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1. INTRODUCTION

We take the point of view that analyzing and forecasting a
time series are interrelated activities. One uses time series
analysis as an important model building strategy whereby intuitive
ideas about the underlying time series data are translated into an
appropriate forecasting model.

Two major approaches to time series analysis are available.

One, which we will call components analysis, regards the time series

as being composed of several influences or components which are
generally taken to be trend and cyclical, seasonal, and irregular or
random movements. Oftentimes in this approach, trend and seasonal
influences are modeled in a deterministic manner; trend may be re-
garded as a polynomial of a given degree and the seasonal component
may be modeled by a trigonometric function with given period and
amplitude. Random influences are usually assumed to have a simple
probability structure, i.e., they are treated as independent, iden-
tically distributed random variables having zero mean and finite
variance. Because of the simple role of probability in this approach,
estimation of the trend and cyclical component, as well as the sea-
sonal component, is carried out using fairly simple filtering proce-

dures such as differencing, forming moving averages, considering



ratios involving moving averages, and others rather than by using
parametric statistical estimation procedures.

The other major approach is to regard a time series as an
observed sample function representing a realization of an underlying
stochastic process. A stochastic process can be stationary or non-
stationary; it can be a moving average process, an autoregressive
process, or one which involves both autoregressive and moving aver-
age terms. Moreover, associated with a stochastic process are the
mean and autocovariance functions, the autocorrelation function, and
its power spectrum. When two or more processes are considered,
their cross-correlation functions, cospectra, and other characteristics
may be examined. This injects a full array of probabilistic concepts
and methods into time series analysis and forecasting. The more
elaborate probability framework permits a more complete consider-
ation of statistical estimation than is generally considered in compo-

nents analysis.

2, COMPONENTS TIME SERIES ANALYSIS
The components of a time series can be assumed to be .
combined additively, multiplicatively, :ori some mixture of the two.
Thus we can speak of additive, multiplicative, or mixed models.

Specifically, if TC(t) indicates the trend-cyclical component, S(t) the



seasonal, and ¢t) the random component, an additive model is given

by

(2.1) Y(t) = TC(t) + S(t) + &(t),

where Y(t) denotes the observed data. A multiplicative model is
(2.2) Y(t) = TC(t)S(t)é(t),

and an example of a mixed model is

(2.3) Y(t) = TC(t)S(t) + &(t).

For purposes of forecasting: with a components model, one
approach is to estimate the components of Y(t) appropriately, and use
these estimates to obtain a forecast ?(H’r) of the expected value of Y(t)
repériodshaheadasdollows ! If TC(t) and 5(t) are estimates of TC(t) and

S(t), respectively, then the T periods ahead forecast of Y(t) is taken as
(2. 4) Y(t+1) = TC(t+ 1) + S(t+1)

in the additive model or as

(2. 5) Y(t+T) = TC(t+ DS (t+ T)

for either the multiplicative or mixed model.

1The forecast of the expected value of Y(t+T) is often called the
forecast value of Y (t).



To determine prediction intervals for ?(H T) a study of the
random component &(t) would be required. For example, if the random
component were considered to be a disturbance term which from period
to period could be assumed to be independent and identically distributed
with zero mean and unknown variance, an estimate of this variance as
well as T/.\C(t) and §(t) would be necessary.

Methods of estimating components vary from simple ad hoc
specification to elaborate computer-based manipulations of the data.
Detrending methods illustrate this variety very well. Among the
simpler methods is the calculation of first or higher-order differences
of the data. The order of differencing used corresponds to one's per-
ception of the trend as represented by a polynomial of given degree,
and one might use the variate difference method to estimate the degree
of the polynomial representing the trend and cyclical component.

Other detrending procedures involve using a moving average as well
as polynomial regression.

A wide variety of deseasonalizing procedures is also available.
These range from manipulation of moving averages, such as the Census
II method and its variants, to regression analysis using dummy variables,
to more sophisticated harmonic and spectral analyses.

Developing suitable estimates of these components is a deli-

cate problem in time series analysis and these estimates obviously



influence whatever forecasting model is developed subsequently. Unfor-
tunately, from a forecasting point of view, the methods of statistical
estimation of these components are inadequate at the present time.
Rigorous definitions of trend and seasonal influences have not been
developed. Yet another difficulty is that some widely used procedures
for separating one component from a time series have been shown to
separate parts of others as well. Moreover, a circularity in esti-
mation is present in some procedures. For example, if one wishes
to estimate the TC(t) component, a standard method is to estimate

the seasonal component and deasonalize the déta, producing a time
series consisting of TC(t) and é€(t). Unfortunately, in order to esti-
mate S(t) one must make an initial assumption concerning TC(t).
Therefore some implicit detrending of the data is present in the pro-
cess of attempting to estimate TC(t), thus:; producing an evident cir-
cularity in the procedure.

Despite important shortcomings, which include lack of rigor-
ous definitions for TC(t) and S(t) and the fact that many unresolved
inference problems remain, components analysis continues to occupy
an important place in time series analysis. The literature is large
and for over 70 years has received wide attention in both theoretical
and applied fields. Our survey is largely directed to time series

analysis in a probabilistic framework and we do not give a full treatment



of components analysis here. However, as the reader will see, one
is not entirely free of some form of components analysis and the brief

discussion above is useful in the material that follows.

3. TIME SERIES DATA AS A STOCHASTIC PROCESS

A stochastic process can be viewed as a family of random
variables {X(w,t) } defined on an appropriate probability space (& ,‘f, P)
where wef and the index t belongs to a set T. Here Q denotes a sample
space, —f is a 0-field of events associated with Q, and P is a proba-
bility measure.

For all purposes in this paper, the set T is either an infinite
subset of the set of integers or is an interval on the real line. When-
ever T is a countable set we say that the stochastic process is a

discrete parameter process; otherwise we say it is a continuous

parameter process.

For an alternate view, suppose that ( is a fixed point in Q.
If we treat the corresponding values of the random variable X(w, t) for
the fixed @ as a function of t, then we arrive at the concept of a

sample function of the stochastic process {X(w,t)}. We suppress

explicit reference to ( in this case, simply using X(t) to denote the
sample function.
A realized (observed) sample function is called a time series.

Thus by means of this approach and through appropriate statistical



analysis and estimation applied to time series data, it may be possible
to make inferences concerning important properties of the stochastic
process generating the data. These properties also provide a basis
for the development of forecasting models, as will be discussed in

later sections.

4., CLASSIFICATION OF STOCHASTIC
PROCESSES AND RELATED CONCEPTS
Associated with either of the points of view in the previous

section are the families of finite dimensional distribution functions,

Flx), © 00 xpity, o b= PX(E) Sxp, oo, X(E

where {ty, -+-, ty} is any finite subset of the index set T. If it turns

out that these families of distribution functions satisfy the condition

that
(4. 1) F(Xl’ ceey Xty e, ty) = F(Xl’ "ty Xps tyth, cee t,th)
for any displacement hiof t{,t, <, 'tp,t. then the stochastic process

is said to be a strictly stationary stochastic process.

Relating this important concept to the sample function inter-
pretation, we observe that if a time series displays a pronounced trend

that persists over a long period of time, the distribution functions



could not satisfy the condition (4. 1) and one would in this case say that
the underlying stochastic process is not strictly stationary.

Using the family of distribution functions introduced above,
we define the mean function of a stochastic process as

(4.2) M(t) = T xdF(x;t) = E[X(t)].

- CO

The variance function is

00

(4.3) V() =5 (x(t) - M()2dF(xt) = E[(X(t) - M(¥)

=00

2

]

and the covariance function between X(t;) and X(t,) is given by

(4.4)  Cltpta) = £ f (x-M(t))(xp-Mlty))aF(x), 35381, t)

00 =00

= E[X(t;)-M(t)) (X(tz)-M(t,) ]

Note that when t, = t, =t we get C(t, t) = V(t).

1

The correlation function between X(tl) and X(tz) is

“s o)

It is obvious that when a stochastic process is strictly sta-
tionary we have M(t) = M(tth) and V(t) = V(t+h), since F(x;t) = F(x;t+h).
Thus the mean M(t) and the variance V(t) of a strictly stationary pro-

cess must be constant and cannot depend on t. In addition,
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C(tl, tZ) = C(tl+h, t2+h)
and

since F(Xl, X5t ty) = F(Xl’ xz;t1+h, tyth). Furthermore, taking

t; =t-handt, =t gives

(4.6) C(tl,tz) = C(t-h, t) = C(t, t+h) = C(h)

and we see that for strictly stationary processes the covariance is a
function of the displacement h alone. Moreover, if we let h = 0 in

(4.6) we get
C(0) = C(t, t) = V(t) = V(0),

since in the strictly stationary case V(t) is a constant. A similar

argument shows that
p(tl: tz) = D(t"h: t) = p(t: t+h) = p(h)'

In this case the functions C(h) and p(h), regarded as functions of h,

are called the autocovariance and autocorrelation functions, respec-

tively.
An important class of stochastic processes, less restricted

than the class of strictly stationary processes, is that of covariance
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stationary processes. These and other still less restricted classes
are oftentimes of interest in time series analysis.

