a weighted average of the estimator
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b; on the ith individuél, and the estimator b. In this formula,
oii(Xi'Xi)_l is the variance-covariance matrix of bj, and A is the
variance-covariance matrix of the B;'s. The larger the variance of the OLS
estimator by, the greater the weight given to'E,,the estimator of the mean
vector; and the greater the dispersion of the By, the\greater the weight
given to the estimator b; based on observations on the ith individual.

The extension of equation (3.1) to the case that rank (X;) <k is
straightforward. In the Kadiyala-Oberhelman derivation of the "best" pre-
dictor of Bj, it is sufficient that X be of full rank, so (3.1) remains
valid with our assumptions. Using (2.6), we rewrite (3.1) to obtain the
more computationally efficient formula

bCy = b + AWy '(WyMWy' + o34 (Ri"R)" 1) I(gy - Wib) (3.3)
Equation (3.3) provides the predictor of B; that has the smallest mean
squared error (in the class of linear, unbiased predictors), when rank
(X1) £ k.

Equation (3.3) appears at first not to have an easy interpretation. How-
ever, we note that it is, in fact, closely related to an intuitively appealing
estimator which we derive now.

Although it has been observed previously that B; may not be estimable
under generalized rank conditions on Xj, it is possible to get a g-inverse
solution for B4 in the equation

WiBi = 81 (3.4)
Given an estimate g'of.g, an intuitively appealing estimator of B; for the
ith jndividual is the minimum norm g-inverse solution of (3.4). (For a
suitably chosen positive definite matrix Q, the norm of a vector o is defined

by |lall = (a‘Qa)l/z). Rao (1973, p. 48) shows that the minimum norm

g-inverse, with respect to the 0 vector, is given by
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Q~Lwy (W@ lwy )™,

where denotes the g-inverse. Thus, after transforming (3.4) to an origin

at b,

Wi(By - b) = g4 - Wb,
the minimum norm solution to (3.4) is given by

b+ Q7 lwy ' (w3Q7lWy )" (gq - WD)
and choosing Q = A‘l, we get

b+ AWyt (Wy M) (g , Wib) ' (3.5)
The expression in (3.5) is very similar to the predictor in (3.3). However,
(3.5) does not allow for variability in by, conditional on known B .

In some applications, it is of interest to predict y; = WyB. For
example, in our finance problem, we are interested in systematic risk vyj.
It is easy to show that the best predictor of WiBi is Wyb%;, and from
(3.3)

WibCy = Wib + WyaWy' (WyMdy + op3(Ri'Ry)"1)"1(gy - Wyb)
which can be written as

WibCy = (Wydy")(WyWy' + o35(Ri'Ry)71)"1gy

+ o3 (Ry"R) LWy 3" + 05 (Ry"Ry)"L) 1wy b (3.6)
Equation (3.6) admits to the samé kind of interpretation as did (3.2). |

In this section we have derived efficient predictors for Bi and yj
= WiB; for the case that rank (xi).ﬁ k. As in the previous section,
results were obtained assuming known variance-covariance parameters in model
(2.1). 1In practice, the variance—-covariance parameters must be estimated, and
so it is relevant to ask how prediction is affected. Kadiyala and Oberhelman
cite some Monte Carlo evidence that bC¢i, computed from (3.3) with estimated

parameters, is particularly warranted when N is large and T is small.
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4., Estimation with Unknown Variance-Covariance Parameters

In this section we consider estimation in the RCR model with unknown
variance-covariance parameters and multicollinearity in some or all of the
individual time series regressions. A computationally efficient form for the
likelihood function of the parameters in the case rank (Xj) < k is derived
first. Then, because it is not clear whether the parameters are identified,
we look at identification in the RCR model in the presence of collinearity.
The information matrix for the parameters 1s derived, and two conditions are
obtained which, in conjunction with assumptions (a) thru (d) in Section One,
are sufficient for the information matrix to be of full rank, thus establish-
ing local identifiability (see Rothenberg (1971)). Then Fisher's method of
scoring (Rao, 1973, pp. 366-374), a procedure for maximum likelihood estima-
tion, is proposed for estimating the A matrix. We conclude this section
with an iterative estimation procedure based on equation (3.3).

