Division of Research Written Fall 1976
Graduate School of Business Administration Revised Summer 1977
The Univeristy of Michigan

A NON-PROCEDURAL LANGUAGE AND A SYSTEM
FOR AUTOMATIC GENERATION OF
DATA PROCESSING PROGRAMS

Working Paper No. 156

by
N. Adam Rin

The University of Michigan

(j) 1977 by The University of Michigan

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or re-
produced without the express permission of the
Division of Research

A Ncn-EBrocedural language and a Systenm
for Autoratic Generation of Data EBrocessing Programs

N. Adam Ein *

The <rising ccst of scftware development has mnotivated
research on the autcmaticn of parts cf the software
development LICccess. Towards that objective, a non-
procedural language called WODEL has been developed to
describe desired pregrams ¢f an infocrmation processing
systen. This paper provides an c¢verview of MHODEL and
describes a scftware =system that automatically generates
conventiocnal business data processing Frograms from
specificaticns in that larguage.

1. Fackgrcund ard Cvervies

This paper 1s ccrcerned with research done on the
autcmatic generation of conventicnal data processing
programs. It ©prcvides an overview of a qon—procedural
specificaticn language called MODEL and of an automatic
methodology that PLOCUCES application prograns from
specificaticns expressed in the non-procedural language. The
research rercrted in this paper is directed toward reducing
the costs c¢f scftware develcprment by autcmatic generation of

applicaticn fprcgrams frcm ncn-prccedural specifications of

* The author, currently Assistant Professor at the Graduate
Scheecl of Business Administration, University of Michigan,
performed the research terorted in this paper in 1974-1975
while a gracduate studept at the University of Pennsylvania
Comruvter Science Department. This project was supervised by
Prof. N.S. Prywes and supported by the 0ffice of Naval
Research under contract ¥-00014-67-3-0216-0014. See 1] for
greater detail cn this prcject.

1

user requirements. Ancther gcal cf this werk is to make the
computer usable fcr a brcader range cf recple. By developing
a language and methcdeclcgy capable of automatically
analyzing specifications and generating programs, it is
hoped that it would &Le ©possible for systems analysts to
tuild an dirnfcrmaticn Frocessing system without the

interventicn ¢f applicaticr rrcgrammers as middlemen.

In order to pinpeint the area of autcmation covered by
this research, it is useful first to review briefly research
by cthers ip autcmating the stages in the development of an
infcrraticn gprocessing system. Various authors {2,3] have
enunerated these stages differently but they are generally
as fcllcus:

1. Perception cf autcrmaticn need and determination

of overall recuirements;

2. Production of <functicnal specifications (user

requirements specificaticn or logical design);

3. Physical systen design;

4. Prcgramring (prcgrar design, coding, debugging,

and testirtg);

. Installaticn and creraticn;

€. Mainterance and nmcdificaticn.
The systematic automaticn cf each of these phases has been
proposed several years ago [3] in the ISDOS project, which
has primarily made progress in the areas of the recording,
documentaticn, and analysis o©f user requirements. The

2

potential berefits of autcmatinc each of the altove stages

have been suksecuently evaluvated [Z,4].

Producticn of user <requirements specification above
requires kncwledge of the application area and problem-
solving capakilities. It has sc¢ far keen automated only very
minimally by liriting nparrocwly the sccpe of the problenm
domain in arplicaticn-specific rackages (e-g., [5]}« Balzer
{6] has suggested that the ccmputer could acquire a problenm
domain thrcugh an interactive sessich in a natural language.
Yet success with such an approcach precbably will not be
realized until major advances are made in artificial
intelligence. Therefore in MCDEL the user is assumed to have
kncwledge <c¢f the aprlicaticn area while the automatic

pregrarming system has design ard pregramming knowledge.

Scme precgress has keen made in the partial automation
of expressirg frcbler regquirements formally, automatically
analyzing syster functicnal specifications, and performing
some physical design. These have been reviewed elsewhere
[2,3], but a few are mentioned here. There are a number of
so~called prckler statement languages for expressing systen
functicnal <specifications fecrrally {7]. The importance of
such langquages was reccgrized at least theoretically quite
early 1in vworks such as those of Young and Kent [8]. A
notalkle example is the Prcblem Statement Language (PSL) to
express system functional specificaticns [7,9]. The impact

of such problem statement languages has been shown to be of
3

great benefit {4] in aiding the scoftware development effort
by giving the system designer a fcrrmal way to record user
requirements that can be documented and analyzed
autcmatically. Once functional specifications have been
expressed formally, a further degree of automation has
resulted frcm autcmatically checking the specifications and
producing scme «c¢f the physical design. Many projects (see
for examgple [10,11,12,13,14,15,16]) have dealt with various
aspects of autcrating the physical design process through
formal mcdels and structured systers develcpment techniques.
More limited aids to the systers analyst have actually been
available previcusly in ferms-oriented and tabular languages

(see for example [17,18]).

Yet not much effort has gcre intc the automation of the
Frogram generation gprocess (stage 4) based on analysis of
user requirements; i.e., the akovs systems do nct generate
programs based on previcus non-procedural specification,
analysis, and design. It is with this area that this
resecazch has dealt. Cther work in autcmatic progran
generaticn is mentioned ir the end c¢f Secticn 3 of this

paper and ccrpared tc ECLEL.

The progranmming phase has been recognized as a very
time-consuming and tedicus taska Even with recent
generalized data base ranagerent systems (which have to some
extent relieved their wusers of physical knowledge of the

data base and details cf access and have provided for some
4

data independence and central ccontrel, among other
services), rrcgranming is extremely tedious. They generally
require Fregranzing ard prccedural knowledge to write

applicaticn rrcgranms.

The research reported here helps tc kridge the
autcraticn gap by including the automaticn of phase 4 above

——- the progran design, ccding, and debugging phase.

