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INTRODUCTION TO LINEAR SHIFT-REGISTER GENERATED SEQUENCES
INTRODUCTION

One of the recent developments in communications equipment has been
the use of digital sequences to generate waveforms having certain desired
properties. One such application is the Rake System (Ref. 1), developed at
M.I.T., Lincoln Laboratories which uses waveforms generated from digital
sequences to form the reference signals for a teletype communication system.
Either one of two waveforms is broadcast from the transmitter; the receiver,
which is generating the exact same sequences, crosscorrelates its internally
generated waveforms with the incoming signal to determine which of the two
was broadcast. The peculiar advantages of the digitally-generated waveform
in'this application are that the resulting waveform has a wide bandwidth, the
power is nearly uniform throughout the bandwidth, and the autocorrelation
function is approximately zero outside of the narrow pedk at zero delay.

An application in radar is treated by Siebert (Ref. 2), where the
digital sequence is used to modulate the output pulse of a radar. The advan-
tage here is that the traditional compromise between output power and range
resolution is offset considerably. The modulating of the output pulse by the
digital sequence allows a long pulse to achieve the range resolution of a
short one. This means that the position uncertainty is limited by the digit
pulse width while the average output power is limited by the total trans-
mitted pulse width.

A digital sequence refers to a succession of binary states; for
convenience the binary states are usually regarded as consisting of O's and
1's. When considering digital sequences it is implied that the digits of the
series occur in a known or deterministic manner, as opposed to a "random

sequence” in which the binary state at any particular time is determined by



probabilistic properties. However, the properties of the digital sequences
are similar to random sequences in many respects, and therefore digital se-
quences are often referred to as "psuedo-random" sequences.

The purpose of this report is to present in an orderly fashion what
we regard as the fundamentals concerning the generation and properties of
digital sequences. We wish to deal with such questions as the following:

For a given number of stages, how many maximal sequences are attainable? What
connections of the stages result ih‘these maximally long sequences? What are
the -auto-correlation properties of both maximal and non-maximal sequences?

In pursuing this goal, the mathematical methods for treating digital sequences
are elucidated. Since the mathematical treatment of digital sequences in-
volves the use of material that is often not familiar to the engineer, an im-
portant goal of this report will be to develop ﬁhe techniques from the tools
generally used by engineers. Most of this report is based on wofk done with
an experimental shift-register and accompanying theoretical work at EDG. The
approach is oriented towards the practical viewpoint of dealing with sequences,
but the theoretical work necessary to justify conclusions is included.
Although the major interest in the past has been in maximal sequences, we
shall also consider some structure of non-maximal sequences, which has been
noted.

In this report long mathematical proofs are not introduced in the
text, but rather assigned to the Appendix. Short proofs and intuitive
justifications appear in the text, but all the others are in the Appendix.

In Section 1 the shift-register as a generator of digital sequences
is considered, and the shift-register itself is described. A necessary
auxiliary topic to this is a short.treatment of modulo-two addition, which

is used in a shift-register generator (SRG). Also in this section the



relations of the SRG to other generators of digital sequences' is considered.
Section 2 1is devoted to the fundamental properties of sequences. The initial
discussion of these properties does not require a mathematical formulation of
the shift-register operation; this section provides a broad basis which will
make the following, more detailed, sections easier to follow.

Section 3 deals with the mathematical formulation of both the shift-
register and the sequences that it produces. An important part of this sec-
tion consists of setting‘up notations which are necessary to treat this topic.
Section 4 then uses these mathematical formulations to deal specifically with
maximally long sequences, and Section 5 treats the non-maximal case. In both
of these sections the major aim is to exhibit the mathematical structure of

the sequences, and of the relations between the sequences.

