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THE PREDICTION OF SYSTEMATIC RISK

USING EQUIVALENT RISK CLASSES

I. INTRODUCTION

The beta coefficient of the market model is widely used as a measure
of risk for individual securities and portfolios. In applications, ex post
estimates of beta‘are used to measure ex ante (future) risk, and so the prob-
lem of accurately forecasting beta is important and has been extensively
investigated. Previous research [1,9,18] has shown that beta forecsts may
be improved substantially when beta adjustment techniques (Blume [1];
Vasichek [26]) are used, or portfolio size is increased.l

The primary purpose of this paper is to propose a new beta adjustment
procedure--random coefficient regression.2 In part, the motivation for
this approach is a result due to Kadiyala and Oberhelman [16]. They have
shown that under the assumptions of the random coefficient regression (RCR)
model, the best linear unbiased predictor of the coefficients associated
with a particular firm (unit, individual) is a weighted average of two
estimators: the ordinary least squares estimator of the firm's
coefficients, and the estimator of the population mean coefficients. Their
results may be applied to the market model to get beta coefficient
forecasts. Morever, it is shown here that while the RCR and Vasichek pro-
cedures have similar assumptions, the RCR procedure may use better estimates
of the mean and variance of the cross—sectional distribution of betas. The
RCR approach separates out specific risk as a component of the estimate of
cross—sectional variance.

In this paper, an attempt is made to highlight the relationships of
the random coefficient regression adjustment procedure to the Blume and
Vasichek approaches. Particular attention is paid to model assumptions. In
addition, the forecasting performance of adjustment procedures is investi-

gated empirically under different risk class assumptions. Specifically,
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adjustment procedures are compared using systematic risk classes defined by
(1) industries, (2) ordered-beta risk classes, and (3) groups formed by
cluster analysis on variables which have been shown in the literature to be
theoretically related to betas. As a standard of comparison, analyses are
also done assuming all stocks belong to the same risk.class.

This study uses the notion of systematic risk class as the starting
point for beta adjustment techniques. As section III of the paper shows,
random coefficient regression and the Blume and Vasichek procedures all
implicitly assume that firms have been grouped into systematic risk classes.

Some potential methods of constructing these classes are examined next. .

IT. EQUIVALENT RISK CLASSES

Because the concept of risk class is important to the discussion here
of beta adjustment techniques, it may be useful to give a brief overview of
some of the work that has been done in this area. The idea of risk class
came into prominence following Miller and Modigliani's [20] landmark paper
in which they established their propositions on capital structure assuming
the existence of business risk classes.d Later, Elton and Gruber [71 made
clear the importance of using homogeneous groups for forecasting and testing
of hypotheses. They and others [13,19] have used cluster analysis as a
methodological approach for grouping. Concurrently, there has been an
investigation of the suitability of industry groupings as business risk
classes, with mixed conclusions; some authors [14,21] have found that indus-
tries are reasonable approximations of business risk classes, while others
[19,28] have reported opposite results. (This is an important question,
because industry groupings are often used in the testing of economic

hypotheses and by security analysts.)



...3_

In this paper, systematic risk classes are of interest. Systematic
or nondiversifiable risk is synonymous with beta, and has two traditional
coﬁponents: business (or operating) risk and financial risk. Business risk
is associated with the firm's investment decisions and hénce, is thought to
be affected by variables such as the company's cost structure and competi-
tive position, and product demand characteristics. Financial risk, on the
hand, is related to the financing decisions of the firm. A systematic risk
class, then, might be defined as a group of firms which are “"similar" in the
characteristics that determine business and financial risk.