Section 2 cf this paper provides a general overview of
the MODEL 1languvage and Erocessor. Section 3 describes the
pain features c¢f the MCDEL specification language and
provides an exanple o¢f its wuse. Section 4 outlines the
automatic pregrar generaticn nmethcdeclogy used. Section 5
nakes scme ccncluding remarks and ccrments on further

researcha.

2. Cverview cf the MCDEI language apd Processor

The apprcach taken here is that the user has all the
kncwledge ©pertaining tc the application area, while the
autcmatic prograr generator will possess only and all the
design and programming knowledge. The focus of the research
reported here is on the autcomation of the programming phase
whese input 1s a functicnal specification in a very high
level, nen—-procedural language and whose output is an
applicaticn fprcgram in a programming language. It deals

primarily with the autcmatic generaticn of transaction

[~
e

processing systems. Figure 1 depicts the roles of the user
and the software system which accomplishes this. The letter
references belcw are to the figure. In order to express such
specificaticns, a fcrmal ncn-procedural language called a
"Module LCescrirpticn langtage™ {(MCDEL) has been developed in
which the user describes desired prcgrams [a]. The language
is used to describe ncp-prccedurally objects din various
categcries:

1. The input data tc be processed

2. The cutput and updates to te rprcduced

3. The cecrpputation and decision rules to be used.

Unlike rrcgramming languages, the user submits to the
Processor descriptive statements in this 1language in any
order that he may desire, and can do sc in increments over a
period o©f time. There are no ccntrol structures or other
contrcl flcw statements in the user's lanquage, because the
language 1s ccrcerned with data description, data flow, and
infcrmation relationships. EFach statement is used to
describe a unit ¢f data, a comfutaticn or decision rule, and
is inderendent <¢f cther statements. The user is able to
concentrate ¢r cne unit cf informaticn cr cne computational
requirement at a time and ccrpcse statements as they are
conceived withcut regard tc their lccaticn in the rest of
the specificaticn. The ©Processor puts the statements into
the proper seguence later. 1he MCODEL language 1is described
in more detail in secticn 3 cf this paper with an

6

e e

Input Data

(d)

PL/1
Program |

™

;Flowchart &
QListing e

Qutput Data

LRepop”

Figure 1

Overview of the MODEL S

illustrative exanrle.

The MOLEI Erccesscr [b] (hercafter referred to as the
Processor) analyzes the set cf statements obtained from the
user after stcring ther in an irternal asscciative form. It
analyzes the user statements for their consistency,
conpleteness, and checks for ambiguities, informing the user
of these in a reprort [c]. Thus, a complete and consistent
specificaticn of a program would be achieved through several
interacticns with the Frocessor. If analysis of the MNODEL
statements results in a conmplete and consistent progran
specificaticno, the Erocessocr designs the program and
generates a ccrplete arpplicaticn precgram in the PL/1
language {dJ]. It also generates varicus reports to the user
about the specification ard the generated rrogram [e]. The
generated [frcgram can then be subpitted to a compiler [f],

and subsequent executicn cf the target program proceeds [g].

A more detailed descrirpticn cf the KCDEL Processor and
its 1©ethcdclcgy is outlined in secticn 4 of this paper. A
preliminary [prctctype [LOCESSOL erbedying the systenm
cConcerts has been developed. * It was designed and

ipplemented ir EIL/1 on an IEN 37C/168.

* The versicn cf MCDEL repcrted in this tpaper is the
original one develored by the authcr in 1974-1975. Revisions
and improverents to the language and system are under way in
various directicns toth at the Univ. of Michigan and
Oniv. of Pennsylvania. These are mentioned at the end of the
paper under "Further Research".

g

3. Ihe

o

rcgram Specificaticr language-— MCDEL

This secticn discusses the NCLEL language in‘ greater
detail. After a general descripticn of the language
characteristics, an 1llustrative exanple is presented. That
is followed by a discussicn of the c¢lass of problenms
currently descritable in KODEL and the limitations of the
current language and system. This section then ends with a

brief compariscn with other related languages and systens.

HODEL language features

The "Mcdule Description lLanguage™ (MCDEL) is intended
to Le used ty a system desicgner tc state the requirements of
a desired arpplication gprogran ncn-rprecedurally. As stated
above, it inherertly differs frcm prcgramming languages in

several respects. It is a ncn-procedural language, which has

been loosely defined as a language that expresses %“what™®
rather than "how" [e.g., 19]. KCDEL is characterized as non-
rrocedural for the fellcwing additicnal, explicit reasons.
First, the statements are all descriptive or declarative,
not imperative. Each statement given Ly the user stands
independently and is wused to describe a unit of data, a
relationshifp, a desired subset of records, a computation, or
a decisicn rule. Mcre important is the lack of necessity on
the rart of the user tc ccmpcse statements in any particular
order. The «c¢rder or segquence in which statements are given

by the user is imraterial, since all sequencing of tasks or
g

events to be gperformed are deduced by the Processor.
Therefore, there are nc centrol structures in the language.
This ability ty the wuser tc submit statements in any
sequence reduces the expertise required on the part of a
user. It enables him or her to concentrate on and submit one
anit of infcrmaticn cr ccrputaticnal requirement at a time.
Unlike conventicnal language ccmpilers, the MODEL systenm
allcus the system desigper tc add statements to the
specificaticn without <regard tc their 1lecation in the
specificaticn. It allcus staterents tc be added in
incremental stages and provides feedback cn the completeness
and censistency cf the specificaticn between iterations.
(Exanples of such feedback are given later.) In short, there
is ro computer programring kncwledge necessary in order to
comrcse NCDEL statements in several restects: there is no
procedural <c¢r =seguential thinking required, there is no
reference tc corputer prcgramming terminclegy, and there is
an absence «¢f concern with prccessing details such as data

access, rrcgranm "housekeering" tasks, ccntrol flow, etc.

