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Abstract

In this paper, we establish that maintaining a balanced workload on each
machine over time stochastically minimizes the work-in-process inventory in
certain types of flexible manufacturing systems (FMSs) with finite or infinite
common input buffer storage and an ample buffer at each machine. The results
obtained here complement those obtained by Stecke and Moriu (1984), in which
it is established that balancing workloads maximizes expected production,
again for the same, particular types of FMSs. Stecke and Morin (1984) treats
a static PMS loading problem, while this paper addresses a dynamic problem
which considers three strategies to control the release of parts into the

system.

Key words: Flexible manufacturing systems, work-in-process inveuntory, workload
balancing, stochastic minimization. ’
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1. INTRODUCTION

A flexible manufacturing system (FMS) is an automated alternative to the
conventional means of batch manufacturing, to date applied mainly in the metal-
cutting industry. An FMS consists of a number of computer numerically con-
trolled machine tools, which are linked together by an automated material han-
dling system. Individual parts of different types can be machined simulta-
neously in unit batch sizes.

Efficieat use of such FMSs requires careful pre—production planning (see,
e.g., Buzacott and Shanthikumar (1980) and Stecke (1981)). One of such plan-—
ning problems concerns the appropriate loading of the machines in an FMS. By
FMS machine loading, we mean the allocation of all operations and their asso-
ciated cutting tools among'the FMS machine tools, in order to define which
machines will be able to perform each operation of the part types that have
been chosen to be machined next.

Earlier analyses of this and similar planning issues in the context of
job shops and flow lines have indicated the superiority of either unbalancing
or balancing each machine's workload (depending on some particular aspects of
the production system, such as buffer size, processing time distribution,...)
with respect to the maximization of production rate or with respect to the
minimization of the work-in-process inventory. (See Stecke and Morin (1982)
for references to such works.)

The question of balancing workloads in the context of FMS was first raised
by Buzacott and Shanthikumar (1980). Based on an asymptotic analysis, they
established that balancing the workload on all machines maximizes the expected
production rates whenever the number of parts in the system is very large,
i.e., approaching infinity. Subsequently, Stecke (1981) and Stecke and Morin

(1982), based on empirical results, supported the optimality of balanced




-2-

workloads with respect to the expected production of FMSs with single machine
workcenters (i.e., with no pqoling of similar machines) and with a finite
number of parts.

However, it was also observed.in Stecke (1981) that bhalancing the workload
per machine need not naximize the expected production of FMSs having a differ-
ent number of machines in different machine centers (i.e., with pooling of
machines). Shanthikumar (1982) for the first time provided an analytical proof
for the optimality of the balanced load with respect to the production rate of
an FMS with no pooling. An empirical proof can be found in Stecke (1981). An
alternative aﬁalytical proof can be found in Stecke and Morin (1984). Several
extensions and simpler proofs of simiiar results can be found in Yao (1984a,

b) and Yao and Kim (1984). All of these FMS loading problems involve static
allocations of workload among machines (and eventually, of operations and cut-
ting tools). These problems are solved and the solutions implemented before
the FMS begins to operate. The detailed, actual FMS loading problem of allo-
allocating operations and tools to machines to maximize production has been
addressed in Stecke (1983, 1985). Again, the problem is static.

The scenario in this paper is different, but complementary to the previous
studies, Stecke and Morin (1984), in particular. An opea queueing network is

“used to model the random arrival of individual parts to the FMS. Given that
there are N parts in the system, a closed queueing network then provides the
expected production, if the workload on each machine is also provided. Three
strategies are considered to release the parts, which have arrived into a pro-
duction control area, iato the FMS. Under these three release policies, if the
workload per machine remains balanced over time, not only is the expected pro;
duction maximized, but we show that the in-process inventory is stochastically

minimized.
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The random arrivals are of individual parts, and not batches, of a limited
number of similar part types. Each operation can be performed on only one
machine. The cutting tools for each operation have already been loaded into
the appropriate tool magazine., There is no pooling of machines and there
is a finite or infinite common buffer area (called a production control area)
for incoming parts, which are then released into the FMS. This paﬁer is treat-
ing this dynamic problem. The solution is that it is optimal under several
objectives to maintain a balanced load on each machine over time as the parts
are input into the FMS.

The open and closed queueing network models are described in §2, as well
as the three policies that we consider to release parts into the FMS. The
optimality of balancing the workload on each machine to maximize expected pro-
duction using the closed queueing network is presented in §3. §4 contains the
stochastic minimization of the number of parts in the FMS. A summary and fu-

ture tresearch is provided in §5.