A stochastic process is said to be stationary in the mean if

the mean function M(t) = E[X(t)] is a constant (and does not depend on

t). A process is said to be covariance stationary (or stationary in the

wide sense) if
C(t, t+h) = E[(X(t) - M(t))(X(t+h) - M(t+h))]

is a function of the displacement h only.

This condition in turn implies that M(t) = E[X(t)] and
V(t) = E[(X(t) - M(t))z] are constants, neither depending on t. In other
words, covariance stationarity implies stationarity in the mean and

stationarity in the variance.

5. POWER SPECTRA AND COVARIANCE STATIONARY PROCESSES
We have seen that when a stochastic process is covariance
stationary its autocovariance function depends only on the displacement
of t. The covariance function C(k) of a discrete parameter covariance
stationary process regarded as a function of the displacement k is a
positive semi-definite function. Thus it can be represented as a Fourier
transform of a uniquely chosen nondecreasing function G(A),

1/2
(5. 1) Ck) = J cos2mkAdG(})
~1/2
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where 0 £ A £ 1/2. In this context, one refers to A as a frequency
since the function cos2m)x has period 1/ and frequency 1/1/A = A.

For continuous parameter stochastic processes which are
covariance stationary, the covariance function C(h), regarded as a
function of h, is also positive semi-definite and can be uniquely
represented as a Fourier transform

(5.2) C(h) = [cos2mhAdG(A)
0

where G(A) is a uniquely chosen monotone nondecreasing bounded
function and where 0 £ A & », In either the discrete or continuous

case the function G( )) is called the spectral function. Expressions

corresponding to (5.1) and (5.2) are available for complex valued
covariance stationary processes, but our discussion is here limited
to real valued processes only. These important results are conse-

quences of Bochner's theorem.

[ee]

Moreover, in the discrete parameter case, when 1 lC(k) |

F=00

converges there is a continuous spectral density function, sometimes

called the power spectrum,

[eo]

(5. 3) g(1) = 2C(0) + 4 kz (k)cos2mk \.
=1

This function has as its domain the frequencies which are associated

with the corresponding autocovariance function, i.e., 0 £ X £ 1/2.
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This sometimes can be emphasized by saying that the function g(}) is
defined over the frequency domain.

oo}

In the continuous parameter case, when [ IC(h)i dh converges,
- 00

there is a continuous spectral density function or power spectrum

(5.4) g(A) = 2C(0) + 4 S C(h)cos2m Ahdh.
0

The results (5.3) and (5. 4) are special cases of the more general
Fourier inversion theorem and they permit one to obtain the spectral
density function from the autocovariance function.

Since the function cos2TAh is symmetric about X = 0, while
C(k) = C(-k) for integers k and C(h) = C(-h): for-heabnumbers-:
h, some writers define the power spectrum as

00

p(A) = C(0) +2 % C(k)cos2mk] -1/2¢ X 21/2
k=1

for discrete parameter processes or

p(A) = C(0) + 2/ C(h)cos2mAhdh - < )
0

IN
8

for continuous parameter processes instead of (5. 3) and (5. 4),
respectively. The range of frequencies has been extended so as to
include negative integers in the discrete parameter case and negative

real numbers in the continuous case, the ''power' assigned to the
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frequency being one-half that in (5. 3) and (5.4), i.e., p(A) = 1/2 g(|A]).
The preceding discussion provides a dual characterization for

the probabilistic properties of covariance stationary processes as they

can be examined either in the time domain using the covariance or auto-

correlation functions or in the frequency domain through the analysis

of the power spectrum. This duality between the time and frequency

domains is extremely important for time series analysis and fore-

casting.

6. MOVING AVERAGE PROCESSES AND SOME EXAMPLES
Consider a sequence Tg(t) of mutually uncorrelated random
variables having mean 0 and unit variance and where t = 0, fl, ta, ..

(such a sequence is called white noise); then

(6. 1) Z(t) = bye(t) + bye(t-1) + <+« + bye(t-q),

where b0 # 0 and bl’ T, bCl are arbitrary (real) constants, is called

a discrete parameter moving average process of finite order q and is

denoted by MA(q). For our purposes, when by, by, *** is an infinite
>2

sequence for which I b. < = we define the process
j=0

(6.2) Z(t) = bye(t) + by gt-1) +---

to be a discrete parameter moving average process of infinite order.
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The mean function of a moving average process of order qis

E[Z(t)] = E[boe(t) +bye(t-1) + -+ + bqe(t-q)]

—_—
o
w

~

=2
o
~

11

= bOE[sﬁ)]+'b1E[eﬁ-l)]+""+quI€&-qH==0
since E[g(t)] = 0 for every t. The variance is
(6. 4) qw:Vumowg+mqbn4~--+%qu@]

= bgVar[e(t)] + b2Var[e(t-1)] + - - - +-b3Varﬁnt-qu

b2,
0

Il ™M 0

J
and the autocovariance is

q q
(6.5) Clt,. t)) = E[Z(t; 2]=E[(igobie(tl-i))(jgobje(tz-j))]

= E[Z JZble[a 1-i)elty- -i)]

= & PojbiE[(e(t)-i)e(ty-j)]

i

When ty =t and tp = t+k, recalling that the e(t) have unit variance and

are uncorrelated, we find that

(6. 6) C(t, t+k) = §§q%Ekwﬂqun]
q-k
=2 b;bjp 0fksq
i=0

=0 k >q.
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Since C(k) = C{t, ttk) depends only on k, the MA(q) process is covariance
stationary.

The autocorrelation function for the MA(q) process is

q-k
(6.7) p(k)=$§§;:1‘ 0fksq
1 2
L b;
i=0
and the power spectrum is
Q , q gq-k
(6.8) g(A)=2[% b]+4 % [.Zobink]cosZﬂk)\ 0srt1/2.
i=0 k=1 1=

Clearly, when we consider an infinite order discrete moving

[o0)

average process (6.2) for which I bj <o then Z(t) will be a co-
j=0

variance stationary process with mean M(t) = 0, variance

[os]

C(0) = V(0) = .Zobjz , and autocovariance C(k) = 1'*20 b;b; 41
j= 1=

These concepts can be illustrated by using the MA(3) process

(6.9) Z(t) = e(t) + .5 dt-1) +.25¢(t-2) + . 125¢(t-3).

I ™MW

2
The mean is 0, of course, and C(0) = ' bi = 1.328125, C(1) =
1....

bgb] + byby + bybs = . 65625, C(2) =.3125, C(3) = . 125, while

0
C(k) = 0 for |k| >3. For this process 0) = 1, p(1) = .50, p(2) = .23,
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and (3) = .09 while p(k) = 0 for | k| > 3. The autocovariance and
autocorrelation functions are shown in Figures 1 and 2. Values for
negative k are plotted since these are symmetric functions.

The power spectrum for this process is

0

2C(0) +4 £ C(k)cos2mkA
k=1

1

g(A)

2.65625 + 4[(. 65625)cos2T A

+ (. 3125)cos4mA+(. 125)cosbm A],

2.65625 + 2.625cos2mA+ 1.25cos4m)A+ .50cos6TA.

and is shown in Figure 3.

Returning to the moving average process of finite order q,
when the finite dimensional distribution functions of the disturbance
terms €(t) are multivariate normal, Z(t), as a linear combination of
jointly distributed normal random variables, must itself be normally
distributed (the sequence of random variables €(t), €(t-1), ---, € (t-q)

in this case is sometimes referred to as Gaussian white noise).

Therefore, the finite dimensional distribution functions for the co-

variance stationary process Z(t) are given by

(6'9) F(Zl:..'; Zn;tlgn..:tn):
Zy Zn
1 -1/2
{Oo.-. _oj; ——(Zﬂ)n/ZIZ(tl’O-.’tn)l

4 -1 T
e_1/2z by (tl, , tn):z <flzl dzn
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I\
1 o=
; 4
t | }
3 ) -1 0 1 3

Fig. 1. Autocovariance Function for the MA(3)
Process (6.9).
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Fig. 2. Autocorrelation Function for the IMA{(3)
Process (6.9).
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6:40

5.60

GO\

.00 .10 .20 .30 .50
} .

