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BACKGROUND OF THIS PAPER

This is a draft of two chapters of a monograph on
linear and nonlinear optimization. It is intended
for students in optimization courses having inter-
ests in the mathematics of optimization.



Chapter 1. Mathematical Background

1.1. Introduction. Lineaf'optimization theory can
be developed either constructively dr deductively. 1In the
former approaéh, mathematical concepts are introduced which
do doubly duty: they are used to prove the existence of
optimal solutions and to calculate (and characterize) such
solutions. Thus the constructive approach is an economical
one and largely for this reason has become standard (Dantzig
[4], Spivey and Thrall [12], and others).

Deductive approaches, used first in the development of
the theory and still earlier in the development of the closely
‘related theory of games, have disadvantages. They utilize
mathematical concepts (such as'convexity and separating hyper-
planes) that are not normally found in a linear algebra course.
Moreover, these concepts are needed‘to prove the important
existence theorems, but once this task is completed, an entirely
different set of mathematical concepts is needed to develop
an algorithm for calculating the solutions whose existence has
been aésured. Thus these approaches, despite their mathema-
tical elegance, are regarded as uneconomical.

A deductive approach, however, has‘superior.features if
one wishes tovgeneralize to nonlinear optimization, since the
tools of convexity, separatiﬁg hyperplanes, etc., are then
essential. To put it another way, the mathematical tools
used to prove existence theorems in_the linear case (and which
are not used again) move to the center of the stage when one

wishes to consider nonlinear optimization.
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This monograph is concerned with a deductive approach'
which is largeiy algebraic and which minimizes the use of
concepts from analysis. It is based upon the'work of Tucker,
some of which is summarized in a paper by Good [5], and assumes
as a prerequisite a course in linear algebré.* Since such
courses vary considerably in content, the discussion begins
with a brief reView of relevant concepts from the theory of
bilinear forms and from orthogonality, and introduces the
necessary concepts from aﬁalysis. Concepts that are found
in the typical linear algebra éourse are either briefly men-
tioned or stated formally without proof (references to standard
linear algebra texts are frequently indicated). Other concepts‘
which are less likely to be covered in such a course are stated
formally and sometimes proved, with the proofs of the remain-

der indicated as exercises for the reader.

1.2. Bilinear Férms. Wé begin in the spirit of linear
algebra and introduce éoncepts for vectors that are coordinate
free. Vectors will be denoted iﬁitially by Greek letters and
their coordinates, relative to indicated bases, will be denoted
by lower case Latin letters., Later, when only one basis is

used for the discussion, we will identify a vector in terms of

*A deductive approach that is exclusively algebraic can be
found in paper 4 of Kuhn and Tucker [7]; a deductive approach
that uses analysis can be found in Ben-Israel [1].
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its coordinates, since it has only one sﬁch representation in
this Case. All>vector spaces‘will bé understood to be finite
dimensional.

Definition. Let U and V be‘vector spaces over a field
F and let f be a function which maps a pair of vectors o and
B, where an.and BeV, into F such that f is a linear function
of o and B separately.

Now suppose f(a,8) is a bilinear form} then for

Y azeU, Bl' szev and alf azeF we consider
f(alql + Y blBl + b262).

For the moment let § = b‘B

1 l'+ bZBZ; since f is linear in its

first argument we have
f(ala1+§2u2,6) = alf(al,é)_+ azf(az,ﬁ)

+b,B8,).

272

Now consider f(ul, blBl+b232); this is linear in the second

argument, so
and an analogous result holds for f(az,blsl+b262). Hence

£lajaytayay b By+b,B,) = ajbyflay,8y) + ajb,y£(ay,8,)

+ azblf(az,sl) + a2b2f(a2,62).
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As a slight generalization, let U and V be vector
spaces over a field F having, respectively, bases {al, )

and {sl, “cctr B and let

Then for a bilinear form we can write

v p
f(arB) = Z X 0;08| = ) Xy f(a ,B)
‘ i= l
and for each i we have
[ ; i
f(a,sB) = £la,, VaBal = y f(a ,B )
i 1" 45173 3] jo1° 3

Hence

, ‘ P‘ n
£ar8) = ZX{ny(a,B)] AR ERRITRE
Rt T ] 1]
i=1 j=1 i=1l j=1

Therefore, for any aecU and geV, the values of the bilinear
form f(a,B) are known when the pn values f(ai,sj) are known
-~ given that we have bases of U and V.

Now denote f(ai,Bj) = bijeFvand define B = [bij] to be
the matrix representing the bilinear form with respect to the
bases above. Relative to the same bases we can use the coor-

dinate vectors



~ =
*1 ¥y
X = . and Y = :
X Y
P .

to represent the vectors a and g respeétively; then

P

: n
f(Ol-lB) = Z z X-b.-by.
- i=1 3=1 * *37J

= [x e X ] bll o bln Yl
1 o} e . .
| Pp1 " Ppn || ¥n |
= XTBY.

Since any p by n matrix can be regarded as the matrix
of a bilinearbform in p+n variables, many‘théorems about
matrices have}counterparts in the theory of bilinear forms and
conversely. We will see some examples of this below.

In all the following we confine ourselves to the real
field R and all bilinear forms will be understood to be de-
fined for vector spaces over R.

Definition. Let f be a bilinear form; if f£(u,8) = £(B,0)
for every a,BeV(R), we say that f is Szmmetric.*

Theorem l. A bilinear fofm f(a,8) is symmetric if and

only if any matrix B representing f(a,B) is symmetric (i.e.,

*For this definition to have meaning the bilinear form f must
be defined on pairs of vectors from the same vector space.



has the property that B = BT).

Proof. The matrix B = [bij] is détermined by f(ai, uj)
and BT = [bji] is determined by f(aj,ai), where the vectors

o, are basis vectors for the vector space. Now

bji = f(aj,ai) = f(@i,aj) = bij'

so BT = B.

Among other things, this theorem assures us that if a
matrix of a bilinear form, expressed in terms of a given basis,
equals its own transpose, then the matrix of the form in terms
of any other basis will also be equal to its transpose.

Definition. If f(a,0) = 0 for every oecV(R), then the

bilinear form f is said to be skeszymmetric‘

Theorem 2. A bilinear form f(o,8) is skew-symmetric if

and only if any matrix representing f is skew-symmetric (i.e.,
has the property that B = —BT).
Proof. For any o,BeV(R) consider a+8; we have from skew-

symmetry f(a+B,a+8) = 0. Also

0=f(Ot+B,OL+B) f(O!.,Ot) +f(alB) +f(810‘) +f(318)

il

= £(a,8) + £(8,0).

Hencebf(a,s) = -f(B,0) and B = -BT.

On the other hand, if B = —BT, we have f(a,B) = -f(B,a)

for all a,ReV(R). Then f(a,a) -f(o,0) so that

i

f(o,0) + £(a,a) =0
or

(1+1) £(a,a) = 0.
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‘Since 1+1 # 0 in R, this means that £(a,0) = 0 so that f is
skew-symmet:ic. |

Both Theqrems 1 and 2 can be generalized to vectorVSPaces
over any field F of characteristic #VZ. We define this concept
as follows. For any positive integer n, denote by nl the sum

1+..+.+1 (n terms). If nl # 0 for any positive integer n, then
F is said to have characteristic 0. If nl = 0 for some positive
integer, let p be the smallest positive integef such that

pl = 0. Then p is called the characteristic of F. The field
{0, 1} nhas characteristic 2 and the field {0, 1, 2} has charac-
~ teristic 3.

Returning to the concepts of symmetry and skew-symmetry,
if x is any element of a field with characteristic 2, then
x + x =0 and x = -x. Thus the properties of symmetry and skew-
symmetry in this case coinéide.

The characteristic p of a field, incidentally, is a prime
number. A characteristic can be defined for other algebraic
systems as well (for example, rings and integral domains). A
discussion of the characteristic of a ring and domain appears
in Birkhoff and MacLane [2], Chap. XIII; another good reference
is Nomizu [10], Chap. 5.

Theorem 3. Any bilinear form defined on V(R) can be
represented uniquely as the sum of a symmetric bilinear form

and a skew-symmetric bilinear form.



Proof. Exercise; hint: write the symmetric form as

£,(a,8) = 1/2[f(a,8) + £(B,0)] and the skew-symmetric form as
£.g(0rB) = 1/2[£(a,8) - £(B,0)].

Theorem 3 can also be stated as a theorem on matrices:
if B is any square matrix, it can be uniquely represented as
the sum of a symmetric and a skew-symmetric matrix.