MODEI lanquage statements ard an exarple

A descrirticn and exanples cf the statements in NODEL
fcllcw. One lirpitaticn to the use of MODEL in its present
forw is the fact that it is a formal language and has a
somewhat rigid syntax. Although it is a specification
language and nct a prcgramsing language, it nevertheless

10

vould regquire scme trainine on the part of a systens

analyst.

A specification in the HCDEI 1language consists of
several rparts: a header +vwhich has a list of source and

target data files of the module, a data descripticn section,

recaord selecticn rules, and assertions that state

computational or decisicn requirements.

In order to describe and exemplify the nature of the
language, Fiqure 2 presents a system flcwchart of a sales
preblem. There are three scurce files: the transaction fron
the point—of-sale terminal, ar inventcry stock status file,
and a custczer file <¢f charge acccunt information. The
output files are the =sales =slip tc be produced at the
terminal, asnd the wurdated inventcry and customer records.
The program tc be specified is to prccess the transactions
producing the =<sales slip, and to update the inventory and
custcmer records to reflect the sale. Fer tutorial purposes,
Figure 3 shows the specification of a szall subset of this
rroblem 1in the MODEI language. In the exarple given, only
the transacticn, inventcry, and sales slip files are shown
and the files have c¢nly a srall subset of the fields that
would actually be carried in such files. A stibset was chosen
here for the rurpcses cf a sufficient exanple, and it will
be used to describe the Prccesscr nmethcdclogy in Section 4.
Furthermcre, the specification dericted shows only two tasks

to be carried cut: to compute the charge and tc update the
11

B Ao A Ak T LA S Ak

SALETRAN

T

*

/

INVEN

VA Ve Y
{
DEPSALE
SALESLIP
EXCEPT
\
m
‘W'
JOURN

Figure o1

\-—»

Illustration of Department Store Sale

/**************#*i****************#************************/

/¥ */
/¥ "EINSALE" ERCGRAY SEECIFICATICN */
/* */

/***********#***********#**##********#*********************/

1 MODULE: KEINSALE;
2 SOURKCE FILES: SALETEAN, INVEN;
3 TARGET FILES: SALESIIE, INVEN;

AR ROROR AR o K 4 ok K o o3 o3 3Kk K o ok oKk 3ok koK ko Kok Rk KRR R ARk K K oK/

/* */
/% FILE DESCRIFTICKNS */
/* */

/XA ROk R ok oRok 3ok ok ok Rk kol skalok R oR ok kR Rk ok ok

4 SALETRAN IS FILE(RECCRD IS SALEREC);
5 SALFREC IS RECORD (CUST#,STOCK#,CUANTITY);
6 CUST4# IS FIEID (CHAR(S5));

7 STOCK# IS FIELL (CHAK(7));

8 CUANTITY IS FIEIL {NUBEFIC{3));

9 INVEN IS FIIE
(BECORL IS INVREC, STCRAGE IS INVDISK, KEY IS STOCK#);
10 INVEEC IS RECORL(STCCK#,SALEPRICE,(CCH);

" STOCK# 1S FIELD{CHAER{7));
12 SALEPRICE IS FIEID (NURERIC({5));:
13 COH IS FIELD(NUMEFIC(D));

14 INVDISK IS DISK {ORGANIZATIGN=ISAM,UNIT=3330);

15 SALESLIE IS REPCRT (REPCRI_ENTFY IS SLIPREC);
16 SLIEREC IS REFORT_ENTRY {CUST#,STGCK#,CHARGE);

17 CUST# IS FIEID (CHAE(5));

18 STOCK# 1S FIELTD CHAE(7));

19 CHARGE IS FIELL{SUKEBIC(8));
/#***#***/
/* */
/% INTER-EECCFL FELPIIONSHIPS */
/¥ */

/**************************************#*******************/

20 SALETRAN.SICCK# IDENTIFIES INVEFEC;

/**************#*****#****#********#**#********************/

/% */
J* ASSEBRTICNS */
/* */

/************#***/

21 CALCCHEG: CHARGE=QUANTITY*INVEN.SALEERICE;
22 UPDQUANT: NEW.INVEN.QOH=OLD.INVEN.CGCH - QUANTITY;

Fiqure 3: Sample Set cf MCDEL Statements
13

guantity or hand 1in the invertcry record. In this sample,
cnly cne item purchased is assumed, but the specification

could be exranded to handle multiple items.

Lcoking ncw at the sarple specification, the header is
a formalizaticn ¢f the systenm flcwchart, shcwing the name of
the desired rrcgram and the irnput and output files. In the

data descrirticn pcrticn c¢f the specification, a network-

like model is used. Each 1eccrd tyre 1s described with its
compcnent grecurs and fields. Such data descriptions are not
unlike a COECL or PL/1 hierarchical structure. The
individual <fields are given their specific attributes, such

as field type and length. TFurthermore, various statements

describing inter—1eceord relationships are provided to handle
a network structure. In this example, the STOCK# field in
the transacticn file ccrresronds to an inventory record in
the inventcry file. A1l the akcve such data descriptions
could be stcred in a 1litrary f£or wuse by other progran

specificaticns usging those files.

In crder tc describe the specific tasks of the progran,
selection rules can be rprovided. These are logical
expressions fcr subsets of data to ke rprocessed. In this
exawple, ncne are stated and therefore all records are
rrocessed as a default. Exanples of statements for record
selecticn rules are given after discussion of this sanple

protlen.