Introducing some additional notation we write the system of equations
(2.2) as

y=X¥+u
with y' = (y1' ... yy') and u' = (u1' ... uy') and E(uu') = Q. The
vectors uj, ..., uy are mutually independent, so that Q = diag(94). We
assume that A depends on a finite number of unknown parameters §' = (81 «.. &).
Let @' = (8'c¢'), where o' = (o4 «+« ogy)-

Then by our assumptions, the‘likelihood function for the parameters'g

and 0 is given by

L(B, oly, X) = (2my /2 Nk + 6111'1"_1/2
1=1

N

«exp {~1/2 iZlm - Xy B)' (X &X' + o33T1)"1(¥4- X;8)} (4.1)
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Using the rank factorization of the Xi, the definitions (2.5) and again the

matrix identity in Rao, equation (4.1) can be written as

LG, oly, © = @ V2 N (g~ r1)/2)p g, 17218y

cexp{-1/2 g (T- o i) o0 + (gy-WyB)' Hl(ggWyB)} (4.2)
i=1

where sji is the OLS estimator of o5y from the ith time series equation.

Equation (4.2) provides substantial computational advantages over (4.1),
because the matrices in (4.2) are on the order of rj x ry, whereas those in
(4.1) are T x T. (cf. Swamy, 1971, pp. 111-112).

We now look at identification in the RCR model with generalized rank
assumptions. It is clear that if rank (Xy) < k, then g; from the ith time
series regression is unidentified, but what of the parameters'E and 0?7 It
is not clear from (4.2) whether they are identified or not.

We use the information matrix to examine parameter identifiability. Ac-
cording to Rothenberg, a necessary and sufficient condition for the B and ©
parameters to be locally identified is that the information matrix be nonsingu-
lar. Magnus (1978) has shown that the information matrix is given by

x'olx 0 |
(4.3)
0 1/2(8vec9 ) (2 @ Q)vect vecQ 1)

In (4.3), the notation vec gl means the (NT)2 x 1 vector obtained

from 1 by taking the first column of g1, then the 2nd and so forth;

and @ 1s the Knonecker product operator. Also, we use the definition of matrix

avecﬂ"1

derivative as Dhrymes (1978), so that 50

is an (NT)2 by (M + N) matrix

of first partial derivatives.



-17-

By assumption,.g'ﬂ'lg_is of full rank, and hence B is locally identified.

A necessary and sufficient condition for O to be locally identified is

avecﬂ -1

BVGCQ 22" ) be nonsingular. Now

that the matrix 1/2(———)"(Q ® Q) (—+—

Q is nonsingular, and so Q ® Q is nonsingular. Thus, we need to estab-

-1
lish conditions for which 3!%%9__ (or equivalently dve cg) is of full rank
M + N).
ovecs
We approach the problem by deriving a convenient expression for 30 *

using the matrix formulas in Dhrymes and again the rank factorization idea and

Rao's matrix identity. The Q matrix is block diagonal, so that

ovecf avec
= rank [(—p Ly QN

rank ( 50 ) een '], (4.4)
Also, it can be shown that

dvecy ovecA , ovecojiIl

o = [(Rg ® R(Wg @ Wy) —g5— + —5—1 4.5)

Then, after substituting (4.5) into the matrix

v avzzﬂl)' L (ave QN) e
of (4.4), it follows that

rank (3ve°9) = rank (V) = rank (V'V). (4.6)

and so we need conditions for which the matrix V'V is of full rank. It can be

shown that sufficient for V'V to be of full rank, and hence 0 identified, are:

BvecA

(1) The matrix W(———) is of rank M, where

W= (W ®W;' ... Wy' @Wy'")', and

(2) T>ri, fori=l, 2, seey Nc
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Assumptions (a) thru (d) with conditions (1) and (2) above are sufficient for
identifiability of all of the RCR parameters.