The usefulness of this concept to portfolio theory and security
analysis depends on whether or not there are a relatively small number of
risk classes that have stable compositions over time. As section IV on
empirical results shows, this requirement is not very well met by risk
classes constructed by ordering betas. Although true betas may be relatively
stable over time, estimates of the individual security betas are not, which
in fact is the motivation for beta adjustment techniques. Industry grbup-
ings, on the other hand, may be acceptable systematic risk classes, and that
possibility is investigated_further in section IV. We also examine risk
classes formed by cluster analysis on variables which have been shown in
the Subrahmanyam-Thomadakis [24] and Hamada [15] papers to be theoretically
related to business and financial risk. Subrahmanyam and Thomadakis have
recently provided a theoretical relationship between beta and business risk.
They have shown that systematic risk is functionally related to firm—specific
variables, namely, monopoly power and labor-capital ratio. These variables
are approximately constant over short time periods, and so this procedure
promises to produce stable systematic risk classes. Of course, the useful-

ness of a risk class definition depends too on how well it works in combina-

tion with beta adjustment procedures.
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[1L. BETA ADJUSTMENT TECHNLQUES
Throughout the paper, the estimate bi of an individual security's

beta Bi refers to that which may be calculated from the market model:

Rie =% 7 BiRye T 854 1)

where Rit is the return in month t on the ith security, RMT is the return

on the market in time t, and e,

it is a mean-zero, homoskedastic error term

with variance Oii' Equation (1) may be rewritten as
a-
= 1)+ = +
R, = R A g =Ry, * ¢ (2)

where Ri and Ei are Txl vectors and R is a Tx2 matrix with 1's in the first

column and market returns in the second column.

The Blume Procedure

Adjustment procedures have been studied in an attempt to improve beta
forecasts. Because he noticed that estimated beta coefficients from one
time period exhibited a significant ;egression tendency in the following
period, that is, that beta estimates tended in tHe next time period to be
closer to the overall mean of 1.0, Blume proposed a cross-sectional regres-

sion procedure to adjust betas. 1In this approach beta estimates bi p-1
b

and bi > from two adjacent nonoverlapping time periods p-l and p are
]

assumed to be related by the model

b =6, + 6,b,
i

R T A S I 3

where i refers security (or portfolio) i, and 61, 62 are regression coef-
ficients to be estimated. Then assuming the same relationship applies from
perioé p to period ptl, beta predictions for period ptl are obtained using

bi and the estimated regression coefficients. Blume found that predictions

P

of systematic risk are improved considerably using this approach.[+



Bayesian Method

Vasichek [23] has proposed a Bayesian approach for adjusting betas.
Information on the prior or historical cross—sectional distribution of betas

is combined with beta estimates calculated from period p to give beta fore-

] .
casts bi,p+l computed as follows:
- 2 2
+ b, /S
Bp/ % l,p/ b,
bt = P 1,p (4)
Lptl 1/ + 1/
B b,
P i,p

— 2 .
where Bp and ¢, are the mean and variance, respectively, of the cross-

B
P
sectional distribution of betas in period p, and Si is the estimated vari-
i,p
ance of b, . The forecast b' is the mean of the posterior distribution
i,p i,ptl

of beta for security i. As can be seen from (4), the extent to which bi >
’

is adjusted toward the mean Eé depends on how precise (measured by the

reciprocals of estimated variance) the estimates bi p and E; are. In
* b

8 are usually estimated from a sample of betas cal-

P
culated from period p.

practice, ﬁ; and 02

A reasonable cross-sectional distribution to use with the Vasichek
procedure is the distribution on betas from a systematic risk class defined
as in the previous section. It is clear from his paper that Vasichek rec-
ognized the potential usefulness of adjusting betas in this way. The Blume
procedure might also be applied to risk classes, which leads to the inter-
esting question of whether in fact betas regress toward their systematic risk
class means as well as toward the overall mean of 1.0. For the rest of the

discussion in this section, it is assumed that firms have been previously
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grouped into risk classes; adjustment procedures are discussed in the

.context of a given risk class.

Random Coefficient Regression

The concept of systematic risk class leads naturally to another ad-
justment procedure--random coefficient regression. RCR is one of several
methodologies for dealing with pooled cross-sectional time series data, that
is, data describing each of a number of firms (individuals, units) over a
sequence of time periods.5 In the random coefficient regression model, the
vector of coefficients in the time series regression for each firm is assumed
to be a random drawing from a common multivariate distribution. The approach
may be thought of as lying somewhere between the extremes: (1) each firm
has its own vector of coefficients and (2) all firms have the same coeffi-
cient vector. It is this "different but simiiar" aspect of random coeffi-
cient regression that is important here. Each firm has its own vector of
coefficients (response), but responses are assumed to come from a population
with a certain mean and covariance. When the beta coefficient is of concern,
as it is here, it is reasonable to label this hoﬁogeneous population a
systematic risk class.