14

The ccrputaticnal requirenent rules, called

Yasserticns™ in 'HCDEI, are specified tc provide the

infermation relationships, data computations, and decision
rules. It d1s irportant tc note that these could appear in
any crder and dc¢ not in thempselves dencte anything about
sequence cf events. An asserticn of the fornm
"CHARGE=QUANTIITY*PRICE" is tc ke regarded as an algebraic
equation, and nct as an assignment statement as in a
rrogranning language. In fact, the entire set of statements
in the specificaticn cculd ke shuffled with no effect on the
meaning.* Staterents in conventicnal pregramming languages
such as "total=tctal+amount" would of course not be in the
MODEL 1language for they are procedural and could have ngo
non-procedural interfpretaticn. Such corputations as totals
would be perfcrmed ip this langquage by high-level functions.
Therefore, ir crder to augment the basic arithmetic and
lcgical crerators, a library ¢f ccnmen high-level functions,
such as for tctaling or ccunting, has been built, For
exangle, a statement =such as the follcowing could be

specified:

* The cne excepticn tc the principle that statements can
aprear in any crder is the follcwing: Since the same field
nane may appear in mcre thar cne file, an assumption is nade
by the Processcr that a field describked in a FIELD statement
is associated with the file ncst tecently described.

15

TCTICHRG=TCTIAL (CHAEGE) ;
where TOTCHRG cculd te ir an output repcrt or a field that

could be used in cther statemernts.

In the ccrtext ¢f an exranded versicn of this exanmple,
the analyst cculd specify rules fecr decisions, accounting,
and other rules that would indicate dispositions in certain
eventualities, such as wlten a stcck item is not available
for inventory cr when a purchaser exceeds the allowed credit
limit. The acccunting rules could specify the determination
of charges for rurchases and the methcd of determination of

the custcmer's balance.

In the sanple of Fiqure 3, twc computational statements
are given. 7The first is a straightforward computation for
the charge of an iter. In the secocnd statement, the words
CLD and NEW before a name are used to distinguish between
correspending field rames in a file that is both input and
output. Here the guantity-cr-hand £field in the inventory
record is urdated. The <cther fields in the record are

assured tc ke urchanged.

After =subritting a set of statements such as those in
Figure 3 to the Processcr, the user of MCDEL gets feedback
as to the <correctness, ccnsistency, and completeness of a
set of statenments beyond the feedback of a conventional
corpiler. The «user is infcrred in the form of listings and
regcrts as to inadeguate descriptions, contradictory

16

statements, anc assumpticns made by the Processor. Exanples
of lcgical inconsistencies and inconrleteness detectable by
the Processcr are <c¢ircular copputaticnal definitions,
undefined output fields, two contradictory computations for
the same field, etc. Section 4 of this pafper outlines in
more detail hew the systep processes a set of MODEL
statements, including the feedback the user gets. A complete
and consistent NCDEL specificaticn wculd be achieved through

several interactions with the Frccesscre

There are cther features <c¢f the NODEL language not
exerplified ir the subset of Figure 3 such as the capability
to define <cubsets of files, +the carpability to define
conditicral ascertions, and the capability to define
cperaticns on repeating groups and fields. Some brief

exarfrles cf such statements fcllow.

In order tc¢ prcvide a way of specifying logical
expressicns tc determine which subset of a file is to be
considered fcr a desired applicaticrn gprogram, a subset
selection statenent is precvided. For exanple, to restrict
the set c¢f +transacticns tc be processed to only those
reccrds that have a quantity-crdered cf more than 100, the

user could bhave the follcwing statement:

17

SUBSET.SALETRAN:z CUANTITY > 100;
In cther wcrds, any reccrd in the SALETRAN file not meeting

this critericrn is excluded.

MCDEL lets the user state computational rules that hold
cnly under certair ccenditicns, in twe parts. In the first
part, the wuser can designate a rame fcr the condition, and
give the correspcnding Bcclean expressicn. For example, to
designate a ccpdition called SALE as occuring when the
custcmer's cld talance (in the CUSIcmer file) + total charge
is nct greater than his credit limit, the user could write:

CONDITION: SALE: OID.CUST.EALANCE + TOTCHRG <=

CLT.CUST.CREDLIN;
Then anywhere else in the specification the user can define
cne oOr more computaticns that are contingent wupon a
condition defired elsewhere. Fcr example, tc update a
custcmer balance cnly when the SALE ceonditiorn has been net,
the user car write

IF SALE THEN NEW.CUST.BAIANCE = CID.CUSI.BALANCE +

TOTCERC;
Keepr in mind that these cculd ke submitted in any order. The
reascn fer splitting ufp conditicnal relationships in this
way 1is that cther corputations «could reference the same
conditicn ard cculd be adéed later in any location. Thus,
the user «car insert ccmrutaticns +that are to take place
under certain eventualities as they cccur to him or her. It

18

will be the Frocesscr's task +tc grcup the actions for a
conditicn tcgetkher at the arprcrriate place. On the other
hand, if a wuser f£finds the traditicpal IF...THEN...ELSE
statement {such as ir PL/1) mcre ccnvenient, the Processor

would accept it as well.

A more detailed discussicn cf these language features
is actually beycrd the interded scopre of this paper. The
reader 1is rteferred ¢c [1] fcr a nmore complete description

and exanples c¢f the language.

Class cf prcklens and scixe current lipmitations

Frem the previous sections, it can be inferred that the
MODEL language can be used tc describe desired application
progranms in many areas of data prccessing. MNODEL 1is
particularly suited tc the autcmatic generation of
traditicnal transacticn precessing systems where
transactions are prccessed, nmaster records are updated,

added, or deleted, and rercrts are produced.

The features c¢f HECDEL as outlined above enable it to
describe almcst any aspect ¢f aprlicaticn frograms. However,
the current versicn cf MCDEL has several limitations. For
one thing, as rentioned, the somewhat rigid syntax of MODEL
in its current form limits the range of users enabled to use
it, but a mcre tser-frierdly front-end interface to it could
alleviate this prchlen.

19

The currert versicn dces nct provide for report
formatting <facilities. Ercgrams generated Ly the Processor
treat output rercrts as cutput files. This is not considered
a conceptual drawback, since repcrt generation facilities
are kncwn technology and cculd be inccrpcrated in future

versicns.

