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BACKGROUND OF THIS PAPER

This paper was given before the meetings
of the American Statistical Association, August 16,
1972, in Montreal, Canada.

ABSTRACT

The usual approach to the construction of
confidence limits for time series forecasts begins
with the assumption that the forecast errors are
normally distributed. Williams and Goodman (JASA,
December, 1971) have recently reported on a practical
forecasting problem in which the data did not support
an assumption ‘of normality. They suggested an alter-
native procedure which requires that the underlying
distribution of forecast errors be specified, although
not necessarily as a normal distribution.

In this paper we develop a nonparametric
approach to the construction of confidence limits
which requires no such assumption concerning the
distribution of forecast errors. This nonparametric
procedure can be calculated from data more simply
than either procedure above, and avoids the possibility
of an erroneous distributional assumption and its
attendant problems.






A Nonparametric Approach to the Construction
of Prediction Intervals for Time Series Forecasts

1. Introduction. When forecasting a time series one is some-

times interested in specifying a random interval such that the
actual future observation will lie in the interval with a given
probability. This type of interval is sometimes called a pre-
diction interval and is to be contrasted with a confidence inter~
val, which, with a given probability, contains a fixed but unknown
parameter.‘

Denote the time series to be forecast as

U Remyr X Xggqr 00 1o

the forecast of Xt+l made at time t as X and the forecast

t+l
Then we seek a prediction interval

N

erxrox as et+l = Xt‘l‘l - Xt_l_l.

[a) A

(Xt+l+L’ Xt+1+U) such that the probability is o that the random

variable Xt+1 will appear in the interval, i.e., an interval such

that

~

(1) Pr{XpyreKppqthy X g 1003 = oy

L <0 < U.

It is convenient to rewrite (1) so as to refer to the forecast

error e, and we have analogously for this random variable

(2) Pr{e e(L, )} = a.

t+l



The standard approach to the chstruction of prediction
intervals requires the assumption that the e, are independent,
identically distributed normal random variables [11, [21, [3].
Recently, Williams and Goodman described a practical forecasting
study in which prediction intervals were desired, but in which
also the normality assumption was found to be inappropriate [7].
As a result prediction intervals which were calculated on the
basis of the no;mal theory failed to enclose the forecast error
with the theoretically expected frequency. They developed an
alternate procedure which requires one to determine a family of
distributions having a member which gives a good fit to the
empirical disfribution of the forecast errors. For the data they'
considered the gamma family was chosen.

The Williams and Goodman procedﬁre provides a general
method for the construction of prediction intervals when the
assumption of normality is not appropriate; however, a sophisti-
cated data analysis capability is required to determine an appro-
priate alternate family of distributions. The purpose of this
paper is to suggest another approach to the construction of pre-
dictiéh'intervals -- distribution-free prediction intervals --
which does not require specification of an alternate family of
distributions and so avoids the extensive data analysis necessary

in the Williams and Goodman procedure.

2. Distribution-Free Prediction Intervals. We assume that the

one step ahead forecast errors e, are independent, identically

t

distributed random variables with a fixed (continuous) density



function f(e).l Following the suggestion of Williams and

Goodman [7], we have a moving sample of fixed size n. That is,
as the most recent forecast error is observed the error for the
most remote time point in the sample is deleted so as to maintain
a fixed sample size n. Let the sample observations be

«e., e,, and let L and U the lower and upper end points,

Cten’ t

respectively, of the prediction interval be defined by the fol-

lowing functions:

(3) L = g(et_nr M / et) e(l)

(4) U

h(e

£=n! "7 et) = e(n)r

th

where e(l) and e(n) are the first and n order statistics from

a sample of size n from the distribution of errors f(e).
We now calculate the probability o that the random variable

e will appear in this interval,

t+1

(5) a = Pr{l < e < Ul.

t+1
If i1 is in the interval (L,U), then it must with probability
one be in one of the subintervals (e(i), e(i+l))' i=1, ***, n-1,

and the probability that e will be in any one of these sub-

t+l

’

lWe regard the assumption of independence as a reasonable one
because if the errors were dependent, one could in principle
utilize this in predicting future errors based on past errors

and thereby improve the forecast. For example, if the observed
serial correlation of the errors suggests that they can be
modeled by et = .9 et_; + at, where a; is serially uncorrelated
with mean 0, then we can use this equation for forecasting future
errors. The forecast accuracy would, of course, depend on the
error term a;.



intervals is the same as for any other subinterval. Since the
endpoints of the subintervals are order statistics and since

the order statistics can be selected in n! equally likely ways,
there is a total of n!(n-1l) equally likely ﬁays for the random

variable e to be in the prediction interval. Now there are

t+1
(n+1) ! equally likely ways for the order statistics e(l), ceey e(n+l)%

to be arranged and therefore

_ (n-1)n! _ n-1
<UFE DT T e

a = Pr{L < et+l

= = : 2
More generally for L e(r), U e(s), r <s 2 n,

o _ s-r
(6) o = P;{e(r) <epq < e(s)} = =7 -

3. Distribution-Free Tolerance Intervals. Yet another distribution-

free intervalhof potential use_ih forecasting is the tolerance
interval. Let L and U be syﬁmetric functions of the sample
 pr " v © such that the random interval (L,U) will with
probability y cover at least a fixed, preassigned proportion p

of the density f(e), i.e., an interval such that

' U
(7) Pr {[ f(e) de 2 p!}
‘ L

Il
=<

Such an interval is called a 100p% tolerance interval at proba-
bility level vy[6, p. 334~336]. We observe that (7) can be also

written

(8)  Pr{F(V) - F(L) 2p} =y ,
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U
where F(U) = [ f(e) de.