SECTION 1. SHIFT REGISTER GENERATION OF BINARY SEQUENCES

A shift-register generator consists essentially of a basic shift-
register to which modulo-two adders have been added. These adders are con-
nected to various stages of the register. The outputs from the register
stages form the inputs to the modulo-two adders, and the output of the adders
are fed back to some other stage of the register so that a single (or multiple)
closed loop is formed.. When the shift-register is then pulsed in the normal
manner, the output from any stage of the register forms a digital sequence.
In the general case the ensuing digital sequence depends on both the feedback
connections and on the initial loading (or content) of the shift-register.

Previous to being used to generate digital sequences, the major use
of a shift-register was in the arithmetic unit of a digital computer. A
shift-register consists of a series of bistable elements with the capability
of moving what is in each element to the next element by means of a "shift"

pulse (Ref. 3). The general technique for accomplishing this consists of
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returning each element to the O state whenever a shift pulse arrives, and then
providing for a delayed signal to arrive from the previous stage (of any ele-
ment) if the particular previous stage formerly was in the 1 state. The basic
block diagram for a shift-register is shown in Figure 1(a). In all future
diagrams we shall not show the shift signal path or the delay units, but shall

show only the series of bistable elements as indicated in Figure 1(b).

Delay Delay ' Delay

Bi-Stable BuSoE. B'S'EO B-SoEo — e
Element #o #3 #h4
/ A \

Shift Signal

1 2 3 4 _—
(b)

Figure 1. Block Diagram of a Basic Shift-Register

A shift-register is thus a storage unit which moves its stored
contents one position for each shift pulse. If such a shift-register has
some initial zeros and ones stored in.it, as the register is pulsed the out-
put of the last stage will be these stored zeros and ones followed by a
string of zeros. However, if the last stage is fed back to the first stage,
the output of the last stage will now be periodic----- Just the initially
stored digits circulating around and around. These two uses of the shift-
register are not "shift-register generators;'but are storage devices. The
object of the "generator" is to produce outputs with periods much longer than

the length of the register, but with no external input.



Later, when considering multiple-return generators, we shall
broaden the concept of shift-register to include sets of storage units in
which a particular content does not necessarily move to an adjacent position,
but may move to various other positions depending on the connections between
the units.

To form a shift-register generator, modulo-two adders are attached
to this basic register'to form feedback loops. At this point a few comments
on modulo-two addition are appropriate. The addition table for modulo~two
addition is shown in Figure 2; circuits which operate according to this table
are often referred to as "exclusive-or" circuits by computer logiéians. It
is noted that there is no output when the inputs are alike, and there is an

output whenever the inputs are different.

0 1
0Olo0o |1
1 1 0

Figure 2. Modulo-Two Addition Table

Ordinary binary additipn is a combination of modular addition and a carry

operation; if one wishes he can view modulo-two addition as ordinary addition

written to the base two, where only the least significant digit is recorded.
One of the simplest shift-register generators consists of using

one adder along with the basic shift-register. A simple generator is shown

in Figure 3, where the numbers in the blocks refer to the bistable elements

of the basic shift-register. The output could be taken from any of the stages

but we usually think of the output as coming from the last stage of the reg-

ister.



Modulo=-Two

Adder
[~ ~ 7 3nift Register | | B
} |Output
———-—r- 1 2 3 L 5 6 |-
| I
L e J

Figure 3. A Simple Shift-Register Generator

To see that this is tfuly a generator and not just a storage device,
consider an initial storage of six ones. The next five inputs will all be
zeros since the initial ones will continue to be shifted into both the fifth
and sixth stages for five shifts. The total sequence has a period of sixty-
three digits (compared to six for storage), and is 11111100000100001100010100
1111010001110010010110111011001101010, repeated over and over.