Fig. 3. Power Spectrum for the MA(3)
Process (6.9).
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where z is the 1 by n vector

z = [Zl’ Ty oz
and Z(tl, ***, ty) is the n by n variance-covariance matrix of the
random variables Z(tl), sy Z(ty),
Z(tl, y ty) =
Clt,, ty) C(ty, ty)

We have seen that for an MA(q) process C(t;, tj) = C(t; tk, tj+k),
so the variance-covariance matrix depends only on the displacement
k, i.e.,

Z(tl, ct t = Z(tl'l'k, L tn'l'k),

it follows that when the random variables €(t) are multivariate normal,
F(Zl’ e Zpi bty tcaty) = Rz, e e,z btk e, tytk)

and the MA(q) process is strictly stationary as well.

More generally, it can be said that when the families of
finite dimensional distributions of a stochastic process are multi-
variate normal, covariance stationarity of the process implies strict

stationarity.
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7. AUTOREGRESSIVE PROCESS
Frequently in economic and other applications, it is natural
to regard the current value of the time series as being influenced by
the lagged values of the process together with a random disturbance
term ¢€(t) which does not depend on the lagged values. Such a process

can be written

(7. 1) aOZ(t) + aIZ(t-l) toeee + apZ(t—p) = g(t)

where ag # 0, a;, ***, a. are real constants and glt) for t =0, T 1, ’_"2,' o
0 1 P

are uncorrelated random variables having mean 0 and unit variance
(i.e., white noise). The process (7.1) is called a discrete parameter

autoregressive process of order p and is denoted by AR (p). From

(7. 1) we easily obtain

(7.2) ayZ(t) = @ Z(t-1) + €yZ(t-2) + -+ + €pZ(t-p) + €(t)

where ’c‘j = - aj, j=1, *++, p, which displays Z(t) as a weighted sum
of the lagged Z(t-j) and the disturbance for period t. The equation
(7.2) indicates why the process (7. 1) is called autoregressive -- the
lagged terms in (7. 2) play a role that is analogous to explanatory
variables in standard single equation regression analysis.

One cannot easily determine the mean, variance, and co-

variance functions of the process (7. 1) as was the case for the MA(q)
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process because we do not know the joint distribution of the random
variables Z(t-j); only some properties of the disturbances ¢ (t) are
known in (7.1). Thus it is natural to ask if Z(t) can be expressed only
in terms of the random disturbances g(t), e€(t-1), +++, and under what
conditions this is possible. To this end consider (7. 1) for t-1, t-2

t-v, v :<p,
71

agZ(t-1) +ajZ(t-2) + + -+ axZ(t-pr1) =(ig(tr 1)

agZ(t-2) + ayZ(t-3) '+ h  ZZ(E-PE2) =(ie(ts2)

Z(t-V) t ajZ(t-v-1) + -+ 4+ apZ(t—p—\)) = g(twv)

%0
Now upon multiplying (7. 1) by by # 0 and each of the above equations

by by, by, -, b,,, respectively, we obtain the system of equations

agbgZ(t)  +abyZ(t-1) 4+ +a byZ(t-p) = bye(t)

agb1Z(t-1) +arb)Z(6-2) 4+ +a b Z(t-p-1) =

I
o
p—
- M
—_
o
1
—
~

aova(t-\)) tabyZ(t-v-1) +--. + apb\)Z(t-p—\)) = bye (t- v)

Adding these equations together and transposing to the right hand side

those Z(t) beyond v periods in the past gives

\Y \Y
(7.3) 2 d:Z(t-j) = L b.e(t-j) + Ry (v, D)
j=0 j=0
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where

j

v .
dj = kZ:0 aj+k-\)b\)—k j=vil, vt2, 0, v + (p-V)
ptv
9 - kij 3k-v Putj-k j=ptl, ptz, ", phv
and where the remainder term is
ptv
Ry(v,p) = - I djZ(t-j).
j= W1
For example, for j=1, *++,v we get
d0 = aObO
d1 = aObl + albO
(7.4) d, = agby tab; + a.zbO
d\) = alb\) + a,lb\)_1 +ooen +aL\)bO

Clearly, Z(t-1), Z(t-2), -+, Z(t-Vv) will not appear in (7. 3) when

]
(7.5) 4= I abik=0, =120, v.

When this is the case we have
AY)

(7.6) dgZ(t) = 'Zobjs(t-j) + Ry (v, p)
J:
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which expresses Z(t) as a weighted sum of the random disturbances
for the immediately preceding V periods and a weighted sum of the
Z(t) for past periods beyond V. Now as v increases,{(7-6) indicates
that Z(t) is influenced by successively more disturbance terms,
together with a weighted sum of previous values of the time series
for successively more remote periods of time. Consequently, in the
limit we obtain
d,Z(t) = EJ bj g(t-j) + Ry ()
j=0
where
Rg(®) = lim Rg(v, p).
T>o0
vip
For purposes of analyzing economic time series the
"infinitely remote past history' reflected in RZ(oo) can be assumed to

be unimportant. If these influences are ignored we arrive at the

representation
co
(7.7) aOZ(t)— b} bji-:(t—J)
j=0
or, when ay = 1,
o]
(7.8) Z(t) = I b, e(t-j)
J:O J
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and we have Z(t) expressed as a moving average process of infinite

order.

(o]

Under the condition that Z b
j=0
section that the mean function of the autoregressive process (7. 1) is 0,

jZ < ® we know from the previous

o0}
its variance is C(0) = X b.z/a%, and its autocovariance function is

j=0
5 2
Ck) = Z bibi+k/ao' The power spectrum of the process is
i=0
o 2,2 s
(7.9) g(l)==Z[iFObi/a0]+-4kfz[:ilbﬂﬁ+k/a%]cos2ﬂkk.

To complete this discussion we should consider how the bj in
(7.8) can be obtained from the a4 in (7.1). One way to proceed is to
use the equations in (7.5). For example, if j = 1 we obtain b1 from

the condition aObl + albo =0 as

a1bg

This direct recursive procedure becomes extremely involved, however,
and infinitely many equations must be solved.
An alternate method for determining the bj is to use the

generating functions:
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Alx) = T apx B(x) = £ bpxK
k=0 k=0
Now
(1.10)  AM®B(x) = ( I a,x( I bx) = 3 djxj
k=0 k=0 =0

where dj are given in (7. 3). If dj =0 for j 2 1, we have
(7.11) A(x)B(x) =d, = apb

Conversely, if (7.11) holds for all x, this requires that dj = 0 for

j% 1. Thus we can say that the equations (7. 5) are satisfied if and
only if the product of the generating functions gives A(x)B(x) = agbg-

If this is the case, we get

so that B(x) is a ratio of two polynomials. As a rational function,
the coefficients bj of B(x) can be obtained from the partial fraction

expansion of B(x). For example, suppose that A(x) has p distinct

roots iy oo xp;rthen the partial fraction expansion of B(x) is
p —
(7.12) B(x)= L Ak(xk - x)
k=1
(o]
Recalling that B(x) = X bkxk, we can differentiate B(x) successively
k=0

and evaluate these derivatives at x = 0, getting
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(7.13) 5% (0) = jiby j=0,1,2,""",

But since B(x) has the representation (7. 12), successive differentiation

of the right-hand side of (7. 12) gives

P p
X

"_[ z Ak(Xk'X)-1]= a
dx) k=1 k=1

1AL, - %) Gt

Therefore, upon evaluating these derivatives at x = 0, since

; g P i
W)= <+ : Al =%t -
dx) k=1
x=0
we obtain
P .
. . -(j+1)
jlb: = ¢ jlA x
bty Kk
or
A A A
(7.14) b. = l + 2 +"‘+—,—R—: j:O,fl,Z:"‘:
] 1l XJ+1 <itl
1 2 P

Thus to determine the bj in (7. 4), instead of solving infinitely many

equations recursively, we need only obtain the roots of the polynomial

A(x) and use (7. 14) to determine the required coefficients bj in the

infinite order moving average representation of the underlying auto-
regressive process. Moreover, even when the roots of the polynomial

A(x) are not distinct a similar representation for the coefficients bj

can be obtained.
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More importantly, the above discussion gives an insight in-

to the stationarity of the autoregressive process. We have seen that
(o]

an AR process is stationary provided that bli <« Suppose one of
k=1

the roots x satisfies ]xll > 1; then from (7. 14) it can be seen that

IJH = 0. In other words, the AR(p) process is

| bj | + » since limlxi

covariance stationary if and only if the roots of the polynomial A(x) all

li'ez outside the unit circle.