Definition. Let f(a,B) be a bilinear form defined on
V(R) sﬁch that »

(1) f(a,B) is symmetric,
(ii) £(o,B) is positive definite (i.e., £(o,a) 2 0
for every aeV(R) and f(a,a) = 0 if and'only if o = 0); then

f(a,B) is called an inner product function.

Definition. A vegtor space over R with an inner product

function is called an Euclidean space. Integer subscripts on a

symbol indicating a vector space will denote the dimension of
the space; thus V4(R) denotes a four-dimensional vector space
over the real s and E denotes an Euclidean space of dimension n.

Examples .
§l) Let f(a,B) = XYy - XY, J.n‘E2 where

X Yy
o = [%l and g = 1 , then
2 Y2

£(oy8) = [%, %]
N B P v,

and £ is skew-symmetric.
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(2) Let a,BeEn, let En have the unit vectors Ui as

basis vectors (i.e., Ui has 1 for its ith coordinate and zero

elsewhere), let o and B have, respectiVely, the coordinate vectors

- - _
Xy Y
. and . .

Then

| . .
- £(o,B) = f(ZXiUi.zijj) X'IY = R

the conventional inner product of two vectors. ‘Note that the
matrix of the form in this case is the identity matrix.
(3) Given a linear programming problem and its dual,

T T

min z = C°X max g = U B
subject to subject to
AX 2 B oTa s T
X2 0 U20

we get the inequality (for all feasible vectors X and U)

< ol

u'B 2 utax s cTx.

H

The function £(U,V) uTlax is a bilinear form.
Exercises
l. Write the following bilinear forms as a matrix product:
(a) g(a,B) = 2x1y; + 3x;¥, - 3%,¥7 + XY,
(b) £(o,B) = XY, + 2xly2 - XY, —'5x2yl + 7x2y2 + 4x2y3,
(c) h(o,B) ‘

X)¥1 T XYy T 3XKg¥3 + 2X5¥) < X,¥s.



2.

3.

*9.

_10-

Construct an example of a symmetric and a skew-symmetric
bilineaf form defined on V,(R). |

Given the bilinear form in E,

+ 2x + X + x

f(a,B) = x + x

1 7 %3y 2¥1 T X1¥p T X3¥p T H¥p T ¥y

= 2X5¥3 * Xg¥ge
write it as the sum of a symmetric and a skew-symmetric bi-
linear form.
Prove that if A is any p by n matrix, then ATA and aaT are
symmetric.
Prove that if A is'skew-symmeﬁric, then A2 is symmetric.
Let A and B be symmetric matriéeS'of the same size. Is
AB symmetric? |
If p is the characteristic of a field F, prove that p is a
prime number.
Give two examples of a positive definite bilinear form and
two examples of a form that is not positive definite.
Given a bilinear form f(o,B) defined on a vector space V(R)
and a basis for the space, suppose the matrix B is associated
with the form and basis. If the basis of the space is changed,
then f will have a new matrix, say B', relative to the new
basis. It can be shown that the rank of B is equal to the
rank of B', and more generally, that the rank of the matrix
of a bilinear form is invariant under change of basis. Thus

one defines the rank of the form to be the rank of a matrix

of the form relative to some basis.
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Now prove the following theorem: let f be a bilinear form
defined on a vector space V of dimension n over the complex

field F. There exists a basis'{ul, cee, an} of V such that:

1l

(1) f(ai,aj) 0 for i # j;:

]

(ii) f(ai,ui) 1l forl 2i2r, where r = rank of f;

A

HIN

(iii) f(a;,aj) =0 forr+ 123 3n;

J .
the associated matrix is of the form

bengomms e

References: Nering [9], Chap.'4; Nomizu [10], Chap. 4;
Halmos [6], Chap. 1.

10. Define two different inner product functions in 5 and prove
that the Sum of two inner ptoduct functions is an inner pro-
duct function.

11. Is the difference of two inner product functions in En an
inner produét function in En? Is any positive scalar multiple
of an inner product function in Eh an inner product function?

If the answer is yes, prove it; if not, produce a counter-

example.

1.3. Length, Distance, Orthogonality. We have various notations

for inner product functions:

f(u,B) = (0"'3) = o*'B = af,

and if we are considering vectors which are expressed in terms
’ n
O,
.Z Yoy

| n
of a fixed basis {a,, ***, a_}, say o = ) x.a, and g =
1 n i=1 + 1 j=1
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then the vectors can be unambiguously denoted by the coordinate

vectors X and Y so we also have in this case the notation

T

£(a ) = £(X,¥) = XY

and

f(ara) = (ara) = a*a = ag = f£(X,X) = X"X.

From this point on we will deal with coordinate vectors.
Definition. Let f(X,Y) be an inner product function de-

fined on En; if X is any vector in Eh, then the length of X is
||| = AT = KX .

Note that since f(X,X) 2 0 this definition does not take us out

of R, and also that for any scalar
k|| = ERGRRT = A2E(x,%) = [k[A°X = [k| ||X]] -

Definition. Let X be any nonzero vector in En; then the

vector

is called the normalized vector associated with X (note that

[1x*[] = 1).
Definition. Let X and Y be any vectors in E and let

d(X,Y) be a function defined on pairs of vectors X,Y such that

d(X,Y) = ||¥Y-X]|

Then d4(X,Y) is a distance function in E and for a given pair

of vectors X,Y we call d(X,Y) the distance from X to Y.



- 13 -

Various notations for a distance function are available;

for example,

a(X,Y) = FEX T = Av-x)T (1-%) .

Lemma. If X and Y are any vectors in E_ having length

1, then |X'Y| = [[X]] |[¥]].

Proof. Consider the vector ¥ - ¥Y; we have for an inner

product function

f(x-Y, x-Y) = £(X,X) - £(X,¥) - £(¥,X) + £(Y,Y)
2 T 2
= [[x]]7 - 2%y + |Y[]".

since ||X|| = ||¥|| = 1, we have from the positive definiteness

of £
2 - 2X°Y 2 0,

XY S 1 .

Similarly, from an examination of f£(X+Y, X+Y) we get

- Xy 51
SO we can wfite
IxTy| S 1.

Theorem 4 (Schwartz inequality). If X and Y are any

vectors in En’ then

T
[x*y| = [[x]] |{¥]]-
Corollary (the triangle inequality). If X and Y are

any vectors in E .+ then
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[Ix+x[] = [Ix]| + [[¥]] .
Theorem 5. If d(X,Y) is any distance function in E » then

(i) d(X,Y) d(Y,Xx);

v

(ii) d(X,Y) = 0 and d(X,Y) = 0 if and only if X = Y;

A

(iii) 4d(X,Y) = d(X,2) + d(z,Y).

Definition. The vectors X and Y in E are said to be
orthogonal if XTY = 0.

The zero vector in E is thus orthogonalvto évery vector
in E -

Definition. Let'{Xl, ***, X} be a set of vectors in E_;
if szj =0 fori, j=1, *++, n, i # j, then the set is orthogonal.
A set is said to be orthonormal if it is orthogonal and every
vector in the set has length 1.

Theorem 6. Any orthogonal set of nonzero vectors in E
is linearly independent.

We now introduce the concept of an orthogonal projection
of a vector on another vector by examining some geometrical con?

cepts in E2. Consider two vectors in E2 as in Figure 1. We

kY for some scalar k

Figure 1
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want to call the vector kY (k not yet specified) the orthogonal
projection of X on Y. What is the value of the scalar k? We
first observe that if a scalar k exists such that X-kY and Y

are orthogonal, then

(x-kY) 7Y = 0

from which we easily obtain

X%y - kYTY_= 0
and
L - XYy X'y
T o, 2
vy o |[Y]]

Conversely, if k is defined as above, then it is easy to show
that X-kY and Y are orthogonal.

With these geometrical concepts in mind we introduce the
following

Definition. If X and Y are any nonzero vectors in E o

then the orthogonal projection of X on Y is the vector

XTY

— Y
2 .
1]

Suppose we return to E, and that {X,Y} is a basis for
the space as shown in Figure 2. Can we determine an orthonormal
basis for Ez? The answer is clearly yes since we can make use

of the orthogonal projection of X on Y by setting
Z, =Y

_ XLy
2 2
, | 1] |
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Figure‘2

The set {Zl,Zz} is orthogonal and sinqe from the geometry they are
each nonzero, they can each be normalized and the result is what
we seek. |

These ideas are generalized in the following result,
which is referred to as the Gram-Schmidt orthogonalization
process. |

Theorem 7. Every finite dimensional Euclidean vector
space contains an orthonormal basis.

Sketch of the proof. Every finite dimensional vector space

contains a basis (from linear algebra -~ see, for example,

Nering [9], Chap. 1) . Suppose this basis is the set'{Xl, "ty X ).