Much of the work with the RCR model has been concerned with testing
hypotheses on the population vector of means, or hypotheses on the covari-
ance matrix. Focusing on a different problem, Kadiyala and Oberhelmen [16]
have derived some results on predicting the coefficients associated with a
particular firm. Their results are developed formally now, in the context
of predicting the beta coefficient of the firm. For a more thorough discus-
sion of the general RCR model, see Swamy [23, pp. 97-11l1].

For firms (i=1,2,...,N) in a risk class, the following assumptions

are made concerning the coefficients of the market model, equation (2):
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(a) The vector Y, = (ai, Bi)' of coefficients is a
random draw from a bivariate distribution with
mean 7 = (_&; —é)' and covariance matrix A, and

(b) Yyseees Yy €pacees €y are mutually independent.

Then, letting Ci = A+ o (R'R)—l, the random coefficient regression pre-

dictor of Y4 is given by

Bi,pHl

-1 ror=l -1 —
g, + oo (R'R)C (5)

where all of the components of the right hand side of (5) are estimated from
period p; specifically, the 2x1 vector 8; is the OLS estimator of \f} cal-
culated from the market model over period p, and g, the estimator of the
population mean Y, is given by

N N
- _ -1.-1 -1
g = <i=zl ¢, 121 c, g - (6)

The beta coefficient forecast, b; , is given by the second component of

,pHl
1

8 L In practice, of course, the parameters A and oi are not known
b

i

and must be estimated.®

Comparison of Beta Adjustment Techniques

Adjustment procedures are similar in some respects, but differ in
their underlying assumptions. As we will show, the principal differences
depend on whether betas are assumed to be stationary (constant) over time.

It is useful to begin with the approach Blume [2] used to derive his
cross-sectional regression procedure for adjusting betas. Assume for the
moment that in any period p,

(1) betas for individual securities, B

can be thought of as
i,p &

drawings from a normal distribution with mean E; and variance

2

OBP’
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" (2) the error term (bi’p—Bi

‘normal variate independent of Bi >’ and
’

p) is distributed as a mean-zero,
b

(3) B. > and Bi p-1 are distributed as bivariate normal variables.
b b

then bi and bi are bivariate normal variates, which implies the
b

p-1

b
following regression equation:

g + p g aqg
p p,p-1 B B

- p_pl -3
B(8; /by ) - (b 1= ) )
(o, +0_ )
B b
P P
where pp -1 is the correlation coefficient between true betas in periods
b

p and p-1. This equation is closely related to equation (3), because

E(b, /b

1p/Ps o) T ECB by )

i,p i,p-1 8)

8+ &by

and 6, are defined

It is clear that (7) and (8) are equivalent if 61 9

appropriately.

With these preliminaries we now examine the beta adjustment procedures
in some detail. First, we note that the Bayesian (Vasichek) adjustment,
equation (4), implicitly assumes that betas are constant over time. In con-
trast, the Blume procedure ((7),(8)) does not require constant betas. . But
it is interesting that if that assumption is made in the Blume model, i.e.,

if Bi,p = Bi,p~1’ then equation (7) becomes

E(B, /b, )=Bp+(

—P
i,p-1 2 2 ) (bi,p—l p)
P p (9)

-, 2
B/a, +b
b
P P

i,p

[0}
i,p

2

2
1/0Bp + 1/0B
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Thus, if betas are constant over time the Blume adjustment is similar to
Vasichek's. It is important to note, however, that the two approaches would
not be identical because equation (4) allows for differences in the variances

of the individual beta estimates, whereas (9) does not. In equation (9),

2 L2 L2
%. %, b
i,p 3P P

The RCR and Bayesian approaches are closely related too. For example,
equation (5) has an intuitive interpretaion that is very much like the onme
that was given for the Vasichek formula (equation (4)).# Intuitively, in (5)
the individual beta coefficient is adjusted toward the population mean of
beta coefficients depending on the relative sizes of the estimated variances
of these two quantities. Figure 1 may help to make this clear.