2. THE QUEUEING NETWORK MODELS

A Jackson type queueing network is used to model a flexible manufacturing
system. The external arrival of parts forms a Poisson process with rate A.
An external arrival is received into a production control area from which the
parts are dispatched into the flexible manufacturing system. (See Figure 1.)
Parts from the production control area are released to the flexible manufactur-
ing system according to some dispatch policy. 1In this paper, we consider the

following three policies that describe different means to control the input of

parts to the FMS:

Policy 1: Dispatch parts to the FMS as soon as they are received into the

production control area.
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Figure 1: A Schematic Diagram of a Flexible
Manufacturing System.

Policy II: Any parts that are received into the production control area
when there are already Z parts in the FMS are rejected (i.e. ,
lost). Otherwise, parts are released to the FMS as soon as
they are received by the production control area.

Policy TIL: Dispatch a part to the FMS if and only if the total number of
parts in the FMS is less than (some value) Z. This may repre-
sent a predetermined input control policy or reflect the fact
that the number of pallets available in the shop is limited to
Z (e.g., see Buzacott (1982) and Buzacott and Shanthikumar

(1980)).

The flexible manufacturing system contains M machines (each is single,
there is no pooling). The first operation of a part that is released to thei
FMS is performed by machine i with probability Yo A part that has completed

its processing at machinme i will proceed next to machine j with probability
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p,.. This part is an internal arrival to machine j. On the other hand, upon
ij ’
leaving machine i, a part may depart the network of queues (i.e., the FMS) with

M
probability 1 -_21 Py The service, or processing, time at machine i is ex-
J:‘.

J
ponentially distributed with mean ti’ i=1,2,...,M. Let 9y be the expected
number of visits made to machine i by an arbitrary part. Then, using the

Markovian property of the part transitions from machine to machine, it can be

shown that:

Q@ =Y, * ) Q:Pss, i=1,2,...,M. (1)

The mean load imposed on machine i by a single part is then equal to qiti
and we denote this by X; . 1f Xe is the effective part arrival rate to the
FMS (different for the different part input policies), then the workload rate

utilization of machine i is kexi. Th; total mean workload L imposed on the
system by a single part is equal to X X . L is the average time required to
process a part through the system. ;;lwill assume that, independent of how
the machines are loaded, the mean total load will remain the constant L.

Then, under a balanced workload, the mean load imposed by a single part on

a machine tool is L/M (= x*). The balanced workload distribution is then:

x* = (x*,x%,...,%x%).

3. PRODUCTION RATE

In this section, the number of parts in the system is kept constant at
level N, i.e., the queueing network is closed. Then the expected production
rate, PRN(Z)’ of the FMS with the mean load distribution x = (xl,xo,..,xM) is

(see, e.g., Solberg (1977) and Buzacott and Shanthikumar (1980)),

PRy(x) = g(x,N-1)/g(x,N), N> I, (2)




where
M n
g(x,M) = )} (M xi), N>I (3)
nESy i=1

g(x,0) =1,

n = (nl,nz,..,nM), ni_z 0, i=1,2,..,M,
and

M
sy = {n iglan}, N> L.

The following Theorem concerning maximum expected production, using dif-

ferent proofs, has been established in Stecke (1981), Shanthikumar (1982),

Stecke and Morin (1982), and Yao (1984b).

Theorem 1: The expected production rate, PRN(E)’ is maximized by balancing the

workload on all machines. That is,

PRN(Ef) m;x {PRN(§)}
: Z X, =L

X i
i=1

|

for x* = (L/M, L/M,....,L/M).

Corollary 2: The expected production rate of a single-server closed queueing

network, PRN(E)’ is bounded by:

(4)

M
PRy® < T T
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We note here that for information concerning the robustness of queueing

networks to aggregately model the steady state performance of FMSs, see Suri

(1983), for example.

4. NUMBER OF JOBS IN THE SYSTEM

Let Pn(l(-) be the steady state probability that there are n parts
(n=0,1,...) in the system at an arbitrary time epoch under a mean work load
distribution x = (Xl’ XZ""’XM)' It can be shown (see, e.g., Shanthikumar and
Sargent (1981)) that under Policy I:.

A
Pn(i) ='P-Rn_(2{_—) Pn—l(-)i)’ n=1,2,...; (5)

!
—
—
+
[~
=0
>
—
——
—
[}
—
.

Py(®) =

and under Policy IT:

- A - -

Pn(l(_) —ﬁ:@ Pn_l(gg), n=1,2,...,%;

Pn(zi_) =0, n=Z+1,72+2...; } (6)
) Z oa A -1

o = L1 L gl

For Policy III, Buzacott and Shanthikumar (1980) has established that the

following is a good approximation.