Let Zl = Xl’

XpX,
ERRCANTPN A
1
and
k-1 X7,
2 =% - ] —d> Z; 0 k=3, *°*, n.
3=1 |l2]]
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Perform an induction to get an orthbnormél set and normalize
the vectors in the resulting set.

It is oftentimes helpful to use the concept of angle be-
tween vectors in E - Angle is defined in terms of its cosine
and is a straightforward generalization of familiar concepts
from E2. |

Definition. If X and‘Y are any two nonzero vectors in

E . then the (unique) angle 8, 0 = 8 = w, such that

XTY

cos 9 = TIRTT ITETT

is called the angle between X and Y.

From the Schwartz inequality we haVe

_ X'y <
cos &= | TRTTITErT| = °

so the angle 9 so defined retains features that are associated
with angle in Ez.
We conclude this section with several useful theorems re-
lating to orthogonality.
Definifion. Let X be any vector in E and A =’{Xl,---,Xn}
be any set of vectors in En. If X is orthogonal to every vector
in A we say‘that X is orthogonal to the set A. Moreover, if

A ='{Xl,--°,xn} and B =‘{Yl,'-',Yn}, then we say the sets A and

B are orthogonal if for each XisA and YisB we have X'}L'Yi = 0.
Theorem 8. If X and A ='{Xl,°?-,Xn} is orthogonal to

the set A ='{xl,---,Xn}, then X is orthogonal to the space
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spanned by A.

Theorem 9. If A = {Xl,"',Xn} is a set of vectors from
E v then the set of all vectors orthogonal to A is a subspace
of En'

Definition. Let S be any set of vectors from Eh; then

the set of all vectors orthogonal to S, denoted Sit, is called

the orthogonal complement of S in En'
Exercises.
1. Prove Theorem 4 using the preceding lemma.
2. Prove that if x and y are any nonnegative real numbers and

2 S y2, then x = y.

if x
3. Use Theorem 4 and the preceding exercisé to prove the corollary
to Theorem 4. Prove that if the Schwartz inequality reduces
to an equality for vectors X, YeE , then {X,Y} is linearly
dependent.
4. Prove Theorem 5; in what case does (iii) of Theorem 5 hold as

an equality?

5. Prove Theorem 6.

-1 -2 1
6. Given X = 1 ' Y = 1 P Z = 0 '
1 3 -2

calculate the following.

(a) X°X; X'Y; Y'Z; Y*; 2%; Y*'X"; the orthogonal projection
of X on Y and of X on Z.

(b) Calculate the orthogonal projection of Z on X.

(c) Construct a basis for E3 that is not orthogonal and from

this basis construct an orthonormal basis.
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(d) Verify that X'y = YTX; why do we havevthis symmetry?
7. Prove Theorem 7. |
8. Prove Theorem 8.
9. Prove Theorem 9.
10. Apply the last definition in this section to st and develop
the set (s, verify that se(sh)d = sii,

l.4. Orthogonality and Double Description of Vector

Subspaces. . We want to show how a vector spacé'can be defined
either in térms of a spanning set or as the solution space of
a system of homogeneous linear equations. When both definitions
can be specifically applied to a vector space we séy that we
have a double description for thé space.

Theorem 10. If R = {Xl,~-4,xp} is an’ofthonormal set in
E, and if Y is any vector in En’ then the vector

Z =Y -~ iEl (YTXi)Xi

is orthogonal to R (and hence to the space spanned by R).

Proof. Consider

(YTX.)X?X..
S R Ry

e~a'0

27X, = (Y - % (¥7x, )%, 17X, = ¥, -
A “3

i=1

1l

Since R is orthonormal we have X?Xj 0 for i#j and X?Xj =1

for i=j so that

hence Y is orthogonal to R.
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Theorém 11, Let S be a subspace of Eh having dimension

m < n and let XéEn. Then X can be expressed as the sum Y1+Y2,
where YlsS and ngsi:
Proof.r S has an orthonormal_basis, say'{xl,...lxm}_ If

XeS, the theorem is obvious. Suppose X4S; let

X=Y1+Y2
where
m .
T
Y, = '2‘1 (X Xi)xi
, vy v L T
Now YleS and Y2 = X Yl = X ? (X Xi)xi' By Theorem 10, Y2

i= _
is orthogonal to the set’{Xl, ~-s,,xm} and hence Y2 is orthogonal

to S.

Theorem 12. The decomposition X = Y., + Y, in Theorem 11

1 2

is unique.

Theorem 13. If S is any subspace of E then

(i) snst= {0}

(i) E =5 @ st;

(iii) stt=s.

Proof. (i) If XeSNSL, then XeS and XeSt. This implies
XTX = 0 and X = 0.

(ii) The symbol @ denotes the direct sum of the vector
subspaces indicated. Let A ='{Xl, see, Xk} be an orthonormal
basis for S and let Y be any vector in En. Then

k

T
Z=Y - J (YX,)X,
_ =1 i1
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is orthogonal to A and hence to S. Thus ZeS+. Also,

k4

Y=2+ ] (YX,)X,
. 1 1
i=1

is the sum of a vector ZeS+ and z(YTXi)XigS. Since
snsd = {0}, we have expressed Y as the (unique) sum of a vector
in S and a vecéor in sd. | |
We now make use of results on sumé and direct sums of
vector subspaces [see Nering [91, p. 21?22; Halmos [6], p. 28-30];
in particular the theorem that if:U and V are any subspaces of
a vector space W, the following conditions are equivalent:
(a) W=U@V; (b) UNV = {0} and U+ V =W (i.e., U and V are
complementary subspaces); (c) any vector YeW can be written in
the form Xy t X5, where X,eU and Xzev, in one and only one
way. |
We have shown that ZeE, can be expresééd uniquely as the
sum of a vector in S and a vector in S+ Since (c) implies (a)
we have S @ st = En'
(iii) Consider the vector Y = Z + z(YTXi)Xi where Z¢ St

and Z(YTXi)XieS; we have

2Ty = 777 + ZT[Z(YTXi)Xi]

i

2Tz = ||2/]2 .

T

Thus if YeStl, then 2°Y = 0 implies_||Z||2 = 0 which means that

1]

Y = XYTXi)XieS. This also implies that S+1<CS and since we
observed earlier that SC S*!, we conclude that S = st&. '
Finally, it should be clear that if S is a subspace of

En with dimension r, then S+ has dimension n-r. We can now es-

tablish the double description theorem for vector subspaces:
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Theorem 14. Every r-dimensional subspace of E, is the
solution space of a system of n-r independent homégeneous linear
equations in the variables Xyr ttty X

Proof. Let S be any subspace of E_ having dimension r

and let T be the orthogonal complemeht of S. T has dimension

n~r; suppose we have a basis for T,

= (byyr bygr =orr by )y

=
|

Le |
I

n-r (bn~r,l' e bn-r,n) ‘

~Since T is the orthogonal complement of S, we know that S is

the orthogonal complement of i and the set of all vectors orthogonal
to S is T. Since the set of all vectors orthogonal to T is the

set of all vectors orthogonal to a basis of T, the set of all

vectors X satisfying

X =0
T,X =0
T X=0

is S. These equations can be written more fully as

Djyxg et bpx, =0

b ves + b

v

‘X+ X =
n-r,171 n-r,n n

and these are independent since the coefficient vectors are a

basis for T.
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Thus every subspace of En can be described in two ways:

by providing a basis for the space or by providing a system

of homogeneous linear equations whose solution set is the sub-

space.

Figufe 3 displays a schematic diagram which illustrates

the situation in detail.

ll

Do
°

40

Exercises
Let {Xy, **"s Xp} be an orthonormal set in E where p S n.

Prove that if Y is any vector in E , then

T 2 2
51 P ALERIMICE
1=1L .

Given the vectors

verify that {xl, Xy X3} is a basis for E, and then use the
Gram-Schmidt orthogonalization process to construct an
orthonormal basis for E3.

Let S be a éubspace of E, spanned by the vectors

n—

1] 1
0 1
2 and 3
0 0

b b e

describe st in two ways.