For the case in which L and U are given by L =,e(r), U = e(s),
r <s £n it is well known that F(e(s)) - F(e(r)
distribution and is independent of F(e) [6, p. 238]. Therefore

) has a beta

the tolerance intervals defined by the order statistics e(r) and
©(s) will be distribution-free. For fixed preassigned p,r,s, and
n the incomplete beta function can be used to evaluate y for the

itolerance interval (7),

n-1 s-r-1 . n=s+v
s—r—l)u (1-u) d

(9) n( u,

=<
N
0~

0 =us1.

4.1Relations'Between Distribution-Free Prediction and Tolerance

Intervals. For a fixed sample size n, the distribution-free
tolerance interval (L,U) will have an expected coverage
U

E{[ f(e)de } = E{F(e
L

— -r
(s)) ~ Tl Y= oo

the mean of the beta distribution parameterized as in (9).
Therefore the o level of a prediction interval defined by
(e(r), e(s)) is identically the expected coverage of the

(e(r), e(s)) tolerance interval. Additionally the values p and

v of the tolerance interval satisfy the relation

(10) o 2 py ,



as can be easily shown.2

5. The Application of Distribution-Free Intervals in Forecasting.

In order to make distribution-free interval forecasts one begins
by generating sequentially point forecasts for known values of
the time series using only information which was available prior
to the observation being forecast. In this way a time series of
forecast errors can be constructed. In practice, one chooses
two positive integers, r and s, r < s, and values of o from (6),
P and y from (7) to satisfy the needs of the particular fore-
casting problem under study. Relation (6) can then be used to
determine the sample size n required for a chosen o level
distribution-free prediction interval (e(r); e(s)). Tables of

- the incomplete beta fuhction can be used to determine a sample

size for choices of p and y. Charts are also available [4], [5]

2Let f(U,L) be the joint density of U and L and T be the set of
values of U and L such that

U
> .
{ fleggydeeyy = Pi
then
o = Pr(L < i < U)
= [[Pr(L < e,y < U|U,L)£(U,L)qUAL
all:
U,L
2 [[ pr(L<e < u|u,L) £(U,L)dudL
t+l
U,LeT

Zp ] £(u,L)dudL = py.
U,LeT



which can be used to quickly determine n given r,s,p and y.

!When the intervals have been specified, the following
statements can be made with respect to future forecasts based on
these intervals. For continued one step ahead forecasting we can
expect the interval forecaét to enclose 1000% of the actual fore-
cast errors és in (2). We can also be 100y% confident that at
least 100p% of the future observed errors will be enclosed.
Analogous statements can be made with respect to the observations
on the time series of interest instead of the time series of

forecast errors by making use of (1) instead of (2).

6., Empirical Results

A brief empirical investigation was chducted on six time
series Qf forecast eirors of 131 points each which were supplied
by the Bell Laboratories. The éeries being forecast are the same
series discussed in Williams and Goodman [7]1; however, the fore-
casting equation used differs slightly from their equation (3.1)
in that the quadratic term t2 is not present.

Five distribution-free prediction intervals were calculated

each from a moving sample of size 19:

Prediction Interval

T 0t MaX{]e(19)|,|e(l)|}

I lemyr eny! |
ITI ot 2nd largest{b|e(19) |/ le(l8) Il Ie(l) l ’ Ie>(2') |}
- th ,
Vv 0t 4&2 largest{ !e(lg)ll |e‘(13) |/ Ie(]_?) " le(16) l'
Ie(l) ! '!6(2) | rle(3) | '!e(4) |}
v v

(e(2)r ©(18)!
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The sample size was chosen using equation (6) so that the
prediction intervals would enclose the forecast error with the

following probabilities:

Prediction Probability
" Interval Forecast error enclosed
I .95
II .90
IIT .90
v .80
\Y% .80

The observed relative frequency of successful enclosures for the
distribution-free prediction intervals waé compared to the ob-
served relatiye frequency of successful enclosures based on the
normal theory. The latter were supplied by Williams and Goodman

in a private communication. The results are presented in Table 1.

‘Table 1

Theoretically
Expected Relative
Frequency of

Observed Relative Frequency
of Successful Enclosures

Successful Based on Normal
- Enclosures - - '  Assumption ' ' Distribution-free
.95 .8948 .9479
.90 . 8257 .8988 (interval II)
. .8929 (interval IIT)

.80 .7163 .8140 (interval IV)
o ... ....1976 (interval V)
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