Although nct a preblem ir practice, ancther limitation
is 1in the <tce of corputaticnal statements. The lack of
capakility to specify sequence trrovides a great degree of
ease of use and does not in itself pose any limitations.
However, computational statements are 1limited to single
eguaticns with single unknowns on the left-hand side; that
is, statements c¢f the fcrm Y=arithpmetic-expression or
Y=F{(¥1,++.,%n). Thus it 1is rct rossible to generate new
algorithrs with the system, ncr is that its intent. It 1is
expected that the vast majcrity of data processing programs
could be handled with a dczen or sc high-level functions
(such as toctalling, counting, maximum, minimum, etc.) in a

library.

Another assumpticn made by the current version is that
the physical <c¢rganization c¢f the files used by the target
applicaticn rrogram is pre-desigred by a system designer
before MODEI 1is wused as a tool fcr automatic progranm
generaticn. Tle current version uses the operating systenm
sequential ard indexed sequential access methods in its

irplementaticn c¢f input and ountput statements for the
20

generated arplicaticn Fregram. However, one of the
extensicns cf this lanquage under way is directed towards
generaticn of agplicaticn programs that use generalized data

base managerent systems.

Finally, the Processer currently generates one program
rer specification. It is envisiconed that in the future a
further optirization phase would modularize the generated

rrogram based on efficiency and other considerations.

ompariscn with cther larguages and systers

Corparing MCDEL te¢ ESI [9], PSL does not have
sufficient facilities in it in order to generate an
executable prcgrar, ncr has that been its fccus. By the same
token, MCDEL is a much swmaller ard simpler language because
it bhas only those facilities necessary in crder to specify
and generate a prcgram, and is not concerned with the target

environment as a whole as is ESL.

Other "autcmatic pregrarring" projects have had similar
gcals as MOLEL, but preliminary indications (e.g., [21]) are
that they require more rrocedural knowledge and are not as

user oriented.

21

There are many other c¢lasses ¢f non-procedural
languages but they are for use 1in areas other than
generaticn cf applicaticn programs (such as data

translation).

Scme guery lenguages show some similarity to MODEL, but
they are generally c¢cc¢ncerned with one—time ad-hoc retrieval
rather than with generaticn of transacticn processing

applicaticn systems for repetitive use.

Comrarisons could alsc te mace Eetween MODEL and other
program gereratcrs, but they deal with cther problems. For
exarple, .[22] deals with autcratic generation of DBTG
infcrmaticn retrieval rrcgrans from specifications of
"relaticns® and not with generaticn ¢ transaction

Frocessing systense.

4, The Automatic Frogram Generation Methodoloay

The Processor has the task of accepting such
specificaticns and generatirg a PL/1 program conmplete with
all the necessary declarations, centrol structures,
sequenced statements, inputyoutput statements, housekeeping

tasks, etc.

22

The systen gces thrcugh varicus phases, labelled PHASES
I-Vv in Figure 4, in crder to generate the rrogram from the
specificaticn. Although the detailed algorithms are beyond
the scepe of this parper, the gereral methodology and the
five phases are cutlined below, and the reader interested in

greater detail ray refer tc [1].

Phase {I): Syntax analysis cf the NCDEL module specification

Syntax analysis technology is well known and follows
that c¢f a corpiler. Ir this phase, the provided MODEL
specificaticn is anpalyzed tc fird =syntactic and some
semantic errcrs. This rhase of the Processor is itself
generated autcratically ty a meta-processer called a Syntax
Analysis Program Generator {SAPG), whose input consists of
syntax rules prcvided thrcugh a fcrmal description of the
MODEL languvage {1]. Thus, changes tc the syntax of NMODEL

during develcgment arnd in the future can be made easily.

A further task of ttis phase is to store the statements
in a sirulated associative memcry for ease in later search,
analysis, and rprocessing [1]. Sorme needed corrections and
warnings of rossitle errcrs are alsc precduced ir a report

for the user.

23

Specificatiol

I. - Syntax &
Statement
Analysis

II. Specificatio
Analysis;
Network gene
ration & anall

III.
Iv. f Code
Generation
. Execution
PL,
V. /1 Object of the

Compilation Program

Generated

Figure 4: Phases of the MODEL Processor

Phase {IT): Aralysis of MCDEL specification

In this phase, precedence relaticnshirs are determined
freor analysis of the MCDEL data descriptions and assertions,
and the srpecification is analyzed +to determine the
consistency and corpleteness of the statements. Each MODEL
statement may be considered to be an inderendent, stand-
alone statement. The order of the user's statenmeats is of no
consequence. Hcwever, in analysis of the statements,
precedence relaticnshirs are determined on +the basis of
description ccrponents. Precedence rules, based on
programming kncwledqge, have been built intc the Processor.
Two frequently used frecedence rules are hierarchical
precedence rules (e.g., having tc read a record before its

compcnent fields can be wused) and value dependency

precedence rules (e.g., having to compute A=B+C before
D=A*C). These relationships are used to form a precedence
graph on which the ccmpleteness, consistency, and ambiguity
of the specification can be checked. Reports are produced
for the user indicating the data, assertions, or decisions
that have been iradequately described, assumptions that have
been made by the Precesscr, or ccntradictions that have been
found, and reperts are rprovided tc cross-check the
descrirtions. Fcr example, if arn cutput field has not been
giver a value Ly a user rule, the Frocessor has a series of

rules it uses in crder tc determine its value, such as using

the value ¢f same-named field in an input file. If a value

25

cannct be assumed ty the Frocessor, an incompleteness
messSage 1s printed tc the wuser and he is prompted to
complete the missirg infcrmaticao. Exanples of
inconsistencies that are detected by the system are circular
defiriticns (e.g., A is a functicn c¢f B, B is a function of
C, and C is a function ¢f A) cr ccntradictory computational
rules for the same field wunder conditicns which are not
mutually exclusive. Thus, it is envisioned that a complete
and consistent specification cf a rrogram would ke achieved
through several iteraticnes and through interaction with the

Processcr.