Find a basis for the solution space of the linear equation



24 -

*sooedsqns x0309A 103 uorxdIirosed oTqnod

*¢ sanbrtg

(

u‘xz-u

0 = x "L
. S uoT3xdTIossSp oT1qnop
0 = xlx > ST wolsis > e se
= I Yy
wol sAs 9y3 umop 93 TaIM STU3 Fo oorvds UOTINTOS SOYIL g
7
L 3T [Te2 ‘s Jo juswatd
~-WwoD Truocboylx IO SY] ST WI3SLS
T/a-u I-U
q’ ... ( q) = A STUY3l JFO =oevds UOTI3NTOS ayL u - 1
. 4 4 —
: -0 = N.ﬁ& ( T e’... v)= a,w
(“Tge.. . Tlgq) =T . :
) ut 1T T
Kes ‘I 103 sTseq e 0 = X'vw < (Tref..t ey ="y
wa3l sis s ooevdsqgns

UTP3qO puUeR WIOT UOTOYDD
ue 03 welsdAs sTYl eonpsy

uoTienbe JIeSUTT 92Ul UMOP S3ITIM

® I0I STSeq ® USDATDH




system

3

Also find a basis for the orthogonal complement of this space.

5. Suppose S is a vector space spanned by the vectors

-1

)

find a system of homogeneous linear equations whose solution
set is S.
6. Prove Theorem 12.

7. Let W be the subspace of E5 spanned by the set

Find a basis for W and find a system of equations whose solu-
tion set is W.

1.5. Linear Manifolds. We will take the point of view
that a linear manifold is a "displaced" vector subspace.
will enable us to utilize directly the previous work on sub-

spaces.
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Definition. A linear manifold is a set
L=X+S§,

where X is a fixed vector in E and S is a subspace of Eﬁ'(note
that the symbol "+" means the algebraic sum of the set consisting
of the vector X and the set S).

An example from E, displays (Figure 4) the displacement
aspect of this definition; the fixed vector X being a key ele-

ment in the displacement.

N

Figure 4

Definition. The manifold L is said to have dimension r

if S has dimension r.

Definition. The linear manifolds Ll =X, + S, and
L. =

o = X, + 8, are said to be parallel if and only if either
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S, C S, or SéCZSl. If Sy and S, have the same dimension, they

1= "2
are parallel if and only if S, =v82.

Now sﬁppose that L = X + S is a linear manifold and that
{Yl, soe, Yr} is a basis for S. Then every vector YeL can be
written in the form

Y=X+tlY +°--+trYr,

1

tiER. The expression above is sometimes called a parametric

representation for L since X and a basis for S can be chosen
in many ways.

Definitibn. Let XO’ Xl, cee, Xp be any vectors in En;
the smallest linear manifold containing'thesé vectors is the
linear manifold'containing them which has smallest dimension.

Given any points or vectors XO’ Xl’ see, Xp in En, we
know that they are contained in some manifold -- the space E e
The question is, how can we determine the smallest manifold con-
taining these points?

Supposé we begin with the vectors Xb’.xl’ vee, Xp; then

we can define a manifold containing them as

L=X+25

for some fixed X¢L and some subspace S. Now X can be any vector

whatever in L, so we choose X = Xo. Then

L=X,+ S

0

and it is clear that

L + (—XO) = 8
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so that S contains the vectors Xi - XO for i=1, ***, p.

On the other hand, if S contains'{xl - XO, D

then since

Finally, the span (see Nering [9], p. 20) of the vectors

L must contain XO + (Xl—XO) = xl' e, X

Xl-xo, vee, Xp-X0 is the smallest subspace containing these
vectors. If we use the notation < > to denote the span of a set
of vectors, we can write the smallest manifold containing the

vectors XO' Xl, e, XP as

L =X +<X"X0, '."X-X Ze

0 1 p "0

When we refer to "the manifold containing a given set" we will

understand that we mean the smallest manifold containing the set.
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If Xd, X ., Xr is any set of vectors in En, then the

17
set {Xl—xo, cee, xp-Xo} can be either dependent or independent.
If this set is independent then L has dimension p, otherwise L
has dimension k <p.

An érbitrary vector X is in a linear manifold L if and

only if X can be written

X=X, + tl(xl—xo) + eee 4 tr(xr-x

0 0)

for FieR (i=1, **+, r) and Xy Xl’ oo, Xr in L. Then

X Xn + £ X =t X oo+t X -t X

0 171 "170 rr o
(Xo"thO"" o -*trXo) +thl+0 ° o+trXr

(1—tl---~-—tr)x0+tlxl+-.-+tr,xr .

1

r r
1 - ]t; and then [ t,=1 and we can write
i=1 i=0 ~

Now let tO

i}

<
i
o
>
<4
las
e
+
+
(i
-
>
=

r
Thus we see that the condition | t; = 1 is a necessary and
i=0 -
sufficient condition for XeL.

Definition. If

X = kX

1 +"'+kX’ki€R’ .§

1 PP LK = e XyeEy

then X is called a weighted average of the vectors Xyr *y Xp.
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Definition. If Y is any vector in a linear manifold L

where

Y =‘t0X0 + tlxl t oo + trXr

il o~
r
i

1, XOI ey, Xr€L 7

then L is said to be spanned by XO"Xl’ '°"'Xr'

We observe that the set of all linear combinations of a
set of vectors (unrestricted combinations) is a vector subspace,
whereas the set of all weighted averages (restricted combinations)
of a set of vectors is a linear manifold.

Theorem 15. (Double description theorem for linear mani-
folds). If L is a manifold of dimension r in En spanned by the
vectors XO' Xl’ ceey, Xr' then L is the solution set of a system
of linear equations AX = B. Conversely, let AX = B be a solvable
system of linear equations, where A has rank n-r; then the solu-
tion set of this system is a linear manifold of dimension r.

Definition.

A point in E is a linear manifold of dimension 0;

A line in En is a linear manifold of dimension 1;

A plane in En is a linear manifold of dimension 2;

A hyperplane in En is a linear manifold of dimension n-1.

As a special case of Theorem 15 we see that a hyperplane

in En can be described as the solution set of a linear equation

a;xq + oo + a x = b (not all a; = 0).



Definition. Let X = and ¥ = be vectors in

(1) X

\%4

Y if and only if X; > ¥y g

itv

v . . . >
(ii) X = Y if and only 1f X; = Y50V 4¢

iv

(iii) X 2 Y if and only if X 2 Y and X # Y.

(iv) X is strictly positive if X > 0.

(v) X is positive if X 2 0.

n
(vi) If X 2 0 and X, = 1, then X is a probability vector.
. R pI¢

i=1
(vii) If X 2 0 and k = nl  then X* = kX is a probability
Z X5 '
| i=1 n
vector and X = %X* = ] x,X*,
| i=1 *

Exercises
l. Prove Theorem 15. Hint: use Theorem 14 on the vector sub-
space S.

2. Given the system of linear equations defined by

0 4 Xl 7
9 . = 15 .
5 14 x5 23

(a) Express the linear manifold of solution vectors X as the
sum of a vector in the manifold and the span of basis
vectors for some subspace S.

(b) Describe the subspace S in two ways.

(c) Describe the subspace S+ in two ways.

3. For each of the following linear manifolds write down a

parametric representation and a determining set of linear
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equations. 
(a) Ly = (3, 1, 1) + <(-2, 2, 1), (1, 2, -1)>
(b) L, = (L, 0, 2) + <(2, 3, 0), (0, 1, 4)>
4. Prove that a vector X will be éontained in a iinear manifold

L if and only if X can be expressed as

X=X, + tl(xl—xo) + e 4+ tr(xr—xo).

5. In E3

vectors

find the smallest linear manifold L containing the

1.6. Hyperplanes and Orthogonality. Consider the hyper-

plane defined by the equation 2%y + 7%, = 0. This can be written
C'X = [2 7] =0 .

If we graph the situation as in Figure 5 we see that the solution
in set S of this equation consists of all vectors X orthogonal
to the fixed‘vector C.

What is the situation for the equation 2xl + 7x2 = 19?
Each vector XeH = {XICTX = 19} has the same orthogonal projection
on the fixed vector C. This is illustrated in Figure 6.

From an earlier section the orthogonal projection of any
vector XeH is given by

T

i S

2
el =
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Figure 5

Figure 6
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The length of this vector is

Tx _ Ic"x] ol < lox
——C|| = 5 HCl] = &7 -
|lcl| el

These comments are easily generalized; if H is a hyper-
plane in El defined by CTX = 2z, then the length of the orthogonal

projection is

ICTXI - |z |

e I

and this length is sometimes referred to as the normal distance
of the hyperplane H from the origin. The fixed vector C is
called a normal vector to H and it is clear that given a normal
vector one can then unambiguously specify a hyperplane. In somé
of the discussions below it will be natural to speak of normals
or normal vectbrs when we wish to refer to corresponding hyper-
"planes. Indeed, we will encounter situations in which we will
locate normal vectors in certain sets so that corresponding
hyperplanes will be located in desired ways.