Now consider estimation of (B, §, o). It does not seem to be compu-
tationally feasible to compute the maximum likelihood estimator of ¢ since
matrices of order N2 are encountered. However, using rank factorization, an
ordinary regression estimator sii is easily calculated and is an unbiased,
consistent (T + =) estimator of ojy (Goldberger, 1964, pp. 269-272).
Conditional on these estimates of o0j{, maximum likelihood estimation of-E
and § is computationally feasible using Fisher's method of scoring (Rao,

1973, pp. 366-374). We use scoring on § combined with (2.7) for estimation
of B.
To implement this procedure, it is necesary to derive for § the first-

order conditions and information matrix. Starting from equation (13) in

Magnus, we can show that the first-order condition on § is given by

-1/2 2 (a"e“A) (W @Wp)'vec ;!

+1/2 2 ety @ Wy)'vee (H7M(gy - WiB)(ey - WB)'ETL). (4.7)

Similarly, the information matrix is given by

1/2 21 &ty iy @ W) (g @ By (W @ Wy) (5. (4-8)

Unfortunately, there is no assurance that a scoring procedure using (4.7)-
(4.8) will give positive semidefinite estimat@s of A. This problem of "nega-
tive variance components"” is one that has long been troublesome for random

coefficient regression and other variance components models (see, for example,

Swamy, 1971, pp. 107-111). A potential remedy for this problem is suggested
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by the papers of Box (1966) and Dent-Hildreth (1977). Box shows that in cer-
tain specific cases, a problem of constrained maximization of the likelihood
function can sometimes be converted to one involving unconstrained optimization
without introducing additional local optima. We are investigating the trans-
formation A = TT', where T is lower triangular, as a method of obtaining a
positive semidefinite estimate of the A matrix. Unconstrained optimization

is used, with the search being conducted over the elements of the T matrix
rather than over the elements of A.

Equations (4.7) and (4.8) need to be modified to take advantage of the

>
i

TT' transformation. Letting t be the M x 1 vector of elements of T where

A = TT', it can be shown that

agsgcA - BVZETT (T @ 1) vecl 8vecT +(IOT avecT , so that
(Wi @Wi) avecA - (WiT @Wi) avecT + (Wi ® WiT) avez T! (4.9)

While equations (4.7) and (4.8), in conjunction with (4.9), may appear to
be formidable at first glance, our initial investigations indicate that the

formulas are actually computationally efficient and relatively easy to program.

ovecT
ot

The matrix , for example, is k2 x M, but each column of this matrix
contains only one 1, all other elements in the column being 0. Computational
advantage can be had using this fact. And although we went to some trouble to
obtain formulas (4.7)-(4.9), computational advantage may be obtained because
the first—order conditions and the information matrix are given explicitly,

rather than their having to be computed numerically. Also, in practice it may

not be necessary to compute and invert the information matrix at each iteration

(Rao, 1973, p. 370).
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By way of summarizing this part of the paper, we note that even though
the transformation A = TT' is not one to one, our limited investigations (at
this time) show that this lack of uniqueness appears not to cause convergence
problems, and that this transformation, with the method of scoring, may provide
computationally efficient, positive semidefinite estimates of the A matrix
of the RCR model. ;n Section Five we present some empirical results which were
obtained using formulas‘(4.l) thru (4.9).