Figure 1

The RCR Adjustment Procedure

In Figure 1, two beta coefficient confidence intervals are given. The one
associated with b2 is wider than that for bl’ which accords with empirical
evidence (see Fama [12]). Now if no other information were available’

b1 would be the best estimate of Bl. But if we have additional information
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and believe, for example, that the cross-sectional distribution of betas is
as in the solid curve in Figure 1, we might expect that the time beta, Bl’
is closer toward the mean, that is, that it is more likely that b1 has been
2

underestimated than overestimated. Similar logic could be applied to the b

estimate, but because b, has a wider confidence inteval, it might be reason-

2

able to adjust the b2 value more than bl toward the mean. Moreover, if the
cross—-sectional distribution of betas has smaller variance, as in the dotted

and b, values still more towards

curve, it is reasonable to adjust the b1 9

the mean of betas. This is, in fact, what the RCR and Bayesian procedures
do. The extent to which an individual beta coefficient bi is adjusted toward
the mean depends on the relative magnitudes of the cross-sectional variance,
and the estimated variance of bi'

The RCR and Varichek approaches are similar in their assumptions, and
in particular,:both assume that betas are constant over time. However,
thefe is an‘important difference in the approaches. The Vasichek procedure
assumes that a prior distribution on betas is available. Now in practice the
parameters of this distribution (the mean and variance,.g and oi) are
estimated, and at least as it is usually implemented, the Vasichek predictor
makes use of estimates of B and cé which are likely to be not as good as
the ones RCR uses. The reason is that the sample betas, the bi's, that are
used to estimate B and o% are measured with error, and have two components
of variance: the variance of bi as an estimate of Bi’ and the variance of
Bi around B. Thus, the sample variance of the bi's will tend to be an
over estimate of 02, with the result that in equation (4) more weight is put

B

on the individual firm beta (the particular b, of interest) than should be.

i

Also, a simple arithmetic average of the bi (as an estimate of B) does not

take into consideration the fact that the Bi's are measured with varying
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degrees of precision; a weighted average of the bi would be more appropriate.
Random coefficient regression addresses these problems. ;t incorpor-
ates specific risk into the adjustment procedure. Moreover, RCR may use

2

better estimates of B and 08, the mean and variance of the cross-sectional

distribution of betas.

IV. EMPIRICAL RESULTS

This section on empirical results is divided into three subsectionms.
The first gives the scope of the study. The next subsection deals with
various ways of constructing risk classes, and with the stability of com-
position over time of these classes. Specifically, the types of risk class
that are investigated are: industry, cluster group, ordered-beta, and
all-in-one. As noted previously, the idea of risk class is important
because beta adjustment procedures assume that firms have been grouped pre-
viously in this way. The third subsection presents the forecasting results
for the RCR, Blume and Vasichek adjustment procedures. The level of analysis
here is a risk class, i.e., adjustment techniques are applied to each risk
class separately. For example, in the by-industry portion of the tables,
each industry was assumed to be a systematic risk class, and beta adjustment

techniques were applied to each industry.

Scoge

The data for this study were taken from the CRSP and Compustat data
tapes. Because one of the objectives of the paper is to test the suitability
of industries as systematic risk classes, a random sample of 22 industries
was chosen based on the four-digit Compustat industrial codes. Industries
were selected at random except for the electric utilities group, which was

included because it has been used in numerous cost of capital studies.
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The period 1967-1979 is covered, and to be included a firm from a
selected industry had to have complete data over that period. This require-
ment was imposed in order to facilitate comparisons and admittedly, there
may be some "survivorship bias" as a result. In total, 197 firms were used.

The industries and number of firms in them are given in Table 1.

Insert Table 1 here

The period 1967-1979 was used to'provide five overlapping nine year
periods: 67-75, 68-76, 69-77, 70-78, 71-79. Each of these nine year periods
was subdivided further into three non-overlapping three year periods (the
Blume procedure requires three such periods). For example, relative to the
" period 1967-75, the subscript "p-1" from the previous section of the paper
refers to the period 67-69, "p" to 70-72, and "p+l" to 73-75. Five separate
sets of analyses were performed, one for each of the five periods.