An example c¢f a directed graph that represents the
Frcblem expressed in FCDEL in the previous section is given
in Figure 5. Note that the «ncdes represent the records,
fields, ccrputations, etc., as described by the user. They
could have keen entered ircrerentally ard in any sequence.
The system "draws the arcs" based on its internal precedence
rules. HMany representaticns cf such a directed graph appear
in the literature. Figure & shows an adjacency matrix which
MODEL wuses for the rprctlem described abcve. The various
entries 1in the matrix show the relationships existing
between the variocus objects. This nratrix representaticn
enatles easy ctlecking c¢f ccnsistency and completeness
criteria descrited above. For examrle, a cycle enumeration
algcrithm cn the matrix can be wused to detect circular
corxputaticnal definiticns.

26

s e XA

s

am et A we D

" 3 a* ewe

L}
»
’
]

RY,

CUSTE

Digraph

20 ; .
N\ 7 * 6 R . 5 .
CHARGE :
/
~ — .

3 9
‘ [IINSALE) .

L5

.) N, 2
; 14 e 13
25
FOINTE OLD
LD 2 INVREC
s

TNYREC .

2 M
Q7Y ’
, ! L 27
CALCCHRG UBPDQUAN

*

ames oo == Hipraprchical Input
~ew~ ~ Hizrarchical Qutput
—— pxplicit Dependence
cerevesn Implicit Dependence
— S torage
———=Pointing

a2 -
Figure c{r el

i)

for MODEL Specification of Figure.«%

.
L

2o g ey

o A R NN

g et 5 S 2 A g 2
'

.‘“L.(

- -
-

e

2N

O e

PR

Joprn
K3

st 3

v

T s AT ety AL O LT

——

e e A vy

e

B T T T ey S RN U N
e e g ER Mo [R ARAY T R A N o GBS Simy VIR 2 g

wem m - . Lo - - R PR ~ - -, - . - .
USRI - i USRI SN SIS N 20 bl S B RN

- - A}

.0 . . ccuuqu«u«ucmm 13q0K #3dwes 203 xpazel Aoueselly paajySyepm % w‘ 2an313 L%
. . . 8 .-
. ' AJN3IANISI0 TUNOTLIONOD = L 1JIMSNOILVIIY 39VHOLS = 9 tJ4INMSNOILVIZY SHILNIQL = & <.
tAINIGNIEIC LI13TITSHE = % 1AINION3JIG LIDITEXD = £ 10120¥vlIIvIIMOUVYIIH = 2 t(3JUNCSIIVIIHIOYVYEIIH = %
1704 3HL SINISIVLIY 3003 INL P WILT S3UII3US X WILT LVHL SILVIIONT © HNWATD2 T 1 RO0Y NI AYIN3 OU3Z-NON V Q
5o -
VOOODO0O0OD0O0OC0DO0O00O0D0000000D00CULEOOULSD . NYQADQOdNn L3
. LOoOOCOODODODDOUEEOGOE UVOOUVLOODOU UV QUO : < ANlul 92 @
C0oQO0CO0OO0CO0OO0DODCO0DO0O0O0O0CO0O0O0NHOODUULOUVO J3ydlls se
. : -0 $ 0 0000&UOO00UVO0ODO00QUOUOCODAGOODOOCDO ¥ND0LS*HNVHLIIIVS 4T
. . £ 0000000000 CDOO0U0UYD0O00LOCCQCO0O0UO0OODE . ALILMVAD=HVHIIIVS &2 Q
. ¢t 0 ¢oOODO00O0OH0O0O0OC¢CUDUDODOONODOO0DUG QUG g . y1SNJ NVY1I3TVS 22
. . CQ0uUQgCOCO0OOCODODDT9O0QOGOOGOO0OO0D0DO0DDO U O . NVHEIIIVS 1E
LOeeODOGCODOGBOODODODDODUUODOOQOCOCO0O0OCOOD0O v BMI0Ls*dlIsIvS 02)
" L tudooo0OO0OO0O0DOO0OUVUOO0UDODOVLOOO0OOCUUOUVDO ' . #1snod*dlls3IIvs &1 ;
4 020 0000UVOUOUVUOO0OOO0O0D0O0CDOOGCODOOU0CO . ISHVIDA4LTI53TIVE 91
. bUQ0COoOQCO0OO0OO0O0DOO0DODO0OUO0OUYTOULUUOOD OO0 DD0D digavs LT s
. . ' p0OUVLITTOOCO0O0OO0ODO0ODODUVUO0O0OCO0CULY LD OOD ‘ SIM1IVS 971
- + 0 0D0DDUVUDCDOOCOQOQQ@OO0UODODUOOOUOCOOO ' W33Ju3idvs st
00N 0OCGCOGODODDLODODUDOOS U ODO0OOD0ODD0O0 0 UV AIYANI*QIQ uILNICH T]
. ..UDUVLODOOQOOGCOODDODOUTITTIITOODOOLOOUOLUD Vo . Jjuantcao £y
. 00DOCDOOODOUDOOGO U UVCOD0DOO0OQH O UUGOOD 7 BMIDLSTNIANTTIT0 ZE
.. U0O0VDO®HODODOOOQQO0O0LOUYVONHOLDODOONH®» O OO O L : : FITugd VS *IANITON0 TX &
. £ 00C0O0D0O0DO0CO0O0OO0OGO0CO0OUO0OUVUOOO0DOCUDUOOCG 1 HoO HIANT UG of
. 0000 OO0 0O0QG 600000 T 00O00C00000 90 NINNI*GI0 6
- ©OoOO0ODODOODOQOCOO0O0COULDOOOBODOCO0O020UDO) IFNANITHIN 8 L]
. ¢ 00O0CO0CO0O0DOO0ODOCOCUOUO0OODLOES D OOULOUO puldoxs AL "nin L
. U0C00O0OODDOOODOOCOQUOODUOVLOLEOODOULOULDO FJTudVs HInNL T mIh 9
: U 0UO0O0O0O0D0O0CO0DODO00OD0DOVULCOEZOUDUDOLUY HogousnIAtITMI S <
. D ONDOOODOCOGOOB 0 0D0D0LUYOUCOVUOGOCDNOYY VD30 . aANNITMIN b ’ .
. . O VUD0DOUOOOCOO0COO0UOUDDOO0ODNDYUUYUOUDN ’ Jvsnluy €
. 5 U HO0O0DOOOOVDOO00DDO0OODOLOLOOOLL YD UC N ' ASIUANT © -
. - 1 0000UCLO0DLEUUYUYUULLULODULGUVUOUVO S AWIDIIVI 1
. Ly oz st 0l] - & .
SSIHSNOILVIIN 3INVH 40 XIYyived ADNJovrav o