Definition. If H =‘{X|CTX =z, C#0, XsEn}, then the

vectors

are called unit normals to the hyperplane H.
The geometrical concept of “moving'a hyperplane parallel
to itself"occurs often in optimization mathematics. Figure 7

illustrates the situation; H, ='{X|CTX = z,} and
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c*
C¥*

\,

Figure 7

Hy = {XICTX = zl} so that C¥ is the orthogonal projection of
XeHy on C and C** is the orthogonal projection of XeH; on C.

Since C**eHl,'we have CTC** = 2 and for some scalar k

clotx = cT(c* + ko) = clo** + kelc

o 2
.= ZO"'kllCll = 24

Then

2
kllc||© = Z1=Zyi

~since llcllz >0, k > 0 implies that z; - z,
Zy > 2. Thus when a hyperplane is "moved up" the value of

> 0 or that

zy > Zy- Likewise, k < 0 would mean that Hl was "moved down"
and zq < Z,e

Exercises
1. Given the equation 2%y = X5 + 7x3 = 13, find the following.

(a) The unit normal vectors to the hyperplane.

(b) If X is any vector in the hyperplane defined by the
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span a

or

If t =
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equatidﬁ above, what is the orthogonal projection of X
on the normal vector to the hyperplane?

Write X in terms of a parametric representation in which

the basis for an appropriate subspace appears in the

parametric representation.

1.7. Convexity. Suppose the vectorsxl and X2 in En

line L. Then if YeL we know that

Y

X+ Xy By F 8y = 1,

=
il

tX, + (l‘t)sz teR.

1

0 we have Y = Xy and if t =1, Y = X;. We say that Y is

between Xl and X2 if and only if 0 < t < 1. The line segment

joining Xy and.X2 can be written in the form

points

also in C. I.e., C is convex if, for any X

Y= tX) + (1-t)X,, 03t s1.

1

Definition. A subset C of En is convex if, whenever two
Xy and X, are in C, the line segment joining Xy and X, is

and X, in C, the

1 2

vector YeC where

Y = £. X, + t,X t, +t,=1, t

>
1%+ Xy By =0, t

1

vector

Definition. Let Xl' ey Xp be any vectors in E + the

= LN ] - >
Y ale + + apxp' ‘§ a; 1, a; = 0, k/i'
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is called a convex combination of the vectors X., *++, X .

1’ P
A set consisting of exactly one point and the null set

are regarded as convex since in these cases the definition of
convexity is satisfied "vacuously."

TheorémAIG. The interéection of any collection of convex
sets is convex.

The definition of convex set is geometrically appealing
but it can be difficult to apply directly if we have a set and
wish to determine if it is convex. The following theorem is
often useful.

Theorem 17. A set C is convex if and only if every con-
vex combination of vectors in C is in C.

Proof. If every convex combination of vectors in C is in
C, then every line segment joining a pair of vectors in C must
be in C, so C is convex. |

Suppose C is convex; we want to show that every convex

combination of vectors in C is in C. Let

X
Y = Et.X., z

= i

be a convex combination in C. For r = 1 and r = 2 we have YeC;
assume that a convex combination of fewer than r vectors of C is

in C. The following is an identity

£, t
e e = - l P r-u]-
£X) B R R e b e S =1 %p-1
ti ztl
i=1 i=1 *
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r r-1
since ) t. = 1 implies | ty =1 - t,. We then use this to
=1

j=1 J
write
t t
_ _ 1 e r-1
v=(0-t) rgl X ¥ * ril S I
t. . t.
i=1 t i=1 1

Without 1oss'0f generality we can assume that tr # 1, otherwise

we have Y = Xr‘ Now for tr # 1 each coefficient of each vector

in the sum in the brackets immediately above has the property

that
t., ’
EZII"- 20 (j=1, *<-, r-1)
It |
i=1
and
r-1
r-1 t. Z tj
e B = S |
521 ril rgl N
- t, t.
i=1 v i=1?

This means tha£ the linear combination of vectors within the
brackets above is a convex combinatién. By our induction
hypothesis this convex combination is a vector in C. Then the
equation above gives a convex combination of two vectors in C,
so YeC and the theorem is proved.

Definition. Let S be any subset of E i then the convex
hull of S is the smallest convex set containing S. It is de-

noted H(S).
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Since S is a subset of E and En is convex there is a
convex set containing S. The intersection of all convex sets
containing S is convex by Theorem 16, so such a smallest con-
vex set exists.

Theorem 18. The convex hull of a set S is the set of all
convex combinations of the vectors of S.

Proof. See Nering [9], Chap. 6.

Definition. If C is a nonempty set of vectors in E v
then C is a cone if it is closed under multiplication by non-
negative scalars.

~Definition. If C is a cone in En and is also closed under
vector addition, then C is a convex set and is called a convex
cone.

If C is a convex cone énd if there is a set of vectors
{Xl, see, Xp} of C such that every vector in C can be represented

as a nonnegative linear combination of the vectors X soe, X,

1’ p
then the set is called a spanning set (or a set of generators)
for C and C is also called a finite cone (or a finitely generated
cone) .

The cone generated or spanned by a single nonzero vector

is called a half line, and the convex hull of a finite set of

vectors is called a convex polyhedron.

Definition. If S is a convex set, an extreme point of S

is a point XeS such that there are no other points X:4 XzaS,

Xl # X2, such that X = le + (l—k)xz, 0 <k < 1.
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Definition. Let f£(X) be a function defined on a convex

set C (i.e., the domain of f is the set C); then f is said to

be a convex function if for any points X1r X,eC

HIN
l—-l
L]

f[kx1+(1—k)x2] S KE(X) + (FKE(X,) , 03k

Definition. Let f(X) be defined over a convex set S; then

f(X) is a concave function if for any Xl’ Xzes,

A
l_l

f[le+(l~k)X2] 2 kf(Xl) + (l-k)f(Xz)‘, 0 £k

Note: if £(X) is concave, then -f(X) is convex and conversely.
Theorem 19. If f£(X) is both convex and concave over a con-

" vex set S, then £(X) is a linear function over S.

Exercises

1. Let

6 6 1 < -|®
— — — 14 -
X352 4r %7 %3%|7 ¢ s

(a) What is the convex hull of the set {Xl, Xor X3 X4}?
(b) Graph the set l(a); what is the cone spanned by Xy and X3?

(c) Is X, an extreme point of the convex hull of'{Xl, see, X4} ?

1
2. Prove Theorem 16.

3. Prove Theorem 18.

4., Let X, = 7 ’ X, = 2 ' X, = 1 . Sketch a graph of
1 3 2 |2 3 |6

the set of all nonnegative linear combinations of the vectors

Xir X50 X Call this set N; can N be expressed as the solu-

3.
tion set of a system of homogeneous linear inequalities? If
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S0, writé down such a system.

5. Return to the convex set in 1l(a). Can you write out a set
of linear inéqualities whose solution set is equal to the
convex hull in 1(a)?

6. Given the functions defined over all of the reals (unless

indicated otherwise) as follows:

(a) £(x) = x* - x+3, (g) H(x) = -4x°+3,

(b) g(x) = x+x°-x, (h) Q(x) = 3x"-4x3-2x°+1,
(c) h(x) = &%, -2 2 x £ 3,
(d) G(x) = log_x, x > 0, (i) R(x) = 3x+l .

(e) F(x) = /Eii’ x > 1,

Which are convex? Which are concave?

1.8. More on Double Description. We have shown in earlier

sections that we have a double description for vector subspaces
and for linear manifolds in En’ We also have a double descrip-
tion for convex cones and for bounded convex sets (convex poly-
hedra). Given a convex cone, it can be regarded as the set of
all nonnegative linear combinations of some spanning set or as
the set of all solutions of a system of homogeneous linear in-
equalities AX 2 0. A convex polyhedron can be described as

the set of all convex combinations of some finite set of vectors

or as the solution set of a system of linear inequalities AX 2 B.*

*The last two statements are not proved here since proofs
are lengthy and complicated. See various papers in Kuhn and
Tucker [7] for proofs and related discussions. See also Spivey
and Thrall [12], p. 474-490.
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‘Double description is important because it gives us con-
ditions under which we can relate systems of linear equalities
to spanning sets. From an applied point of view, problems
frequently take the form of the former, whereas many theorems
and operatiqhai results are stated in terms of the latter.
Having double description theorems means tha£ we can pass back
and forth with ease.

Figure 8 displays in brief form the full range of double

description theorems that are available.

1.9. Concepts from Point Set Theory. In the next chap-

~ter we will speak of open and closed sets and of the boundary
of a set. We now introduce concepts which will make these
terms clear. -

Definition. Let S be any set in En and XogS. Then a

neighborhood N of X, is the set
N(xé,r) = {x|d(xo,x) <r, r > 0}.