The autocorrelations associated with a covariance stationary
process satisfy an important set of relationships called the Yule-Walker

equations. These are obtained by multiplying (7. 1) by Z(t-k) for k > 0,

1

(7 i5) Z(t)Z(t-K) + -+ +a_Z(t-p)Z(t-K) = € (t)Z(t-k).

ao P

Upon taking expected values we get
(7. 16) aOE[Z(t)Z(t—k)] oo 4 apE[Z(t-p)Z(t—k)] = E[e(t)Z(t-k)].

Since k > 0, Z(t-k) refers to a past period whereas ¢(t) is the current
disturbance, so g(t) and Z(t-k) in this case are uncorrelated and we
have E[e(t)Z(t-k)] = 0. Also, since C(k) = E[Z(t)Z(t-k)], we see that

(7. 16) becomes
(T.17)  agCl) +a;Ck-1) + -+ +a Clk-p) =0, k>0,

This system of difference equations involving the C(j) can be used to
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characterize the autocorrelation function of a covariance stationary

AR (p) process since if we divide (7. 17) by V(0) we obtain

(7. 18) ag plk) +ay p(k-1) + -+« +a, p(k-p) = 0.

The latter system consists of the Yule-Walker equations and they play

an important role in estimation using data from given time series.
Moreover, when the autocorrelation function is given, we
can regard the system (7. 18) as determining the coefficients a.j in the

autoregressive scheme (7.1). This system can be written in matrix

form as
(1 o) o1-p) | [ a, ] fo
%2
. g
p (p-1) 1 a p(p)
- I N I
For example, for the AR(1l) process where ay = -1 the system (7. 19)
becomes
[1]1[ap())] = [p(1)]
or
a (1) = o),

where a;(1)is intended to indicate the order of the corresponding auto-

regressive process. For an AR(2) process where ag = -1 the system
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becomes
1 p(1) aq(2) (1)
p(1) 1 a,(2) p(2)
we get
-1
2,(2) 1 p (1) p(1)
a,(2) p(1) 1 p(2)
and finally
2 2) = 2U) - _P(1)p (2)
1- [o()]
0(2) - [p()]
a,(2) = >
1-[p(1)]

Continuing in this fashion the coefficients aj of the AR (p) process
(7. 1) can be considered as functions aj (p) of the order of the auto-
regressive scheme.

In this interpretation the al(l), az(Z), T, ap(p) are

called partial autocdrirelations. ciWe wilMrefer to these cOncepts "

again in@ilater. sectionzclion.

8. AUTOREGRESSIVE MOVING AVERAGE PROCESSES
In the AR(p) process (7. 1) the random disturbances e (t)

are assumed to be uncorrelated random variables with mean 0 and unit
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variance. The probability structure of these disturbances is so simple
that it is natural, especially in economic time series where the dis-
turbances are not uncorrelated from period to period, to consider
more general propertiesifor.theldisturbancerorcerroriterms. Accor-
dingly, we replace the error terms €(t) in (7. 1) by a moving average

of order q and obtain the autoregressive moving average process,

denoted ARMA(p, q); namely,

(8. 1) aOZ(t) ta Z(t-1) + -+ + apZ(t-p) =

1
boe(t) +bae(t-1) + -+ + boe(t-q).

Two questions immediately arise: are these processes
stationary? What are their means, variances, autocovariances, and

autocorrelations? To consider the first question, rewrite (8. 1) in the

form

(8.2) 2gZ(t) +a  Z(t-1) + -+ + a,Z(t-p) = e¥(t)
where

(8 3) E*(t) = bO €(t) doeee A+ bq s(t-q).

Now whenever the right hand side of (8. 2) is a covariance stationary
process (as is the case for a MA(q) process) the arguments given in
the preceding section establishing the covariance stationarity of the

AR (p) process will also establish the covariance stationarity of (8. 1).
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In other words, under the assumption that the disturbances or errors
are covariance stationary, (8.1) will be covariance stationary provided
the roots of the polynomial A(x) referred to in the previous section lie
outside the unit circle.

Returning to a consideration of the second question posed
above, if we use the ARMA(p, q) process (8.2) and the arguments of
the previous section we see that we can express Z(t) in the form

: ®
(8.4) 2 Z(t) = E b;"e*(t—j),

j=0

where ¢*(t) is given in (8.3). From the representation (8.4) we see
that the mean function of the ARMA(p, q) process is M(t) = 0. The
variance, autocovariance, and autocorrelation functions can be ob-
tained explicitly but each would be more lengthy than those we dealt
with earlier because one must account for the fact that the € *(t) are
no longer uncorrelated random variables.

An alternate characterization for these functions can be
developed implicitly using a system of difference equations that they
must satisfy. To obtain this system, multiply (8. 1) by Z(t-k) for

k 2 0, getting

(8.5) Z()Z(t-k) + ag Z(t-1)Z(t-K) + <+ + 2 Z(t-p)Z(t-k) =

a0

by E(t)Z(t-k) + by e(t-1)Z(t-k) + =+ + by e(t-q) Z(t-k).
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Upon taking expectations we obtain

(8.6) agE[Z(t)Z(t-Kk)] + a E[Z(t-1)Z(t-K)] + -+ + apE[Z(t—p)Z(t-k)] =

bOE[s (t)Z(t-k)] + biE[e(t-1)Z(t-k)] + -+ + qu[e (t-9)Z(t-k)].

Since Z(t) is correlated with €(t), e(t-1), +--, e(t-q), the cross-
product expectations involving Z(t) and €(t) beyond the current period
are not necessarily zero as is the case for the AR(p) model. These

expectations are called the cross-covariance which we denote

C ¢z (-1) = E[e(t-1)Z(t-j)],

and, when j = 0, we get

Note that when i <j we have C¢5(j-i) = 0 because we are then dealing
with Z(t) for values of t previous to the time of the given disturbance and
in this case the Z(t) and e(t) are uncorrelated. Also, when i zj,

C(j-i) will not be zero.

Using this notation, (8.6) can be written for k 2 0 as

(8.7 agClk) +a;Clk-1) + -+ +a Clk-p) =

byCez(k) + b Cey(k-1) + -+ + b C gy (k-q) .

For example, takingk =0, 1, 2, -+, q successively in (8.7) we obtain
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aOC(O) +a1C(l) oo +apC(p) = bOCEZ(O) b Cer(-1)+- .-
+qu€Z(—q)
aOC(1)+a1C(2)+~ . +apC(1—p) = blCEZ(O)+b2C€Z(-l)+- .

+ qu€ 7(1-q)

(8-8) 2y C(2)+a C(3)+:++ +a,C(2-p) = byC¢(0) +b3C (1) 4 -

+byCey(2-q)

2gC(q) ta;C(q-1)+- - +apC(q—p) = qu e7(0).

Whenever k > q, we get

(8.9) aOC(k) + aIC(k+l) +oeee + apC(k-—p) =0

since in this case all cross-covariances appearing on the right-hand
side of (8.7) are zero.

The system of difference equations represented in (8. 8) and
(8.9) implicitly defines the autocovariance functions. Thé autocorre-
lation functions p(k) satisfy the same system of equations and are also

implicitly defined by means of them.
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9. SIMPLE EXPONENTIAL SMOOTHING FORECASTING MODELS

Suppose a components model for a time series is given by

(9. 1) Y(t) = TC(t) + e(t)
where
9.2) TC(t) =55 + 8.t + - +sqtq:P(t)

and where Sj i(s real, sq # 0, and e(t) is an irregular or random com-
ponent representing uncorrelated random variables with mean zero.
That is, we have an additive model in which the trend-cyclical compo-
nent is assumed to be a polynomial of order q. One wishes to esti-
mate P(t) in order to develop a forecasting model.
When the errors e(t) are uncorrelated with mean zero and
constant variance og, given observations on Y(t) for time periods
0, 1, -+, t (we call the first period for which we have observations
time period 0 and denote the current period by t), then the 55 in
(9.2) could be estimated by ordinary least squares, the estimates 8
being determined so as to minimize
t
(9.3) p (Y(e-j) - P(t-i)°
j=0
More generally, in order to develop estimates s. of the coeffi-
cients in (9.2), when the variances of the errors or disturbances are

not constant from observation to observation, we can minimize the



- 36 -

weighted sum of squares

t 2
(9.4) g —i— (Y(t-j) - P(t-j)7,

where

o?(t-j) = Ee?(t-7)].

These are standard procedures and if in addition the errors are
normally distributed, maximum likelihood estimators can be obtained
and the conventionallarge sample inference procedures would be avail-
able as well.