Beta ¢oefficients were calculated according to the market model,
equation (1), using monthly CRSP data. Because Fama [12] and others have
shown empirically that continuously compounded returns measured by

Rit

Ruue

resemble more closely a normal distribution (they are less skewed to the

1]

ln(1+rit)

1n(1+th) ()

right) than are simple returns Lo and Ly,» returns used in equation (1)

were calculated assuming continuous compounding for period t.

Systematic Risk Classes

Previous studies concerned with beta adjustment techniques have con-
structed risk classes by first ordering betas and then dividing them sequ-

entially, into deciles for example. Table 2 presents some empirical evidence
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TABLE 1

Description of Sample

Industry Number of
Code Industry Name Sample Firms
1311 Crude Petroleum & Natural Gas 4
2000 Food & Kindred Products 12
2065 Candy & Other Confectionary 3
2085 Distilled Rectif Blend Beverages 4
2086 Bottled — Canned Soft Drinks 7
2400 Lumber & Wood Products 4
2649 Convert Paper — Paperbd Pd NEC 3
2911 Petroleum Refining 24
3000 Rubber & Misc Plastics Prods 9
3210 Flat Glass 3
3241 Cement Hydraulic 5
3290 Abrasive Asbestos and Misco Min 4
3310 Blast Furnaces & Steel Works 22
3540 Metalworking Machinery & Equip 6
3573 Electronic Computing Equip 5
3679 Electronic Components NEC 4
3841 Surg & Med Instruments & App 6
4011 Railroads-Line Haul Operating 9
4811 Telephone Communication 10
4911 Electric Services b4
5199 Whsl-Nondurable Goods NEC 6
7810 Serv-Motion Picture Production 3
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to suggest that risk classes formed in this manner may be unstable over time.
The table was constructed by grouping ordered betas into quintiles in each
of the periods 1970-72, 71-73, and 74-76. For each ordered beta class (low
through high) from 70-72, Table 2 gives the fraction of firms that were
later grouped into other classes, first for period 71-73 and then for 74-76.
For example, 15% of the firms that were in class "low" during the period

1970-72 were in class 3 in 71-73.

Insert Table 2 here

Table 2 suggests that instability is more pronounced over longer time periods,
as might have been expected.

Another possible method of forming risk classes is by clustering on
variables which are known to be related to beta.’ Generally? the objective
of cluster analysis is to separate a total sample of enﬁities into groups
which are "similar" within groups, with the groups themselves being
"dissimilar.” For this paper it was desired to construct risk classes for
each of the five middle-three-year periods (that is, each of the five p
periods).

The choice of variables is an important consideration that should
reflect the purpose of the classification. The variables that were used in
this study were debt ratio, market share (as a proxy for monopoloy power),
and operating leverage (as a proxy for labor-capital ratio). Measures of
these variables were developed from annual Compustat data. A firm's debt
ratio was measured as the average of three annual ratios calculated by:
long term debt/total assets. Operating leverage for a firm was calculated
as the average of the three annual ratios: fixed assets/total assets.

Finally, market share for firm i in an industry was taken to be the average
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TABLE 2

Ordered Beta

Ordered Beta Classes, 1971-73

Classes
1970-72 Low 2 3 4 High
Low 0.550 0.250 0.150 0.025 0.025
2 0.300 0.225 0.300 0.050 0.125
3 0.150 0.275 0.200 0.250 0.125
4 0.0 0.175 0.200 0.450 0.175
ﬁigh 0.0 0.081 0.162 0.243 0.514
Ordered Beta Ordered Beta Classes, 1974-76
Classes
1970-72 Low 2 3 4 High
Low 0.325 0.225 0.200 0.175 0.075
2 0.175 0.300 0.250 0.125 0.150
3\ 0.100 0.150 0.200 0.325 0.225
4 0.250 0.100 0.175 0.225 0.250
0.162 0.243 0.189 0.162 0.243

High
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n
of three annual values given by: Si/ Z S., where Si is yearly sales
il

for firm i, and n is the number of firms in its industry.8 Will respect to
this last measure, market share, firms in the electric and telephone
utility industries were treated differently. Because each firm in these
industries may be thought of as a local monopoly, market share was taken

to be 1.0 for each firm in those industries.