Definition. If S is any set in En and x¢S, then x is an

interior point of S if some neighborhood, perhaps a small one,

is a subset of S.

Definition. If S is a set in E v then the interior of
S is the set of all interior points of S.

Examples

(1) If X, eE;, a neighborhood is the interior of an interval

centered at.xo. '
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(2) If X,eE,,; & neighborhood is the interior of a circular

disc with center at X and radius r as in Figure 9.

Figure 9

(3) If xosEn,' a neighborhood is the interior of a "solid ball"
centered at X and having radius r.

The concept of interior can correspond, as in the above
examples, somewhat closely to the intuitive notion of interior,
but the definition applies to cases which do not conform to the
intuition. For example, consider the set of all rational
points in E, (i.e., the set of all points on the real line that
correspond to the rational numbers). This set has no interior at
all. For another example, consider En and the distance function
defined as folléws: if x, y are any points in E then d(x,y) =1
if x # y, and d(x,x) = 0. Then every point x is an interior
point of evéry set containing x.

Definition. A set is said to be open if each of its
points is an interior point.

Theorem 20. A neighborhood is an open set.

Proof. Let N(x_,r) be a neighborhood in E_,

N(xo,r) = {x]d(xo,x) < r},
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and let x be any point in N(xo,r). We want to show that x is

an interior point. Since st(xo,r),

_d(xo,x) < r or d(xo,x) = r~h for some h > 0.

Let y be any point in N(x,h); then

PN

d(x ry) d(x,,x) + d(x,y) < (r-h) + h =r

or

d(xo,y) < r. This implies yeN(xo,r) = N(x,h)CN(xo,r).

Definition. A point xern is a limit point of the set S

if every N(xo,r) contains a point of S different from X e

Examples

(1) Let S8 = {(x,y)lx2 + y2 =1} evéry point on the circumference
is a limit point of S. Suppose x* is an interior point of
S; is x* a iimit point?

(2) Let T = {x|0 < x £ 1}. The point x = 0 is a limit point of
T, but x¢T. The point x = 1 is also a limit point of T.

Definition. A set is closed if it contains each of its
limit points.

Theorem 21. If X, is a limit point of S, then every
N(xo,r) contains infinitely many points of S.

Proof. Suppose some N(xo,r) contains a finite number of
points of S, say Pyr ***r Ppe Then there is some point p. closest
to X, for this point let d(xo,pi) = r¥, Then construct
N(xo,r*); this neighborhood contains none of the points py," ", P,

but this is a contradiction since X is a limit point of S.
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Definition. Let SC‘_En and let xern; then if every
N(xo,r) contains a point of S and a point not in S, X is a

boundary point of S.

Note that a closed set contains all its boundary points
because a boundary point either belongs to the set or is a limit
point of the set (why?).

Definition. The boundary of a set is the set of all
boundary points of the set.

Definition. A set in E, is said to be bounded if it is
a subset of some N(0,r) for r > 0.. A set is said to be unbounded
if it is not bounded.

Theorem 22. The complement of an open set is closed.

If a set is closed, its complement is open.

Theorem 23. The union of any collection of open sets is
open. |

Theorem 24. The intersection of any collection of closed
sets is closed. |

Discussions of these and related concépts can be found in
many introductory books on analysis; two good sources are Boas
[3] and Natanson [8].

We noted earlier that the set L = {X|AX = b}, where A is
a nonzero vector and b is a scalar,is a hyperplane. The set
Q = {X|AX 2 b} is called a halfspace in Epe It is indicated in
the exercises at the end of this section that Q* = {X|AX > b}
is an open set or open half space and Q is a closed set or

closed half space.
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Exercises

1. The unit ball in En is defined by
]
B = {(xg, =+*y % )eB izlxi 2 1}.

Prove that B is a convex set.
2. Prove Theorem 21.
3. Prove Theorem 22.
4. Prove Theorem 23.
5. Prove Theorem 24.
6. Prove that the set H = {X|AX 2 b}, A a nonzero vector in E
and b a scalar, is closed.
7. Prove that the set H* = {X|AX > b} is open.
8. Prove that a hyperplane in E. is a closed set.
9. Note distinctions between the concept of bounded set and
boundary of a sét. Give an illustration of an unbounded set
which has a finite set of boundary points. Construct an example
of an unbounded set that does not contain its boundary points.

10. Can a set be open and closed? If so, produce two examples.

1.10. Brief Review of Linear Transformations. Suppose

we consider E ra basis for E consisting of the unit vectors
{Ul’ cee, Un}, Ep, and a unit basis for Ep,'{Ui, cee, Ué}'

From linear algebra we know that if T is a linear transformation
from En into Ep, then T is fully specified if we indicate the
images of the basis wvectors of En under T (see Nering [9],

Chap. II). In colloquial language, we know where évery vector

in En goes (under T) if we know where the basis vectors in En
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- go. Suppose then for each basis vector UjeEn we have

| ] ]
U 4 eee 4 a .U
21571 PP

T(Uj)

il

ﬁ a..U{ .
i=1 *3J

Now if X is any vector in En’ consider its image vector under T,

i t
T(X) = lel + e ypUp .

We know that the representation of the vectors T(Uj) and T (X)
in terms of the basis vectors Ué is unique.

Since T is a linear transformation we have

T (X)

il

:T(xlUl + eeo + XnUn)

xlT(Ul) + eee + an(Un)

[}

= xl(iilailui) b oeee 4 xn(iilainUi)

n
[}
'ﬁ (.Z aijxj) u..
Si=1 i=1
But since a Vecth has a unique representation in terms of a
basis, this means that
i
yl = al ixu
521373
or, in matrix form

Y = AX.
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Under these conditions it can be shown that the matrix A = [aij]

represents the linear transformation T unambiguously (relative
to the chosen bases).

The matrix equation above indicates that the coordinate
vector of thevimage of X under T is the product of fhe matfix
of the transformation T and the coordinate vector X.

Moreover, note that the columns of the matrix A are the

coordinates of the images under T of the basis vectors in E -

coordinate vector of T(Uj)

Definition. The set of all vectors XeE that are mapped
by T on the Zero vector in Ep is called the kernel of the linear
transformation T.

Definition. If X is any vector in E » then the set of
all image vectors T(X) is called the range of T.

Theorem 25. Let T be a linear transformation from En
into Ep; then

(i) the kernel of T is a subspace of E i

(ii) the range of T is a subspace of Ep;

(iii) dim (kernel) + dim (range) = n = dim (En).

Note that one can use a system of homogeneous linear

equations to define the kernel of a linear transformation T.
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For example, suppose A is the matrix of a linear transformation

from E, intovEp relative to a chosen pair of bases. Then
Kernel of T = {X|AX = 0}

A system of homogeneous linear equations always has a
solution (the 2éro vector). Another way of saying this is: the
kernel of a linear transformation always contains the zero vec-
tor (of En).. Note that this is part of what is implied by
Theorem 25(i) since a subspace must contain the zero vector. It
may‘be the case that the kernel of T contains only the zero vec-
tor; then we know that T is a one-to-one transformation. On the
other hand, if the kernel is a subspace other than the zero
vector, there will be nonzero vectors in En which are mapped
by T on the zero vector in Ep and the corresponding system of
linear equations AX = 0 has a nontrivial solution.

We now consider a special case of the foregoing.

Question 1. Are there vectors in E, such that AX = 0
and X 2 0? That is, does the kernel of T contain a positive
vector X?

To provide an answer, we normalize the vectors X 2 0
(this is possible, if such vectors exist, since X 2 0), and note
that such a nqrmalized vector is a probability vector. We

consider

Question 1**. Does T map probability vectors in E_ on
Y n

the zero vector in Ep?

Definition. Let'{Ul, e, Un} be the set of unit vectors
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in En; then the convex hull of these vectors, denoted

Hn(Ul, cee, Un) is called the fundamental probability simplex
(F.P.S.) in E -
We can now state Question 1 in yet another way:

Question 1**., Does the image of the F.P.S. under T

contain the origin of Ep?

We will see in the next chapter that answers to these
questions will lead us to theorems that enable us to prove the
existence and duality theorems of linear programming as well as
other important theorems in the theory of linear inequalities
and in the ﬁheory of games.

Theorem 26. A linear transformation T maps subépaces
into subspaces.

Theorem 27. A linear transformation T maps linear
manifolds into linear manifolds.

Theorem 28. A linear transformation maps convex sets
into convex sets. In particular, the image of the F.P.S. in
E is a convex set in Ep.

Exercises
1. Prove Theorem 25.