For many economic time series the variances of the error
terms decrease as one approaches the current time period. If this
were not the case and the variances were increasing in time, fore-
casts for future periods, even those for one period ahead, would be
virtually useless in practice because they would be anticipated to differ
so widely from the actual future values for the time series.

Returning to the components model (9. 1), it is therefore natural
to think in terms of discounting previous observations of Y(t) more
heavily than the current observation, or equivalently, to think in terms
of discounting previous errors more heavily than the current error. A
convenient way of doing this is to assign weights which decrease as a

geometric sequence,

(9. 5) B0, gl, B2 ... gt
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In this case the components model can be considered as
(9.6) Y(t-j) = P(t-j) + e(t-j) j=0,1,:--,t

where it is assumed that the e(t-j) are uncorrelated with mean zero
but have variance proportional to B_j forj=1, 2, ---, t, say

GZ(t-j) =1/0 2 Bj, where 02 is a constant of proportionality. Since
the variance is no longer constant we multiply (9.6) by 1/0 (t-j), ob-

taining

(9. 7) (t-) -
J

which we can write as
(9. 8) Y#(t-j) = PX(t-j) + €(t-j),

where the g(t-j) are uncorrelated with mean zero and, it should be
noted, have unit variance, i.e., are white noise. Thus the ordinary
least squares criterion (9. 3) applied to this representation is

t
e2(t-§) = T (Y*(t-j) - Px(t-j))
0 j=

I~ oer

J

t
) Y(t-j) _ P(t-j) 2
(9.9) =1 o(t-j)  oft-j) ]

t .
= 6% 3 BI(Y(t-j) - P(t-j))%.
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We call the minimization of (9.9) with respect to the coefficient sj of

(9.2) the discounted least squares criterion.

To illustrate the use of this criterion, we consider the case in

which P(t) = s; and estimate s; by choosing that value gO which mini-

mizes
t
(9. 10) I (Y(t-j) - sg)
j=0
Upon differentiating (9. 10) with respect to 5 setting the derivative
equal to zero, and solving for gO’ we get
t t ,
roglY(t-j) I (1-8)RTY(t-))
(9.11) 5, = 22 - =0
t 1. gttl
r g
j=0
since
; i 1- Bt+1
BY =178
j=0

The factor 1- 8 is frequently denoted by a and called the exponential

smoothing constant. In practice the choice of the smoothing constant

o is based upon the user's judgment regarding the weight he wishes
to assign to the most recent observation, rather than on the application
of appropriate methods of statistical inference.

Provided |B| < 1, (9.11) can be rewritten in the limiting form
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(9. 12) so= I raBlY(t-j) +,8%s(0)
j=0

where
S(0) = aY(0) + 0BY(-1) + aB 2Y(-2) + -

One sees that when t is large (a large number of time series observa-
tions is available), the term S(0) in (9. 12) depends only on observations
of the time series from the remote past and in such a way that the ob-
servations beyond Y(0) are discounted successively more heavily.
Moreover, in (9. 12), 5(0) is itself discounted by Bt, so when t is large
one may ignore the last term on the right in (9. 12) and use the esti-
mate

t-1 )
(9.13) §O = I aBlY(t-j).

j=0

In (9.13), when t is allowed to assume integer values successively,

we interpret gO as a function of t and write gO(t) rather than 8¢ In
other words, for t=1,2,3,--+ we have
t-1
(9. 14) s,t) = I aplY(t-j)
j=0
t-1 .
= av(t) + I aplY(t-j)
j=1
t-1

av(t) +8 T opl ly(e-j).
j=1
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Changing the index of summation appearing in the last term above to
i=j-1 gives
t-2 _
So(t) = a¥(t) +8 £ aply(t-1-j).
i=0
From (9. 14), however, when t is replaced by t-1, we obtain
t-2

(9. 15) Splt-1) = T aBlY(t-1-j),
i=0

and substituting (9. 15) into (9. 14) leads to

e

(9. 16) s, (t) = aY(t) +s§0(t-1) .

ol

Rather than denoting the estimate (9. 16) of the constant term
in (9. 1) by go(t), the alternate notation S(l)(t) is frequently used and
expressing (9. 14) in this notation gives

(9.17) S'(t) = aY(t) + BS(I)(t—l) B =1-aq
0<ao < 1.

The equation gives the first order exponentially smoothed value of Y(t)

)

it provides a simple recursive procedure for updating the smoothed
values S(l)(t) and has an appealing intuitive justification. If we "unfold"

(9. 17) by substituting S(l)(t), S(l)

(t-1), -++, as expressed by (9. 17)
successively in this equation, we see that S(l)(t). can be written as a

weighted sum of the observations Y(t), Y(t-1), -+, with the weights
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decreasing in a geometric progression as the observations refer to
successively more distant time periods.
Finally, for forecasting purposes, since the time series is

represented as
Y(t) = so T e(t),

the mean function of Y(t) under the assumed properties for the dis-

turbance term e(t) is
(9. 18) M(t) = E[Y(t)] =

Thus an estimate ?((t+T) of the expected value of Y(t) for T periods

ahead is given by

A N N

(9.19) Y(t+ 1) = M(t+T) = 5(t) = sty .

Note that in this case, since the trend-cyclical component is given by a
polynomial of degree zero, ?(t+ T) does not depend on 1. In other
words, we have the same forecast for any period t+ T in the future and
this forecast is changed only when the next observation on the time
series becomes available.

The results are extended in the next section to time series in

which the trend-cyclical component is not restricted to a polynomial

of degree zero but can be of any degree q.
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10. HIGHER ORDER EXPONENTIAL SMOOTHING
FORECASTING MODELS
Consider the more general case in which the trend-cyclical
component is a polynomial of degree q, and for j =0,1,2,°°°,t,

express (9.2) in the form

q .
(10. 1) P(t-j) = I si(t)(-j)l/i!
i=0
Estimating the coefficients
(10' 2') So(t): sl(t): ey Sq(t)

in (10. 1) by minimizing (9. 9) gives estimates go(t), gl(t), I ,s\q(t)

which satisfy the system of equations

— — - A -— = (1
M1 ™2 T My g4l 54(t) 3 )(t)
A 2
m, | My T My a4l s1(t) 5@
(10. 3) . .o .
- {qt+1)
_mq+1, 1 ™q41, 2 mq+1,q+l_J ] Sq(t)~ L_S (t_
where
sy = vawiy) +:z.:“»‘ss(,ly)_.(t-1)
s@ iy = st +o85) (k1)
(10. 4)
S(q+l)(t) _ 0Ls(q)(t) . Bs(q+1)(t_1)
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and

1\
—

1Y ol o 1 gK{E-14K)! i
ita-1r % k! j

(10. 5) myiy =
k=0

v
o

The S(j)(t) in (10.4) is called the ith order exponentially

smoothed value of the time series Y(t). One can also see in (10.4) a

simple recursive pattern similar to that in first order exponential
smoothing as given in (9. 17). Indeed in (10.4) one is smoothing suc-
cessively time series consisting in turn of other lower order smoothed
values of the time series Y(t). As with first order exponential
smoothing, initial values S(l)(O), S(Z)(O), cre, S(qH)(O) must ben
chosen.

As an example of these concepts consider the case q = 1, in
which the trend-cyclical component of the time series Y(t) has a

linear trend and can be represented as

TC(t) = s, + s t= P(t),

0
which is a special case of (9.2), or, alternately, as
TC(ttT) = so(t) + sl(t)T = P(t+T),

which is a special case of (10. 1) where j = - 1. Then corresponding

to (10.3), (10.4), and (10.5) we have



m) my, | (5,0 s
(10. 6) ) -

my; my, sl(t) S )(t)
where

sty = ave) + ssVe-1
(10.7)

sty = asDty + 8s@)(g-1)

and the m;i4] in this case are (with, respectively, i = 1, j = 0;
i=1,j=1;i:2,j=0;i:2,j=1):

(o]

k
m]-l:(xz.i:(x(i):l
k=0 k! “
T P I
mlz””kfokB S =y
k [e0]
(10. 8) m,, = o 3 B 02 5 ek s
K|
k=0 k=0
k
myy =-a? 1 KEUHL = 02 5 (K
k=0 k! k=0
ocz[f?’—(H—Bz +_B_]:_ 28
05’5 0LZ o
Then (10.6) becomes
A . 1
&) 5, sy
=t _
1 - EEE 5, (t) sy
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Therefore,
- -1
rso(t) 1 -8 sy
Ql(t) 1 - _Za_B s(@) )
r's\o(t)— 2 -1 S(l)(t)
8,0 R s )
or
(10. 9) %O(t) =250ty - @)y
(10. 10) 510 = 2 Wiy - s@).