The clustering algorithm that was used is based on Ward's [27]
method, a hierarchical procedure that starts by assuming each firm is a
group.9 Then, at each stage the number of groups is reduced by combining
the two groups that result in the smallest increase in within-group vari-
ation; an approximate indication of the appropriate number of groups, a
sort of stopping cfiterion, is given by an F statistic.l0

The cluster algorithm was run on each of the five "p" periods using
variables in each period defined as above. In each case, a statistically
significant increase at the one percent level in the within-groups variation
occurred when the number of groups was reduced from two to one, indicating
that two groups are appropriate. For each of the p periods, the resultant
groups were defined by (1) telephone and electric utilities, codes 4811 and
4911, in one group and (2) all other stocks in the sample in the other
group. One might expect that this result is due at least in part to the way
in which the market share variable was defined. However, the grouping
results proved to be surprisingly robust. Even with this variable left out,
telephone and electric utilities grouped together, but in addition, there
were a few railroad firms in the group. This stability of risk classes
constructed by clustering is in marked contrast to the lack of stability of

ordered beta risk classes. This stability over time in the composition of
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the cluster groups follows from the lack of time series variation in the
variables that were used.
While stability of composition is a desirable characteristic, it
alone does not guarantee that the risk classes will be useful with beta
adjustment techniques. The usefulness of beta risk classes constructed

by various techniques is examined next.

Forecasting Results

The criterion that was used to judge beta forecasting accuracy is

mean square forecast error, defined by:

1 N 2
[, - 1
MSE N izl (bi,p+l bi,p+1)
where bi o+l is the estimated beta coefficient for security i in period

pt+l, bi,p+l is the beta forecast for security i made in per}od p, and N
is the number of firms in the risk class. "Unadj B" refers to the fore-
casting procedure of using the unadjusted beta estimate from period p as
the forecast of beta in period ptl.
The prediction results for the various adjustment procedures are given

in Table 3, by risk class type.

Insert Table 3

Looking at industry groupings first, it is clear from the table that the
betas of firms in some industries are more stable than those of firms in
other industries. Firms in industry 4911, the telephone utilities, appear
to have the most stable betas. In contrast, the electric computing
equipment group, 3573, has very unstable betas. However, conclusions on

industry groupings must be tempered by the fact that several industries have

a small number of sample firms.
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TABLE 3

Mean Square Errors of Beta Forecasts by Risk Class Type

Industry No. Firms Unadj B8 RCR B Blume B Bayes 8
1311 4 0.37247 0.31151 0.53724 0.33211
2000 12 0.16260 0.13510 0.14232 0.13643
2065 3 0.09929 0.11620 0.11093 0.10152
2085 4 0.57427 0.42539 0.44680 0.47596
2086 7 0.41375 0.38702  0.39219 0.35621
2400 4 0.13354 0.09876 0.14074 0.10880
2649 3 0.43758 0.28983 0.37297 0.34370
2911 24 0.17938 0.12292  0.11837 0.13305
3000 9 0.21772 0.17633  0.20440 0.18394
3210 3 0.32032 0.21523  0.34275 0.27002
3241 5 0.23225 0.23205 0.29672 0.21722
3290 4 0.16991 0.09031 0.19820 0.11832
3310 22 0.43312 0.28994 0.43980 0.33447
3540 6 0.37191 0.24256 0.28992 0.27762
3573 5 0.92015 1.00167 1.37629 0.91210
3679 4 0.60417 0.36047  3.14691 0.43802
3841 6 0.22750 0.20398  0.49075 0.20789
4011 9 0.16046 0.16142° 0.16728 0.15316
4811 10 0.09798 0.06974 0.07993 0.07710
4911 44 0.12829 0.09724 0.12011 0.10118
5199 6 0.31488 0.26805 0.40840 0.27223
7810 3 0.42719 0.45677 0.84941 0.43345

Cluster
Group No. Firms Unadj B RCR B Blume 8 Bayes 8
1 143 0.31191 0.22826  0.26207 0.24947
2 54 0.12263 0.08605 0.10079 0.09350
Ordered-Beta
Class No. Firms. Unadj B RCR B Blume B Bayes B
Low 40 0.19233 0.17846 0.18866 0.17876
2 40 0.17463 0.17285 0.17165 0.17196
3 40 0.14848 0.14992  0.14930 0.14859
4 40 0.25174  0.25253 0.25040 0.25120
High 37 0.55516 0.47958 0.70139 0.51619
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The cluster analysis groups in Table 3 are defined as follows:
group two contains the 54 utilities (telephone and électric), and group one
the remainder of the total sample of 197 firms. Not surprisingly, the table
shows that utility stock betas can be forecast much more precisely than can
betas from other manufacturing companies.