2. Prove Theorem 26.

3. Prove that if the kernel of T consists only of the zero
vector, fhen T is a one-to-one linear transformation.

4. Prove Theorem 27.

5. Prove Theorem 28.
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Chapter 2. Linear Optimization

2.1, Proof of a Key Theorem. We return to a consider-
th

ation of Question 1** of Section 1.10 and recall that the j
colﬁmn vector of the matrix A is the image of ;he vector UjeEn.
Therefore, the image of Hn(Ul, see, Un) ~- the fundamental proba-
bility simplex in B, == is the set Hp(Al, cee, An), where
Hp(Al, cee, An) is the convex hull of the image vectors
Apr vy A in Ep. To put it another way, if we consider the
set of all convex combinations of the unit vectors in E and
then consider the image of this set in Ep' then the latter will
consist of exactly the same convex combinations of the images of
the unit vectors (Theorem 28).

Now if the zero vector is in the set Hp(Al, e+, A ),
there exists a probability vector in E, satisfying AX = 0, X 20,
and we answer Question 1 (and Questions 1* and 1**) in the
affirmative. On the other hand, if the zero vector in Ep is not
contained in the set Hp, there is no probability vector in En
satisfying AX-='0, X 2 0.

Case I. Suppose 0 f Hp; what happens in this case?
In Figure 10 we show the set Hp(Al’ s, An) as the indicated
convex hull of the vectors Al, see, An' and the origin (of Ep)
is shown contained in a hyperplane L (0 £ Hp). |

Now since Hp is a bounded and closed set, there exists
a point p ¢ Hp that is closest to the origin (a basic result

from the calculus). Let U be the vector having the origin as

initial point and P as end point (we know that U # 0 because



Figure 10

0 A.Hp). Let U be a normal vector to a hyperplane L containing
the origin (see Figure 10).

We first show that L does not intersect HP for any point
P chosen as above. Suppose Q ¢ HP is also in L and consider

the line segment PQ in Figure 1ll. Since Q ¢ L, the vector 0Q

o ' re
: Figure 11 \\\\SL

is orthogonal to OP, so the angles OPQ and OQP are acute and PQ

is the hypotenuse of a right triangle. Construct an altitude

of the triangle from O and let R be the point of intersection

of this altitude with PQ. Since P, Q ¢ Hp and Hp is convex,

the line segment joining P and Q is in Hp, so R ¢ Hp. This

means that R ¢ H_ is closest to the origin. Hence we have a
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contradiction since we assumed that P(#R) is closest to the
origin. Thus Lvdoes not intersect Hp and Hp is in the interior
of the half space bounded by the hyperplane L.

Furthermore, given Hp in the interior of the half space

and the normal vector U, every vector in Hp has a positive inner

product with U; in particular,
UAi >0 (i=1, **°*, n) .

This establishes the following result:
if 0 4 Hp (i.e., there is no vector X 2 0 in En
such that AX = 0), then there exists a vector

U ¢ Ep such that
UA, >0 (i=1,***, n)

where Ai is the ith column of the matrix A.
Conversely, if there exists a vector U ¢ Ep and that
UAi >0 for i=1l, ¢+, n, then 0 f£ Hp(Al, oo, An). To prove

this, suppose that UAi >0 for i=1l, *+-, n and 0 ¢ Hp;

clAl + ees + ann = 0
n
for ¢, 2 0, Z c. = 1. Moreover, some ¢, > 0, since 0 ¢ H_.
i i=1 i 1 p
Now
U0 = U(clAl + ¢ + ann) = clUAl + e 4+ cnUAn ,

Since UAi > 0 for every i and ci > 0 for at least one i, we have

clAl + " e + ann > 0 °
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But this is a contradiction since UO = 0 for every U.

The situation O e Hp,is characterized by the theorem of
Gordan (of which the above remarks constitute a proof)?

The system X 2 0, AX = 0 has a solution if and only if
there is not a vector U ¢ Ep such that UA > 0.

Case II. If O ¢ Hp, then O is either on the boundary
of Hp or in the interior of Hp. Suppose O is on‘the boundary
of Hp and we have the situation shown in Figure'lz. Here we

have UAl = O,UAlrl = 0 and UAi > 0 for i=2, +-+, n-1. Now since

Figure 12

0 ¢ Hp we have

0= X)BAy + BBy + oere X

n-1%n-1 T ¥nPy o
n

0, ) X; = l. Also from the case in Figure 12 we
i=1

see that, in particular, X, ” 0, X, > 0 and X, = 0 for

flv

where x.

i=2, +++, n-1 (since O is on the line segment joining A, and An).

1
The preimage X of O ¢ Ep is the same linear combination of the

basis vectors of En as O is of the vectors Al"".’ Ap in Ep,

SO
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— -l ® & & w— ® 8 ®
X=T (xlAl + + ann) = xlUl + + xnUn

X, >0, x>0

1 n
xj = 0 for j=2, °*°°, n-1.

Consider the veétors
UA = [UA,, °*°* ﬁA ] and X% = [x,, *=°, x_1;
1’ 4 n ll r n 4

whenever UAi = 0, the corresponding X; > 0 and whenever UAi> 0,

the corresponding X; = 0. Thus in this case we have

XT»+ UA > 0.

This is a proof for the special case in Figure 12 and contains
the essential features of a proof which must be established for
whatever "edgé“ the origin is contained in (see Good [5], p.
9-10).

Case III. If O ¢ Hp and is an interiof point of Hp, then

there is a convex combination

O - A + o8 o0 + XnAn, X. > O (i=ll’ °..I n)'

X1 1 i

This means that if X is a preimage of O ¢ Ep, then X is strictly

positive. Now let U = 0 and again we have

x¥ + Uta > 0.

A concise statement of all three possibilities is contained
in the following theorem (called the key theorem by Tucker,
see Good [51, p. 7).

Theorem 29. The system of linear inequalities
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AX = 0
X220
UA 20

has a solution X* and U* such that X*T + y*a > 0.

Proof. Except for details relating to Caée II, this is
proved in the foregoing discussion.

It is perhaps more useful to state this theorem in the
following way; Let Al, oo, An be any finite set of vectors in

Ep; there exist scalars x;, e, x;’and a vector U¥¢ Ep such

that
* ose *
Alxl‘+ + Anxn 0
% .
XjéO, (j=ll ...I n)
U*Aj 2 0, (j=l, **°, n),

and

x§ + U*Aj >0, (j=1, =-+, n).

r

Corollary to Key Theorem. Let B, A *y An be n+l

ll
vectors in Ep. If UB 2 0 for every U satisfying the inequalities

UAi 2 0, i=l, *++, n, then B is a nonnegative linear combination

- of the vectors A, c°*, A.
Proof. Consider the vectors -B, Al, tee, An; from the

key theorem we know that there exist x; =20, i=0, 1, *°*, n,

satisfying

(1) -Bx* + A, x*

LN * =
0 1%1 + + Anxn 0,
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and a vector U* satisfying U*Ai 2 0, i=l, ***, n, and U*(-B) 2 0,

for which
(2) x; f,U(-B) >0
(3) x; +'UAi >0 (i=1, ***, n).

Write (1) as

* .‘o-. *: *
(4)} Alxl + + Anxn XOB.

If we can divide both sides of (4) by x; > 0 the conclusion of
the theorem would immediately result. Suppose x; = 0; then (2)
would require that UB < 0 and from (3) we have UA; 2 0. This
contradicts the hypothesis, so x; > 0. Dividing (4) on both
sides by x: gives the desired result.

ThiS'corollary is known as the Farkes theorem or lemma
in the literature on linear optimization and the theory of
games.

Theorem 30 (Theorem of the Alternative for Matrices).
The dual systems |

0 Mty

v
o

MX

PN

v

v
o

X 0 U

have solutions U* and X* such that U%* - MX* > 0 and
MIU* - X% > 0.
Proof;_ Suppose the system MX = 0, when written out

more fully, appears as



fin
o

allxl. + e + a., X

+ *° + a X 0.

plgl pn'n

fia

Insert slack variables Wir *tty WP and get a linear equation

system whose matrix is

A= [M I
Let

-, .

uy x]_
U* = . ' Y* = . H

u* x*

P n

1

W*

Conmc e p e

applying the key theorem to the matrix A we know that there

exist vectors U* and Y* satisfying

AY* = 0, Y2 0, ATU 2 0, Y* + ATU* > 0.

Now consider ATU* 2 0; we get

T Mt
ATu* = U* 2 0
I

or MYy 2 0 and IU* 2 0 = U*

flv
[e]

Also from
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Xk
M I] = 0 T
_W*J X* M
_ + u* > 0
X* ] W#* I :
20
*
_W —
we get
MX* + IW =0 = MX* = -W* 0
and

X* + MTU* >0

W* + u* > 0.