For a given smoothing constant o, together with given initial values
S(l)(O) and S(z)(O), go(t) and gl(t) are updated whenever a new obser-
vation on the time series Y(t) becomes available. The updating pro-
cess utilizes the recursive expressions (10. 7); one first obtains up-
dated values of S(l)(t) and S(Z)(t) and these are then used in (10. 9) and
(10. 10) to obtain the revised estimates go(t) and gl(’c).
In the same way as is illustrated for the case q =1, (10.3),

(10.4), and (10.5) in principle can be used to determine the estimates
so(t), Sl(t)’ tee, g (t) as linear combinations of the various exponen-

q

tially smoothed values S(l)(t), S(Z)(t), cee, S(q+1)(t). The result that,
except for exceptional values of @, the linear equation system (10. 3)

can be solved is called the fundamental theorem of exponential smoothing

(see Brown [4]).
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However, for exponential smoothing of order higher than three,
serious computational limitations occur if one attempts to use (10.5)
to determine the myst] because they depend on @, and for each new
choice of o, a new calculation must be made. Furthermore, pro-
gressively more complex closed form expressions arise for the
infinite sums involved in (10. 5). Cogger [[6 ] has provided a simpli-
fied procedure for determining the elements M1

Turning now to the problem of developing T-step ahead fore-
casts when the trend-cyclical component is a polynomial P(t) of degree

q, the mean function of Y(t) in (9. 1) is
M(t) = E[Y(t)] = E[TC(t) + e(t)] = P(t),

since the errors are assumed to have mean zero. Thus a T-step ahead

forecast S/{\(t+ T) of the mean of Y(t+T) is

N

Y(t+1) = M(t+ 1) = Desr)

where
N a .
(10.11) P(+1) = 3 si'(t)/ﬂ/i! T =12, ««
i=0
and where the vector whose components are ’s\o(t), gl(t)’ I gq(t) is

the solution of the equation system (10. 3).
For example, when the degree of the polynomial representing

the trend-cyclical component is q = 1 and we deal with a linear trend,
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we have

A

(10. 12) ittt = Qo(t) + s

where go(t) and 5, (t) are computed from the first and second order

1

smoothed values as given by (10.9) and (10. 10). Specifically, the

T = 1 step ahead forecast of the expected value of Y(t) is

~n

_A - - (1)
(10. 13) Y(e+1) = 54(t) +s,(t) = (2+%)s

o 2)

) - (14298

2 (t).

To state a more general result for one-step ahead forecasts,
we need the concept of the nth order (backward) difference of a time

series Y(t). Suppose we define the first difference of 1Y(t) as
SY(t) = Y(t) - Y(t-1) .
The second order difference can be written

§2Y(t)

1

§Y(t) - 8Y(t-1)

Y(t) - 2Y(t-1) + Y(t-2)

h

and, finally, the nt? order difference is

n

(10. 14) S™t) = & (-1)(
i=0

We extend this concept by understanding that GOY(t) = Y(t). We now

state the following optimality property for the T = 1 step ahead fore-

cast of the mean of a time series based on exponential smoothing: for
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th

any time series whose n*" order difference can be represented as a

moving average of order n, . nth

order exponential smoothing will
provide the minimum mean squared error, one-step ahead forecast
of the mean.
For the components model
Y(t-j) = P(t-j) + e(t-])
where the e(t-j) are uncorrelated with mean zero and have variance
proportional to 8-J we developed the | T-step ahead model (10.11)

through the application of discounted least squares. Thus for T =1

we get

" A

6 +5)(6) + 5 sp(t) Feon

~ _ A l N
(10. 15) Y(t+1) = 5 o sq(t)

as the one-step ahead forecast of the mean of Y(t). We now raise the

question, is (10. 15) an optimal predictor, i.e., is this a minimum

mean squared error one-step ahead forecast? The answer to this
question depends on whether or not the (q+l)St difference of Y(t) can
be written as a moving average process.

Since the time series Y(t) is represented as
Y(t-j) = P(t-j) + e(t-j),
upon differencing the time series q + 1 times we obtain

89y (t-5) = 89 p(t-g) + 69T e(t-j).
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But (SqHP(t—j) = 0 since P(t) is a polynomial of degree q and therefore
89t y(t-g) = 69T Le(t-j).
We also have from (10. 14)
+1

q )
§9 le(t-5) = 1 (-1)%(
i=0

q+l

; )e (t-j-1).

However, the Gqu(t—j) are not yet expressed as a moving average
process because the e(t-j-i) are not white noise. But recalling (9. 7)

and (9. 8), we know that

e(t-j) = 2l=l)

o(t-j)
or
iy = s iy = ,j _./ 2
e(t-j) = o(t-j) e(t-j) = Ble(t-j)/o
where o is a constant of proportionality. Therefore

q+l

69 e(t-j) = 1 (—1>i(qi“>e(t—j-i)

i=0
q+l 1

= 3 (DY Thple(t-j-1)/0
i=0
el g 2

= L (-8 (Y e(t-j-i)/o
i=0 '
qtl

= I be(t-j-i)

i=0
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where

b, = (- 8yt (L

)/ 6% 120, 1, -+, qtl,
1 1

which expresses 6q+le(t—j) as a moving average process of order
qtl. This establishes (10.15) as an optimal predictor for the one-

step ahead forecast.

11. AUSEFUL ALTERNATE FORM OF THE SECOND
ORDER EXPONENTIAL SMOOTHING MODEL
We recall from the previous section that the second order ex-

ponential smoothing forecasting model for the T-step ahead forecast is

(10. 12) Ylttr) = 50(t) + 500

in which

(10. 9) so(t) = 25Dty - s@)y)
and

(10. 10) 5,(0) = g—(S(l)(t) - 5@y,

It is convenient for subsequent discussions to express the estimates
go(t) and é\l(t) in an alternate form which reflects a recursive rela-

tionship between these estimates,
(11. 1) “so(t) = O Y(E) 4+ Bo[so(t—l) + §1<t-1)]

where o denotes the same smoothing constant 0 involved in (10.9),
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(10.11) and (10. 12), and where

(11.2) Ql(t) - %(Eo(t) - Qo(t-l)) + sls?l(t-l)
where
2
(11.3) 0, =—0  and By = b0
1+B0 1+B0

The relationships (11.1) and (11.2) with a; and B, given by
(11. 3) can be obtained from (10.9), (10.10), and (10. 12) directly, to-
gether with the definitions of the first and second order smoothed
values (10.7). This direct verification of (11.1) and (11.2) is some-
what lengthy and the details involved uninteresting for our purposes
so they will not be given here. It should be observed that to obtain
the same forecast (10. 12) by using (10. 9)) and (10. 10) or by using
(11.1) and (11.2) for estimates go(t) and é\l(t), it is necessary to choose
the smoothing constants a, g, and 0y such that o 0 =0 and (11.3)
is satisfied. Moreover, if one chooses these three smoothing constants
differently, the forecast based on (11.1) and (11.2) will differ from the
second order exponential smoothing forecast based on (10.9) and (10. 10),
the latter being obtained from minimizing the discounted sum of squares
criterion.

Equation (11. 1) has a natural interpretation which is not appar-

ent from (10.9). Suppose we denote the T = 1 step ahead forecast of
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the expected value of Y(t) made at time t-1 by f(t; t-1); then

A A

Y(t; t-1) = [Y(t-1+1)]

TT =E1

[8(t-1) + 5 (t-1)7]
(11.4)
T =1T=1

= So(t-l) + 5. (t-1).

1

Now the forecast of the expected value of Y(t) made at time t is given
by (10. 12) with T = 0,

A

Y(t) = [Y(t+T)]
T =T0= 0

Thus (11.1) can be expressed in an alternate form
(11. 5) Y(t) = opY(t) + B Tt t-1)

which states that the estimate ofjthe expected value of Y(t) made at

time t is obtained by simply averaging the current observed value of

Y(t) and its forecast value from the immediately preceding period.
Equation (11.2) can be interpreted as follows. We have inter-

preted go(t) as an estimate of the expected value of Y(t) at time t;
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similarlyg (t-1) is an estimate of the expected value of Y(t-1) made

0
at time t-1. Consequently, if there is a linear trend in the expected
value of the time series, then the difference go(t) - go(t-l) between
the two estimates represents the most recent assessment of the slope
of the linear trend line that is available on the basis of the current
observation Y(t) of the time series. Now (11.2) states that the esti-
mate of the slope of the linear trend component made at time t is

merely an average of its most recent assessment s (t) - so(t~l) and

its previous estimated smoothed value é\l(t—l).