LA ;. .
- s _.-“lVXAW/» .- M_lrl!tl.?!l.l dpan e o - .I..a..

Phace {III): Autcmatic program design and generation of

sequence and control legic

This phase ¢f the Prccessor determines the sequence of
executicn of all events implied by the specification, using
precedence grarh thecry algcrithms, and thereby determines
the sequence and contrcl loegic cf the desired rodule. The
result of a tcpological sorting cf the graph presented above
is a table such as the one shown in Figure 7. This table
forms the skeletcn of a flcwchart fcr the target program, as
it shows the order of the nocdes 1in their executable
sequence. It alsc shcws the ranks cf these events, which as
a by-product denctes scme c¢f the possible parallelisn.
Lesign c¢f +the <c¢bject rprcgram rrroceeds with scope and
iteraticn analysis and flcw optimization. Iterations are
kased on the existence cf rerpeating groups or fields in the
data descripticn, or are designed for processing a set of
records sequentially. The result of this phase is a set of
data structures representing the desired sequence of
processes and flow of events, sequenced, ranked, and

optimized in their crder cf execution.

29

PR e e

NPT e P S

5 g T Ak s

o B

SO

SEQUENCE OF PROCESSING

ORDER
VECT. ORDER NAME RANK
INDEX VECTOR

1 3 MINSALE 0
2 g OLD. INVEN .0
3 21 SALETRAN 0
4 15 SALEDECK 1
5 16 SALEREC 1
6 22 SALETRAN, CUST# 2
7 23 SALETRAN, QUANTITY 2
8 24 SALETRAN. STCCK# 2
4 19 SALESLIP.CUST# 3
10 20 SALZSLIP. STOCK# 3
11 26 TRINV 3
12 14 POINTER.OLD, INVREC 4
13 13 OLD. INVREC 5
14 10 OLD. INVEN, COH 6
15 It OLD, INVENR, SALPRICE 6
16 12 OLD. I5VEN, STOCKY 6
17 1 CALCCHRG 7
18 6 NEW., INVEN, SALPRICE 7
19 7 NEW.INVEN, STCCK# 7
20 27 UPDQUAN 7
21 =] REW, INVEN, GOH 8
22 18 SALESLIP, CHARGE 3
2 8 NEW,INVREC 9
2 25 SLIPREC 9
25 4 £V INVEN 10
26 17 SALESLIP 10
27 2 INVDISK 11
Figure 7 -

Digraph Nodes Sequenced in Precedence Order

PO}

Phase ({IV): Code generaticn

At this pcint 1in the rprocess it is necessary to
generate, tailcr, and insert the ccde into the entries of
the flcwchart t¢ rprecduce the precgram. Cocde is produced in
two steps fcr puryoses cf mcdularity and independence of the
target lanquage. The first step rproduces a language-
inderendent versicn <c¢f the flcwchart-entries, as noted
above, while this second step produces code in the PL/1
progranming language. In particular, input/output statements
are 4genecrated whenever the flcwchart indicates the need for
reccrds. Calls tc procedtres embodying the assertions are
generated ir the apprcrriate places in the <flowchart.
Wherever prcgrar iteraticns and cther centrol structures are
necessary, prcgram code fcr them 1s generated, such as for
repeating grcugs or fields. Declarations for object progran
data structures and variakles are generated. The product of
this ©phase is a comnplete rrcgram in a high level language,
P1/1, ready fcr ccmpilation and execution. A listing of the
generated prcgrar as well as the flowchart-like report is
produced. This dccumentation is not expected to be of
significance tc the casual user, but it would be available
for a ccmputer programmer in the event that it may be needed

for deeper understanding c¢f the prccedure.

Phase (V): Prcgrar compilaticn and execution

This phase starts with the PL/1 prcgram module that has
been autcrmatically produced. With the generated PL/1 progran
being sutmitted tc the FI/1 cptimizing compiler, progranm
compilaticn and crtimizaticn c¢f ccde on the machine-language
level 1s effected. The autcmatically generated program is

then availakle fcr use in executicna

5. Ccncluding Remarks and Further Research

This paprer has outliped and exemplified the basic
features of a ncn-procedural specification language for
describing modules of an information system and a processor
for generating programs automatically frcm specifications
expressed in that language. The system described here has
demcnstrated the feasikility <f such an approach. It is
expected that such a lanquage and system could be an
impcrtant stepr towards the automaticn of the software
develcpnent prccess 1if givern streng industrial level
syrport, reliatility, and funding. Scme conclusions are
already evident. Such a system reduces the amount of
expertise and tinme néeded to generate today's typical data
Frocessing prograb. Since MODEL is non—pxccedural,» it
enakbles the user to ccncentrate on describing data and their
inter-relaticnships Lty rrcviding a set cf statements that
can appear in arbitrary crder. The Processor, unlike

conventicnal «ccmpilers, 4is akle to deduce the segquence of
32

events and checks much of the wuser's 1legic and provides
effective feedtack. In additicn, it produces the desired
program cortplete with sequence and control logic,
declarations, dinputycutput, relieving the user of such

precedural thinkirg.