Since -MX* = X%, from the latter inequality we get
U* - MX* > 0.

Collecting results, we have

T

MX* < 0 MTU* 20
X% 20 u* £ 0
and X* + MTU* > 0, U* - MX* > 0,

which was to be shown.

Theorem 31. (The Skew-Symmetric Matrix Theorem). Let
K be a skew-symmetric matrix; the system KW 2 0, W 2 0 has a
solution W* such that W* + KW*¥ > 0 (i.e., W* has at least one

positive component since W* + KW* > 0 implies that W* # 0).
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Proof. Let M be a skew-symmetric matrix. Applying

" Theorem 30 to M we get

fia
O
=
=
[
fiv
<o
=
]
v
(]

MX |
(5) - (6) or (7)
X

v
o
[}
v
o
c
v
o
L]

These systems have solutions X* and U* such that

U* - MX* > 0 U* - MX* > 0

® . | or (9)
M U* + X* > 0 X* - MU* > 0.

Combining the systems (5), (7) gives

1A
o

M(X* + U*)
(10)

v
o

(X* + U*) 2
and combining (9) gives
(11) . (X* + U*) - M(X* + U*) > 0,

Now let K = -M and W* = X* + U%*; then (10) and (11) can be

‘written

fv
o

KW* 2

v
o

(12) W*

W* + KW* > 0

as was to be shown.

Suppose, on the other hand, we wanted to find a W*
satisfying (12), given a skew-symmetric matrix K. We take its

negative, call it C(C = -K). Now use Theorem 30 on the matrix C



- 62 -

since C is skew-symmetric. Then there is a vector W* = X* + U*

such that

W* 2 0
CW* 20
W* - CW* > 0.

‘This fesult cah also be stated as follows. There exists
a probability vector P such that CP 2'0, C skew-symmetric,
such that P + CP > 0. Geometricaliy this means that the convex
hull of the column vectors of the matrix C intersects the closed,
nonnegative orthant in Ep.

Moreover, W* has at least one component greater than zero,
since W* + KW* > 0 means that W¥ # 0. Finally, the vectors W¥
and KW¥* have the property that for each j=1, °++, n, the jth
component of oﬁe of the vectors W*, KW* ié positiﬁe if and only
if the jth component of the other is zero. The reason is clear:
the sum is positive but W* KW* = 0 since - (WXTKW*)T = (W*TKW*)T

because of the skew-symmetric property of the matrix K.

2.2. Linear Optimization. In this section we will con-

sider the following linear programming problem and its dual,

maximi f = + eee +
ize C1¥q c X

n
subject to
e o @ ..<. :
811%1 f * A10%n = bl
. 0 0 <
aplxl + + apnxn = bp
X .->_-.0 (j=l, ce+, n),
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~ and
minimize g = blul + e 4 bpup
subject to
e e @ _2
ajguq t + aplup s Cq
. ® 90 >
3% * * %on'p = n
ui =0 (i=1, =--, p)
Lemma 1. If X and U are feasible programs, respectively,
then cTx S UTB.

Lemma 2. If X* and U* are feasible programs, respectively,

T T

and if C*X* = U* B, then X* and U* are optimal vectors.

Proof. Suppose X* and U* are feasible; from Lemma 1 we

have for all feasible programs CTX S UTB. In particular,

cTxx S uTB. But CTX* = u*TB so U*'B = U'B for any feasible U.
This means that U* is an optimal program for the minization problem.
A similar argument establishes that X* is optimal for the maxi-

mization problem.

Now define a skew-symmetric matrix K to be

0 -A B
K=| a 0o -c|,
T T o
U
the vector W = X |, t a scalar. From Theorem 31 we know that
. N .

there exists a vector
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U
W* = | X*
t*
such that
KW* 2 0
(13)
W 20
and
(14) KW* + W% > 0.

The inequalities (13) give , when written out,

(1) AX* 5 Bt*

(1i)  ATu* 2

V.

Ct*

(iii) C'x* > Blu#

and the inequality (14) gives

(iv) AX* < Bt* + U¥*
(v) ATu* + x* > Ct*
(vi) CTX* + t* > BLU*.

Lemma 3. Suppose t* > 0; then there are optimal vectors

x° and UO such that

T T T

cTx® = v, v° + B > ax°, v°Ta + x°T > CT.

Proof. Multiply W* by the scalar 1

Py then
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U 0
T u
o 1 X¥* o
W=E—*-W*= W= X v
1 £°

and x° and U° then satisfy (i) and (ii) and are feasible. Lemma

2 and (iii) show that x° and U0 are optimal, respectively, and

Lemma 1 shows that CTXo = UOT

B. The inequalities in the stéte—‘
ment of Lemma 3 follow from (iv) and (v) with t° = 1.
Lemma 4. Let t* = 0; then

(a) at least one of the LP problems has no feasible vector.

(b) If the maximization problem has a feasible vector, then the
solution éet is unbounded and c'x is unboﬁnded over this
solution set (a corresponding statement holds for the dual
problem).

(c) Neither problem has an optimal solution.

2599£.~.Suppose X is a feasible vector for the maximization
problem. Using (ii), t* = 0 and the nonnegativity of X we get
.

U*”AX 0.

v

This, together with (vi), t* = 0, and the feasibility of X yields

T

- (15) 0 5 U*TAX 2 U*TB < CTx* .

To prove (a) we note that if the minimization problem has a
feasible vector U, then we can get

(16) 0 2 UTAX* 2 cTx*,

Now (16) contradicts (15), proving (a).
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To prove (b), consider the vector X + »X*, A 2 0. Now

X + AX* 2 0. From (i) and t* = 0 we have A(X + AX*) S AX £ B.
Therefore X + AX* for any X 2 0 is feasible. This proves the
first assertion of (b). Moreover, from (15) we have CTX* > 0;

then

CT(X + AX*) = CTX + ACTYX*

can be made arbitrarily large by choosing A sufficiently large.
This provés the second assertion of (b). Finally, (c) is an
immediate cohsequence of (b) for the maximization and the mini-
‘mization problem.

Lemma 5. Either both the maximization problem and the
minimizatioh problem have optimal vectors or neither does. In
the first caéé'the maximum and minimum values are equal; their
common value is called the optimal value of the dual L.P.
problems.

Proof. 1If one of the problems has optimal vectors, then
(c) of Lemma 4 shows that t* > 0. Then Lemma 3 shows that both
problems have optimal vectors Xx° and U® such that max CTX =
min UTB. |

Theorem 32 (the Duality Theorem). A feasible x° is
optimal if and only if there is a feasible vector U° with

CTXo = UOTB. A feasible U° is optimal if and only if there is

a feasible vector X° with CTXo = UOTB.
Proof. We prove only the first statement since the

second has an analogous proof. Lemma 2 is a proof of the
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sufficiency of this theorem. To prove necessity, suppose that
x° is optimal. By Lemma 4(c) we must have £2 > 0. By Lemma 3
the minimizaiion problem also has an optimal vector UO, and by.
Lemma 5 max CTX = min UTB.

Theorem 33’(Existence Theorem of Linear Programming).

A necessaryvand sufficient condition that one (and therefore
both) of the linear programming problems have optimal vectors
is that both have feasible vectors.

Proof. The necessity is obvious. To prove sufficiency,
suppose that both problems have feasible vectors. By Lemma 4(c)
we have t* > Q and by Lemma 3 both problems have‘optimél'vectors.

Theorem 34 (A Complementary Slackness Theorem). If both

problems have feasible vectors, then they have optimal vectors

x° and U° such that:

(1) if a™x° = bi’ Al the ith row vector of the matrix A, then
ug > 0 (the ith dual variable is positive);
(2) if UOTAj = Cj’ Aj the jth column vector of A, then x? >0

(jth primal variable is positive).
Proof. By the existence theorem both problems have opti-
mal vectors, so Lemma 5(c) implies that t* > 0. By Lemma 3 there

are optimal vectors such that

oT

(17) u°T + B > ax°, u°%

A+ x°F > cf,

The theorem is clearly proved, for consider the inequality on

the left above. It can be written as



o) 1.0
ul | bl A™X
Wl + b, -a%° | so0.
i i
o PO
- b - A X
. P _ _ P N

Then if a™x° - bi = 0, we must have ui > 0. Now consider the
inequality on the right in (17). This can be written as
OT — LY OT - LY OT — oc-nbo.'..o v e e ¢« o
(U Al ¢y U Aj cj U -An cn]+[xl xj xn]>[0 0 0].

Obviously if we have UOTAj = Cj’ the strict inequality requires
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