From Table 3; class 3 ordered betas appear to be the most accurately
forecast. This group includes betas around 1.0. We also note that fore-
cast errors increase away from these central beta values, with the group
"high" betas having, on average, the largest forecast errors.

On average, each of the adjustment procedures provides a substantial
improvement over unadjusted beta predictions, regardless of grouping as-
sumptions. The Blume procedure, however, does not do well when industry
size is small. For example, forecast errors for industry 3679 are very
large; in such cases, the problem may be due to the difficulty in
estimating a regression model precisely’from a small number of points.

The period by period performance ofvthé beta adjustment techniques
by risk class type is presented'in Table 4. The figures in the by-industry
portion of the table are average squared forecast errors for all 197 firms
in the sample, in the case where adjustment procedures were conducted at
the industry level. For the table segment labelled "cluster groups"
ad justment procedures were calculated using the risk classes defined above.
Mean square forecast errors also are shown for each of the adjustment
procedures assuming all stocks belong to just one risk class, and for ordered

beta classes.

Insert Table 4

From Table 4, none of the forecast procedures is uniformly better or worse
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TABLE 4

Mean Square Errors of Beta Forecasts In Each Period by Risk Class Type

Period Unadj B RCR B Blume B Bayes 8

1 0.23769 0.16709 0.23172 0.18256

2 0.37850 0.25938 0.67027 0.29615

Industry 3 0.22147 0.17240 0.23457 0.18014
4 0.22410 0.21430 0.26937 0.20785

5 0.23844 0.21503 0.23890 0.21124

Average  0.26004 0.20564 0.32897 0.21559

1 0.23769 0.13230 0.14197 0.16014

Cluster 2 . 0.37850 0.22208 0.32288 0.26158
Groups 3 0.22147 0.17503 0.19141 0.18748
4 0.22410 0.20610 0.21278 0.21114

5 0.23844 0.21090 0.22025 0.21324

Average  0.26004 0.18928 0.21786 0.20672

1 0.23769 0.12974 0.14715 0.15602

All 2 0.37850 0.20758 0.31362 0.24763
Stocks 3 0.22147 0.18781 0.17754 0.19104
In One 4 0.22410 0.23214 0.23685 0.22723
Class 5 0.23844 0.23285 0.23931 0.22654
Average  0.26004 0.19803 0.22289 0.20971

Low .23769 .20683 .24755 .21934

Ordered- 2 .37850 .34293 .51423 .36213
Beta 3 22147 .21370 21442 .21311
Classes 4 .22410 .21923 .21867 .21840
High .23844 .23291 .23539 .23372

Average 0.26004 0.24312 0.28605 0.24934
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than the others. On average, however, all of the adjustment procedures are
considerable improvements over unadjusted betas. (Unadj B performed rela-
tively well only in periods 4 and 5 under "all stocks in one class” group-
ing.)

Looking at average forecast errors over the five periods, random coef-
ficent regression appears to be an improvement over the Blume and Vasichek
approacheé. Concerning the methods of constructing risk classes, classes
formed by cluster analysis generally resulted in lower forecast errors than
did industry classifications, or the all-in-one classification. Ordered-

beta classes performed the worst.

V. SUMMARY AND CONCLUSIONS

This paper has two main concerns: (1) the definition and construc-
tion of equivalent systematic risk classes and their relationship to beta
ad justment techniques, and (2) the development of a new beta adjustmént
procedures: random coefficient regression.

The concept of systematic risk class is central to the discussion
here because all of the adjustment procedures that are investigated assume
that firms have been grouped into homogeneous classes. .In this paper,
several methods for constructing risk classes are considered, namely, by
industry, cluster aﬁalysis, and grouping by ordered betas. For comparison
purposes, analyses are also done assuming all firms belong to one risk class.