12, EXPONENTIAL SMOOTHING MODELS FOR
SEASONAL TIME SERIES

Consider a mixed components model of the form
(12. 1) Y(t) = TC(t)S(t) + e(t)

in which the trend-cyclical and seasonal components appear in a
multiplicative fashion, and the error or disturbance is additive. It
is assumed that the seasonal component S(t) is a periodic function
having period 2, so that S(t) = S(t+4) for all t with £ being the
smallest positive number for which this:property holds.

If S(t) is known, the time series can be deseasonalized,

obtaining
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Y(t) _ e(t)
(12.2) = TC(t) + =
S(t) B S50
or

(12. 3) Y#(t) = TC(t) + e*(t),

and one could return to the models of Sections 10 or 11.

It should be emphasized that in using the exponential smoothing
models developed earlier it was assumed that seasonal influences were
absent (see (9. 1) for example). In practice, if one uses these non-
seasonal models one should be dealing with data which do not have
seasonal influences or one should deseasonalize the data prior to
using these nonseasonal exponential smoothing forecasting models.

Extensions of these nonseasonal exponential smoothing models
have been developed for some simple cases which permit one to deal
with seasonal influences within the model itself. These methods are
ad hoc and their statistical and optimality properties from a fore-
casting point of view are largely unknown at present.

We now develop one such extension and begin by considering
the deseasonalized representation of the time series (12.3) in which
we assume that the trend-cyclical component is given by a polynomial

of degree 1 as

(12. 4) TC(t+ 1)

so(t) + 8, (t)T = P(t+T)
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which is a special case of the more general trend-cycle polynomial
(10. 1) in which j = -T and q = 1.
In general, were the errors in (12. 1) to have mean zero, the

expected value of Y(t) for T periods ahead is given by
M(t+ 1) = E[TC(t¥1)S(k+7)) + e (BET) ]SS T C(t+ T)S(E+T) .

Hence a T-step ahead forecast ?((t—H) of Y(t) would be

A

(12.5) Y(t+1) = TC(t+T)S(t+T).

Now when the trend-cyclical component is given by (12.4),
second order exponential smoothing applied to the deseasonalized time

series (12.3) provides an estimate of TC(t+T)

(12. 6) TC(t+T) = Qo(t) +5,(H)T

where

(12.7) Qo(t) = 0 V() + Bo(go(t-l) +5(t-1))
= g [% JF+ BO(§0(t-1) + 8, (t-1)

and

(12.8) 5,0 = 0y (8y(t) - So(t-1)) + B5(t-1).

The last two equations correspond to the alternate form of the
smoothing model as given in (11.1) and (11.2) except that these are

applied to the deseasonalized time series.
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If the seasonal component S(t+T) were known, (12.7) and
(12. 8) would be used in (12.6) to forecast E[(Y(t+T)] from (12.5).
Typically, however, the seasonal component is unknown and it must be
estimated as well. One way to proceed is as follows. Return to the
components model (12, 1) and assume that TC(t) is known. If we divide

both sides of (12. 1) by TC(t), we get

(12.9) Y(t) - S(t) + e(t)
TC(t) TC(t)

or

(12. 10) Yok(t) = S(t) + e**(t).

The trend-cyciical component of the time series Y#*%*(t) is clearly
S(t); thus in order to apply first order exponential smoothing to de-
velop an estimate of S(t) we must assume that S(t) is a constant
seasonal factor. Using this interpretation of (12. 10) and recalling

that S(t) = S(t-%), the estimate obtained is

S(t) = a YHx(t) + Bs§(t~2,)

(12.11)

11

Y(t) &/
ocS[TC(t)] + BgS(t-2).

For the linear trend model (12. 11) becomes

(12. 12) Stt) = ag [ )] + Bsg(t—ﬂ)
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because TC(t+T) = so(t) + sl(t)'r and therefore TC(t) = so(t).
In cases where the linear trend component is unknown, the

value of so(t) appearing in (12. 12) must itself be estimated. If such

N

an estimate is denoted %O(t), then an estimate of the smoothed estimate

g(t) of the seasonal component S(t) would be obtained by replacing so(t)

A
S

by its estimate 0(1;) in (12.12) and using

(12. 13) 3 = o  [LEL ]+ 8 §(e-2).

On the other hand, if S(t) were known, an estimate of so(t)
would be provided by (12.7). Since the seasonal component is unknown,
however, but its period is assumed to be %, its last previous estimate
§(t- %) could be used to provide an estimate of its current value S(t).

In turn, an estimate of the smoothed estimate gO(t) of the intercept

term of the linear trend is provided by using %(t— %) in place of S(t)

s (12.7) as

b= o [l ] 4 Bo[éo(t-l) ¥

S(t- %)

(12. 14) %O( §l(t-1)].

Finally, we use this estimate /s\o(t) in (12.8) to obtain in turn the

estimate

(12. 15) 3 () = o, [55(t) - &

. ot=D1 + 8,5 (t-1).
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The forecast value Y(t+ T) would then be given by

(12. 16) Y(t+1) = TC(t+T1)S (t+T -2)
where
(12.17) TC(t+1) =“so(t) +“sl(t)x.

The equations (12.13), (12.14) and (12. 15), together with
(12.16) and (12. 17), are called Winters' seasonal exponential smoothing
model for a linear trend with a multiplicative seasonal component [23].

It should be noted that in order to use this model one must

choose the smoothing constants q Y and oy in equations (12.13),

s
(12.14), and (12.15) and, moreover, one must know the periodicity of
the seasonal component as expressed in the choice of the period %.
Thus, four parameters must be chosen from an analysis of the data
or by other means in order to apply Winters' multiplicative exponen-
tial smoothing model.

Given the period { of the seasonal component, Winters has
provided a heuristic procedure for choosing Ggs G and 0y which
consists of making various selections of the three smoothing constants
over a grid of poésible values. Then for each selection of a, oco,
and a;, one-step ahead forecasts are made and the root mean squared
error is calculated for each selection. One chooses that selection of

o o 0’ and o, which is associated with the smallest of the calculated

s’ 1
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root mean squared errors. This is an attempt to achieve a selection
of the three smoothing constants which minimizes the mean squared
error of the one-step ahead forecasts.

Three aspects of Winters' method should be noted. First, it
must be assumed that the grid search procedure produces a selection

of the smoothing constants Og, 0O, and o. which is reasonably close

1
to that selection which minimizes the mean squared errors of the
forecast over the sequence of observations. Second, it must also be
assumed that this choice based on the past data remains a good choice
for making forecasts for future time periods; and third, that the
period % of the seasonal influence is known exactly.

In Winters' model the seasonal influence is represented in the
choice of the period { and the resulting seasonals are given as a
system of adjustments that are to be applied to the time series in
accordance with the equations defining the model. In other words,
the seasonal influence is not described explicitly as a trigonometric
function.

Harrison [ 14 ] has developed an alternative approach in which
the seasonal influence is fitted by means of a trigonometric function
and then the seasonal estimates are smoothed and used in forecasting.

The multiplicative seasonal exponential smoothing approach
has been recast as an additive seasonal model by McClain [ 18] and

McClain and Thomas [19].
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Burman [5] has used trigonometric functions to estimate
seasonal influences in an additive components model.

In all the exponential smoothing models above, the smoothing
values o are constants and must be chosen by the user of the model.
It is natural to consider a more general exponential smoothing model
in which o is not a constant but depends on time. Such a model, which
can be called a dynamic exponential smoothing model, has been developed
by Trigg and Leach [22] and has been used by Dunn, Williams, and

Spivey [8].

13. BOX-JENKINS FORECASTING PROCEDURES

In using the exponential smoothing models in preceding sections
one oftentimes does not attempt to analyze the underlying probability
structure of the time series by methods of statistical inference. The
smoothing constant o, although related to the probability structure of
the additive error terms of the underlying components model, is often
chosen by the user without reference to more objective considerations
of statistical inference. Moreover, as we have also emphasized, these
models require one to assume that the trend-cyclical component is a
polynomial of known degree q. The simple recursive updating rela-
tionships in these models, however, allow them to be applied con-

veniently in an almost mechanical fashion and this simplicity has made
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these models widely attractive in situations where many time series
must be forecast repeatedly on a routine basis as in parts inventory
systems.

In contrast to the features above, Box-Jenkins [3] have developed
forecasting procedures which require one to analyze the underlying
probability structure of the time series in considerably more detail
and methods of statistical inference are employed systematically to
estimate properties of this underlying structure.