At this point we briefly discuss another potential estimation method for
(B, A, o). The equation (3.3) suggests an iterative procedure of esti-
mating A by

N

] (bi€ - BY(biC - B)'/N.
i=1
The procedure may at least be useful in providing ; starting value for a maxi-

mum likelihood search.
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5. An Application: Predicting Systematic Risk for Electric Utilities

In this section we return to the financial application of Section One.
The model we use here is oversimplified and is not intended as a meaningful
test of financial hypotheses. Its purpose is to illustrate the procedures
developed in the previous sections. We are pursuing a more comprehensive
analysis of systematic risk in financial markets. However this simple illus-
tration suggests that pooling is a promising approach.

A sample was taken of 64 electric utilities that have data available on
both the CRSP and COMPUSTAT data tapes over the period January 1976 thru
December 1979. Estimation was done using the 24 monthly observations from
1976-77; fofecasting was done over the period 1978-79.

Debt ratio i1s a variable that is available from annual data. Because it
typically changes very little over time periods as short as several years, we
simply calculated Wy as the average of the two annual values 1976-77, for each
electric utility in the sample.

The procedures developed in the previous sections are applicable because
all of the Xj matrices are singular. The oj; were estimated from the in-
dividual time series regressions. The identity matrix was used as an initial
estimate of ‘the A matrix, and b was calculated from the GLS formula (2.7).
Scoring formulas (4.7)-(4.9) were then used to provide a new estimate of B,
and an iterative procedure was continued until stable values to four decimal
places were obtained for the estimates of B and A. The results are re-
ported below:

b = (0.6455, -0.0928)', with t-statistics of 1.64 and -0.10 respectively;

and (811, 631, 622) = (0.3569, -0.0640, 0.1417).
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Neither b coefficient is significant at the .05 level of significance.
Thus, we are not able to conclude here that debt ratio is a determinant of
systematic risk yj, as the theoretical finance literature suggests. A rela-
tionship may still exist, however, because there is evidence of multicollinear-
ity in our model. The condition number, the ratio of the largest singular
value of the variance-covariance matrix of b to the smallest, is 40.9, and
multicollinearty méy cause problems in parameter estimation when the condition
number is greater than 10-30, see Belsley, Kuh and Welsch (1980). It appears
that there may not be enough cross-sectional variability of debt ratio in our
sample. ,
The main concern of this application is prediction of systematic risk
Yi+ We did a mean squared error study, using the following forecasting
methods:
1. A firm-specific method in which the estimates g; of y; over
the period 1976-77 were used to predict g{ calculated over the
forecast period 1978-79.

2. A pooling method in which the forecasting formula (3.4), evalu-
ated over the period 1976-77, was used to predict gi calculated
from the period 1978-79.

The results are reported below:

Method 1, Root MSE: 0.2636,

Method 2, Root MSE: 0.1857.

These results are encouraging. In this application, the pooling approach has

a root MSE that is 30% less than the firm-specific method which is the approach

usually taken.
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6. Summary

This paper is concerned with efficient inference in Swamy's random coef-
ficient regression (RCR) model when there is singularity, i.e., multicollinear-
ity in some or all of the individual time series regressions. In particular,
efficient estimation of the parameters of the RCR model is considered, as is
efficient prediction of the response B; of the ith individual. Methods are
developed first under the assumption of known variance-covariance parameters,
and then with this assumption relaxed.

We derive sufficient conditions for identifiability of all of the para-
meters of the RCR model. Then Fisher's method of scoring is developed for
estimﬁtion of the A matrix parameters. A transformation, suggested by the
papers of Box and Dent-Hildreth, is incorporated into the scoring procedure.
Our initial investigations suggest that scoring with this transformation pro-
duces computationally efficient, positive semidefinite estimates of the A
matrix.

The problem of multicollinearity in the time series regressions is moti-
vated by an application in finance, namely, estimating cost of capital to
utilities. The model is introduced in Section One and some preliminary empiri-
cal results are given in Section Five. These results are encouraging; in this
particular application, using pooling methods there was a 30% reduction in

root mean squared forecast error compared to forecasts from the usual forecast-

ing technique.
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