Frcm preliminary indications, the execution tinme
efficiency <¢f a rrogram generated ty the Preocessor is good.
Unlike Ygeneralized packages,"™ the Processor generates an ad
hoc program fcr a particuvlar problen. Therefore, the code
generated 1is fpeculiar tc a given use and contains no
unnecessary instructicns. Unlike some ‘"pre-ccmpilers,! the
system requires =nc fprccedural knowledge to use nor is it

limited to rparticular aprlicaticn areas.

Further research 1is taking several directions at
varicus institutions ircluding the University of Michigan
and the University cf Fennsylvania. Refinements are being
rade in the language and in the degree of logical analysis
that the syster can perfcrm cn a srtecification. Some work is
being <c¢cnducted on autcnatic data aggregation and
modularizaticn cf generated programs based on efficiency and
other ccnsiderations. At the University of Michigan, there
is also an effort to aprly scme of this technology to the
autcratic design, generaticn, and restructuring of programs
that use netwcrk data base managerent systems. The data

manipulaticn languace (DML) «<f many current network model
13

data base raragement =systems 1is highly procedural and
technical, and requires "data npavigation” and other
procedural kncwledge by an experienced programmer. Another
language based on the prrirciples cutlined in this paper is
now being develcped for vuse im defining non-prodcedurally
applicaticn Frcgrans fcr retwcrk data base management
systems. An interface Letween BSL [3,9] and MODEL is also
under investigation, =sc that PSL users could use the code

generaticn capakilities cf FCDEL.

34

Eiblicgraghy

{1] Rin, N. Adam “"Autcratic Generaticn of Business Data
Erocessing Programs from a Non-Procedural
Languag€,”™ Fh.LC. Dissertation, Computer and
Infermaticn Science Ieparthent, University of
Pennsylvania, 197¢.

[2] Prywes, ©N. S. MYAputcmatic Generation of Software
Systems -- a Survey," Data Base, Vol. 6, No. 2,
Fall 1¢€74.

{3] Teichrcew, D. and Sayani, H. "Automation of Systenms

{4] Teichrcew, D. And Merten, A. "The Impact of Problen
Statement languages on Evaluating and Improving
Software Develcpment Perfcrmance," Fall Joint
Comruter Ccnference, 1972.

[{5] dax, A. C. and Martin, We. A. "ldutcmatic Generation of
Custcmized ©¥Ncdel Based Infcrmation Systems for
Cperaticns Management,” Proceedings on the
Whartcn Ccnference on Research on Computers in
Crganizaticns, Philadelphia, Oct. 1975, edited
by H. 1. Mcrgan, fpp. 117-121.

[6] Balzer, R. HB., "A Gloktal View of Jutomatic Programming,"
also Mercrandur cn "Autcmatic Programming," USC
Inforraticn Sciences Institute, Marina del BRey,
Califcrrnia, Sept. 1972.

{71 ZTeichrcew, D. "2 Survey of Lanquages for Stating
Requirements fcr Ccmputer- Based Information
Systems,” Fall Jcint Computer Conference, 1972.

[8] Yocung, Jd. W and Fent, H. K "Abstract Formulation of Data
Processing Prcblems," National Cash Register
Co., also given at 13th ACM ©National Meeting,
June 1SfE.

9] Hershey, Rataj, Teichrcew, and Berg PSL Manual, ISDOS
Working Faper #68, University of MNichigan, Cct.
197 3.

[10] Severance, D. G, "Some Generalized Modeling Structures
for Use in Cesign cf File Organizations,” Ph.D.
Dissertation, University of Michigan, 1972.

[11] Cardenas, A.F., "Evaluaticn and Selection of FPile

Organization -- a Mcdel and System,"
Communicaticns cf the ACM, Sept. 1973, pp. 540-
548.

[12] Nunamaker, J. F. Jr. "On the Design and Optimization of
Infcrraticer Processing Systems," Ph.D

Dissertation, Case Western Reserve University,
June 1%€%.

[13] - "A Methcdology for the Design and
Optimizaticn of Infcrmpation Processing
Systems," AFIES Eroceedings, 1971, SJCC, pp-
283-264.

[14] ——- - "Processing Systems Optimization Through

Autcmatic Design and Reorganization cf Progranm
Modules," CST TR77, ©Purdue OUniversity, Dec.
1972.

{151 -———- SCDa, ISDgs Working Paper #36,
University of Fichigan, Feb. 1%71.

[16] Graharx, <Clang, and DeVeney “A Software Design and
Evaluation System," Cormrunications of the ACH,
Feb. 1973.

[17] ADS, National Cash Register Cc., 1968.

{ 18] TAG Sales and Systems Guide, IBM, GY20-0358-1, 1968.

[19] Leavenworth, Eurt F. and Sammet, Jean E. "An Overview
cf X¥cn-prccedural Languages,' SIGPLAN Notices,
Proceedings of a Sympcsium on Very High Level
Languages, Santa Mcnica, California, March 28,
1974.

{207 Beck, leland "An Approach to the Creation of Structured
Data Prccessing Systems," SIGMHMOD Proceedings,
1976.

{21] Ruth, 6. ©EF. "Status of Erotosystem I," Autonmatic
Programring Grcur, Hassachusetts Institute of
Technolcgy, 1876.

[22] Gerritsen, R. "Understanding Data Structures," PhD.
Dissertaticr, Conruter Science Department,
Carnegie~Mellcn Uriversity, 1975.

37