Secondly, these procedures are more flexible than exponential
smoothing models with respect to the specification of the underlying
trend-cyclical component of the time series. For example, in expo-
nential smoothing we must assume that this is a polynomial of degree
q, whereas Box-Jenkins procedures provide various transformations
which can be performed on the data and which accommodate more
varied trend-cyclical components. Thus if the data appear to have an
exponential trend, one would take logarithms of the data and proceed
with the analysis. If the logarithms of the data themselves appear to
have a linear trend, one could difference the logarithms. In short,
without having to specify the trend-cyclical component explicitly and
then estimate it, the Box-Jenkins procedure provides a flexible system
of simple transformations which are applied to the data until finally an

autoregressive moving average process of order (p, q) appears to result.
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Thirdly, unlike exponential smoothing models which have
simple updating features, Box-Jenkins procedures require more
elaborate computer algorithms for obtaining estimates of the param-
eters of the ARMA process, and there is no simple recursive method
for updating these estimates as additional observations become
available.

We now proceed to a discussion of the Box-Jenkins procedure.
Suppose that after a time series Y(t) is differenced d times we arrive
at a time series Z(t) = (SdY(t), where it is known that Z(t) is an

ARMA(p, q) process of the form (8. 1), namely

(13. 1) Z(E) - 9)Z(t-1) - e - ¢ Z(t-p) = €(t) - Oy e(t-1) - ...
- Tqet-q) - 8 (t-q).

We assume that the €(t) are white noise and that all the roots of the
associated polynomial equation lie outside the unit circle, so that
Z(t) is a covariance stationary process. When d > 0, ¥(t) is called an

integrated autoregressive moving average process and is denoted by

ARIMA(p, d, q). -
When the expected value of the original time series Y(t) is a

constant U # 0 we will consider
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instead of Y(t), and if ;((t) is an ARMA(p, q) process with mean zero
we say that Y(t) is an ARMA process with mean Y. In addition we
generalize (13. 1) slightly t;y permitting the €(t) to have constant vari-
ance 082‘ rather than unit variance as formerly. These minor exten-
sions concerning the mean and variance, unnecessary in earlier dis-
cussions, are now made to permit us to consider a slightly wider class
of economic time series.

For purposes of forecasting the time series Z(t), Box-Jenkins
suggest using of (13. 1) which requires the estimation of p+q parameters
together with the variance 03 and they refer to (13.1) as a

parsimonious representation.

Obtaining optimal or minimum mean squared error T-step
ahead forecasts for models of the form (13. 1) is simplified because
Z(t) and €(t) appear in (13.1) in essentially linear fashion. To see
why this is the case, let 2(t+T) denote a forecast of the expected value
of Z(t+1) based on a linear representation involving the current and all

previous observations as

N

(13.2) Z(t+T) = HOZ(t) + le(t-l) + HZZ(t—Z) oo
= I HjZ(t-j).
j=0

Since, however, Z(t) can be represented as a moving average process

of infinite order,
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(13. 3) Z(t) = I P;elt-i)

with 1[)0 = 1, we find that the forecast (13.2) can be expressed as a
linear combination of only the error terms associated with the moving

average part of the process,

A

Z(t+T) = 2 I, Z(t-j)

(13. 4) = I I I yelt-i-j)
j=0 " i=0

als
b

[ee]
= I I¥e(t-k)
k=0

where

M = Iy + My + -+ )Yy

Therefore the difference between the actual value Z(t+7T) at time T
and its forecast value 2(t+'r) at time T can be expressed as
T-1 Y

(13. 6) Z(t+T) - Z2(t+T) = % Yoelttt-i) + I (
i=0 k=0

by - T e(t-k)

using (13.3) and (13.4). Consequently,

. ? T-1 2 ©
E[(Z(t+e) - Ze+o)f]= o 3 W 40l T
i=0 k=0

1~ i)

From the decomposition of the sum of squares above we see that
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A

Z(t+1) will be the minimum mean squared error or optimal forecast

if and only if the coefficients Hii are chosen so as to be identical to the
corresponding coefficients ]’b1:+k which appear in the representation of
Z(t) + T):ashaymoving-avergge processi:of infinitelordés. (13. 3)-heTherefore
(13.4) can be expressed as

(13.7) Z2tT) = O
k=0

k€ (t-k),

and the mean squared error associated with this forecast is

T-1

E[(Z(t+7) - Z(t+ )] = ol 1 Ve
i=0

the mean squared error in this case, of course, being identical to the
variance of the forecast error.

An alternate expression for this optimal forecast is obtained
by returning to the ARMA(p, q) process which has (13.7) as its infinite
order moving average representation. To develop such an expression
we first observe that 2(1:']"1') as expressed in (13.7) is simply the con-
ditional expectation of Z(t+T) given Z(t), Z(t-1), -, or equivalently
the conditional expectation of Z(t+71) given €(t), €(t-1), *++. In other
words, if we calculate the conditional expectation Z(t+T) given €(t),

e(t-1), -+, we see that
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oo

(13.8)  E[Z(t+7) |e(t), e(t-1)--- = E[ T y,e(t+r -i)] e(t), e(t-1),+ -]
i=0
T-1

=E[ I ¥.e(ttr-i)|e(t),e(t-1), "]
i=0

+ E[ )X 1p1€(t+T_1)l g(t)’ E(t-l),' .. ].
i=T1

When the successive future errors e(t+l), *++, e(ttT) are independent

of the errors ¢(t), e(t-1), *** of the current and previous periods,

then
T-1 T-1
E[L y;e (t+1-i)| e(t), e(t-1)," ] = E[L Y e(t+T-i)].
i=0 i=0
Also, since the mean of ¢(t) is zero,
T-1 -1
E[x wie(t+T—i)] = I q)iE[e(tH -i)]=0
i=0 i=0
we obtain
(13.9)  E[Z(t+1)]e®), et-1), 1= E[ 2 v e(t-k) [e(t), et-1), ]
k=0
= L Vo E(t-kK)
k=0

showing as asserted that
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(13. 10) Z(t4T) = B[Z(t+T)] e(t), et-1), - - - 1.

Suppose we take (13.9) and reexpress it as an ARMA(p, q)

process; then we obtain
(13.10) ZX(t+T5t) - ¢y Z*(ttT-15¢) - o0 0 - ¢pZ*(t+T -p;t) =
e*(ttr;t) - Ope*(ttT-1;t) - «++ - 9 e*(t+T-q;t)

q

where the Z*(t+ r;1)t), e*(t+;t), etc., denote random variables

which represent the conditional expectation involved, namely
Zx(ty5ty) = E[Z(tp) | e(t), e (t-1), -+ ]
e¥(ty, t1) = Ele(ty) [e(t)), e(ty-1),++ ].

Therefore the forecast 2(t+1) is expressed in the form of an ARMA(p, q)

process as

(13.12) Z(t+7) =
i

I Mg

O ZH(tHT-15t) +

0. %(t+T-j; t)
) =
j

I ™ Q

1
t € K (bHrg &(t+ T; t)

Thus to generate the optimal T-step ahead forecast the parameters

¢1, s d’p’ 0> " eq as well as the various conditional expec-
tations appearing in (13. 12) must be known or be estimated from the

data.
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The Box-Jenkins procedure provides two ways to calculate
the conditional expectations, one is to use the unconditional expecta-
tions and the other is to utilize the ''back-forecasting'' scheme. These
methods are discussed in Chapter 6 of [3].

When the finite dimensional distributions of the ¢(t) are multi-
variate normal, maximum likelihood estimators of the parameters
¢1, see, qbp, 61, Ty, Gq and Gg can be obtained as solutions to a
system of simultaneous non-linear equations (see Chapter 7 of [3]).
Other estimators are also derived based upon the minimization of
sums of squares related to the quadratic form associated with the
multivariate normal distribution. These approximations concentrate
on minimizing the quadratic form rather than the likelihood function
which would be involved in the exact maximum likelihood procedure.

Each of the preceding forecasting and estimation procedures
assumes that we know the order of differences d of the time series of
observations and the orders p and q of the autoregressive and moving
average processes. Box and Jenkins have also provided identification
and diagnostic procedures to assist the user to determine the num-
bers p, d, and q by classical methods of statistical inference that
involve the Yule-Walker equations and sample estimates of the auto-
correlations and partial autocorrelations of the data as well as the esti-

mated forecast errors.
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Determination of p, d, and q is a crucial part of the Box-
Jenkins procedure and can lead to different forecasting models being
generated from the same data by different users. Since these methods
are somewhat unsatisfactory, others in recent research have suggested
alternate approaches to the identification and diagnostic procedures of

Box and Jenkins (see Parzen [21]).
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