X
Pn(}_) = PRn _ﬁ) Pn_l(ﬁ)a n=1,2,...,%;
A

P (x) = 50— P (x), n=Z+1,742,...;
n = PRZ(_)_c_) n-1"= > 7

Z-1 n yA PR_(x)

: \ A A 7= -

PG =1+ ) {) Joar T

n=l i=1 PR (_)_{_) i=1 PR (z) PR (x)-A
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Let M(n)/M(n)/1 be a birth-death queueing system with state-dependent
arrival rates \ = (AH)E and state-dependent service rates p = (un)ﬁ. Also,
let Fn(éﬁg) be the steady state probability that the number of parts in the

system is less than or equal to n. Then:

n ©
Fn(A,g) =) ;)r(by_) /) prQ\_,_), (8)
r=0 r=0
where po(ﬁgﬁ) -1
r A,
o (L) = 1 —=L o0, (9
== ey owg

The results (5), (6), and (7) are special cases of (8) with:

s A
n

1

A (n=0,1,...) and My = PRn(z) (n=1,2,...) for Policy I;

A

n = A (a=0,1,...,72-1), Xn =0 (n=Z,72+1,...), and uoo= PRn(x)

(n=1,2,..,) for Policy T1I1;
» and Xn =X (n=0,1,.4.), W= PRn(i) (n=1,2,...,72), and W= PRZ(E)

(n=Z+1,7Z+2,...) for Policy TIIL.

Now, taking the partial derivatives of (8) with respect to Xr and o

one can see that:

—a——Fn(L’_)_SO ’ r=20,l,e00 X
A (10)
r
and —é_.Fn(ﬁﬁE) 20, r=1,2,...
Bur

for n = 0,1,2,.¢.. The next Lemma then immediately follows from the equations

of (10).

Lemma 3: Let (M(n)/M(n)/l)i be a birth-death queuelng model with arrival rates

A, = (Xi )n=8 and secvice rates p, = (u, )nQT, for i = 1land 2. IfX > A
= n —i in : 1— 2

and Ed S-EQ’ then



A A =
Fn (._1, EI)S‘FH( ’P_z), Ilo,l,....

Combining Theérem 1 and Lemma 3, one obtains the following.

Theorem 4: The number of parts in the types of FMS under cousideration, under
any of the above three input control policies, is stochastically minimized by

balancing the workload on all machines.

Note thet the statement of Theorem 4 is heuristic for Policy ITI, since
in this case, it is the approximation, which was given by equation (7), that is

used to obtain the result.

5. CONCLUSTONS

In this paper, we have established the superiority of balancing workloads
in flexible manufacturing systems utilizing no pooling, both to stochastically
minimize the number of parts in the system as well as to maximize the expected
production. Three policies to control the input of parts into the system are
considered. There is a Poisson arrival process to a finite or infinite common
input buffer area, exponentially distributed service times, Markovian part
transfers from machine to machine, and an ample buffer at each machine.

The optimality of balanced workloads is established with the constraints

M
of single machine work centers and Z X is a constant. When these condi-
tions are relaxed, the balanced 1oas=ieed not be optimal. On the other hand,
for similar systems, but with unbalanced pools, expected production is maxi-
M

by an unbalanced load, again with the constraint that -X X, is a constant.
(See Stecke (1981) and Stecke and Solberg (1985).) =

Yao (1984a,b) and Yao and Kim (1984) have obtained similar balancing

results for cases where the above two coatraints are relaxed. For example,
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they show that balancing maximizes expected production when thecre is pooling
but with the same number of machines in each group. This is also observed in
Stecke (1981) and Stecke and Solberg (1985).

Empirical studies using both simulation and approximations are currently
underway to extend these results to more general cases.

Additional work is required to implement a balancing workload objective
over time. The FMS balancing problem is different than that of a flow shop
or job shop in several ways. A flow shop is balanced once, during its design.
At the other extreme, it's very difficult to balance a job shop. Usually the
work is given, to result in one particular bottleneck machine type, which
changes over time.

An FMS can produce in unit batch sizes. There are planning decisions to
be made that impact balancing (or unbalancing). These include: selecting the
part types to be produced next; determining the ratios at which these part
types are to be produced; allocating pallets and fixtures among the part types;
determining the minimum number of pallets required ia the system; loading tools
and assigning operations to machines; determining the appropriate input
sequence into the FMS; and finally, the actual scheduling of parts through the

system. More information concerning what these problems are for an FMS can be

found in Stecke (1983, 1985).

Some models that can be used to address these problems are overviewed in
Suri (1984). An efficient algorithm to determine the most balanced alloca-
tions for the types of FMSs considered in this paper is provided in Berrada
and Stecke (1985). The algorithm also applies to systems of pooled machines, .

when each pool contains the same number of machines. Extensions to unbalanced

2
v

groupings (hence unbalanced loadings) are underway. 1In any case, further
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research is required to discover methods to address all of the above-mentioned
;
problems in order to implement either balancing (or an unbalancing) operational

objective.
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