To be useful in conjunction with adjustment procedures, a method for
constructing risk classes should result in groups that have stable
composition of firms over time, and should lead to lower mean square errors
of beta forecasts. Concerning the first criterion, stability of group
composition, industry groupings are relatively stable over time, and as this

paper shows, so are groups formed by cluster analysis. 1In contrast,
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ordered beta risk classes seem to have highly changing compositions of
member firms over time, and this effect is more pronounced as the length of
time between groﬁping increases.
Comparea to other grouping procedures, cluster analysis resulted
on average in the lowest mean square forecast errors for betas, for all
ad justment techniques. With clustering, only two groups—-—utilities, and all
other stocks in the sample--emerged. Not surprisingly, utility stock betas
can be forecast much more precisely than can betas for other firms.
Unfortunately, the evidence is inconclusive as to whether industries
are good risk classes. This inconclusiveness may be due in part to
the small sample sizes (as small as three) of some industries in this study.
Using mean square errors of beta forecasts as the criterion, random
coefficient regression, on average, seems to be superior to other adjustment
procedurés in the literature. However, no adjustment procedure was uniformly

better than the others.
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FOOTNOTES

lgubank and Zumwalt [9] have shown that forecast errors are also
reduced considerably if the estimation time period (the period used to
calculate ex post betas to be used as estimates of ex ante betas) is
increased, or the time period used to calculate realized betas in the
prediction period is increased.

2The term "random coefficient” is applied to several kinds of models.
For example, Fabozzi and Francis [11] and Sunder [25] have used models in
which coefficents are allowed to vary over time. Alternatively, Swamy [23]
has developed a model which assumes that coefficients are fixed over time
but vary across firms. This is the model that is investigated here. This
model is finding increasing applications in finance (see for example, Boness
and Frankfurter [3] and Dielman, Nantell and Wright [6]).

3Hamada [15] subsequently was able to show that this assumption is
nt necessary to establish their propositions I and II.

“Merrill Lynch, Pierce, Fenner & Smith, Inc. (MLPFS) use a similar
adjustment procedure. Klemkosky and Martin [16] found that forecast errors
using the MLPFS adjustment were very nearly the same as those associated
with the Blume procedure.

SDielman [6] gives a good review of pooled cross—sectional time
series methodologies and he includes a comprehensive list of references.

OFor each 1, consistent estimates of oj; may be obtained from
ordinary least squares estimation of equation (2). Concerning the A para-
meters, Swamy [23, p. 107] derives an unbiased consistent estimator which
uses the OLS estimates gj of yj. This estimate of A may be used in a
generalized least squares formula for estimating y. Alternatively, maximum
likelihood estimates of A and Yy (conditional on estimates of oi )
may be obtained by maximizing the log likelihood function, equa%ion 4.3.28
in Swamy, using a program such as the IMSL subroutine ZXMIN. The latter
approach was followed in this paper, but in either case the computer program—-
ming is straightforward.

TCluster analysis is a methodology for separating data into groups
or clusters. Several methods are available, and the selection of method
depends in part on how the resulting classes will be used. For a readable
discussion of the theory and some of the issues that arise in applications,
see [10].

8There are measurement problems with each of these variables.
Ideally, debt ratios should be calculated using market values of debt and
equity instead of book value. As an indication of the volatility of
prefinancing earnings due to fixed versus variable costs of production,
operating leverage measured by available historical data may be somewhat
deficient. Finally, the variable "market share" is difficult to
operationalize because most firms manufacture more than one product;
industry groupings are only rough approximations of groups of firms that
have similar product lines. Nevertheless, the operational variables are
probably reasonable approximations of the theoretical variables.
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91n any application of cluster analysis, the user must decide whether
to standardize data to mean zero and unit variance. The decision was made
here to standardize because it is known that grouping algorithms are seni-
tive to units of measurement [1l0]. On the other hand, it was decided not to
use principal components because that method is useful primarily as a data
reduction technique, and does not necessarily reduce the problem of cor-
related variables. 1In any case, the three variables used in this study do
not appear to be highly correlated.

0gveritt [10, pp. 59-60] gives the equation for this F statistic.
For a discussion of Ward's method in a finance application, see Martin
et al. [19].
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