Altﬁough the register elements of Figure 3 are all connected directly
to each other, frequently it is useful to think of modulo-two adders as also
existing between the elements. In order to produce the same effect as in
Figure 3 one input of these additional adders will be grounded. Thus, for
purposes of generality, we wish to modify the generator of Figure 3 as de-
picted in Figure 4. The important idea behind these extra adders is that we

could, if we wished, form feedback loops between any stages. Note that,

in Figure 4, grounding one input of the adders between stages is the same

Output

1 2 3 H?—54ﬁ?‘6——+

— — -
- - -

Figure 4. A More General Representation of a Simple Shift-
Register, as in Figure 3
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thing as connecting the stages directly; that is a general property of modulo-
two adders.

We can now distinguish between two types of shift-register generators.
If the stages are conneéted as in both Figures 3 and 4, we shall call the re-
sulting generator a simple shift-register generator. We shall henceforth use
the representation of Figure 3 to denote the simple shift-register generator
(SSRG). The other type of generator to which we shall refer is called the
"multiple-return" generator, and an example of such a generator is shown in

Figure 5.

Figure 5. An Example of a Multiple-Return Generator

In the SSRG feedbacks are all returned to a single input. A multiple-
return generator will have adder outputs to two or more stage inputs. It is
possible in such a generator to have feedforward as well as feedback connec-
tions. Since the interstage adders that have one input grounded are super-
fluous, a better representation of the chosen example is shown in Figure 6.

The difference between the simple‘and the mﬁltiple-return generators will ap-
pear throughout this report. We shall see that every multiple-return generator

(that has no transients) possesses an equivalent simple generator.

Another feature of an SRG concerns the number of feedback taps made
from the basic shift-register. In thinking of this we need consider only the

simple generator, for the reason that every multi-return generator has a simple
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Figure 6. Another representation of the generator of Figure 5

equivalent. If the number of feedback connections (on the simple generator)
is an even number then we shall term the resulting generator an "even feedback"
generator. All of the examples shown so far are generators of the even feed-
back type -- in order to ascertain this for the multiple-return case it is
necessary first to find the simple equivalent, which will be considered later.
We shall have occasion, later, to exclude generators that have
transients in their sequences, and hence it is pertinent to briefly describe
them. If an SRG produces a sequence that goes through a transient series of
digits before settling into a periodic sequence, then that generator is said
to possess transients. The simplest example of such a generator is one which
includes a register element outside any feedback loop which does feed or is
fed by some element within a loop. As examples, consider the two generators
of Figure 7. The first generator has a transient because of the delay stage
at the end which is not connected in a loop. The second one has a transient
because of stage 1, which feeds stage 2 but is not connected within a loop.

Unless specified, the SRG's in this report have no transients.

Before concluding this section it should be pointed out that, as
long as one restricts the feedback operations to addition and does not per-

mit multiplication, the resulting generator will be a linear device and can



Initial Condition: 1001 Output: 1 001011l 001011l - - -

or

3 Initial Condition: 1000 Output: O 0010111l 0010111l - - -

Figure 7. Two Examples of "Transient" Generators and Their
Output Sequences

be expected to obey the usual laws of linear devices. For example, we shall

see later that these shift-register generators obey the law of superposition.

SECTION 2 . FUNDAMENTAL PROPERTIES OF SRG SEQUENCES

When one connects a shift-register as a sequence generator, it is
found that the output sequence is a function of the particular feedback con-
nections made. Also, for some connections, the output sequence depends on
the initial loading of the register. This has lead to the grouping of the

output sequences into two types: maximal sequences and non-maximal sequences.

This grouping is based on the "length" or "period" of the output sequence.
For a given number of stages in a register there exists a maximum period for
any output sequence; that is, there exists a maximum to the number of digits
which occur before the sequence begins to repeat itself. It is quite easy to
establish this number. Consider a simple generator of n stages; if, as it is
shifted, the register successively contains every combination of n zero-and-
ones then the output sequence will be the largest possible. Since there are
o1 different n-digit binary numbers, this would seem to be the maximum period
possible. However, the sequence generator cannot possess all zeros in its

stages (if it did, the generator would remain in this state and produce the

-9 -
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all zero sequence); for this reason the largest possible period for a linear

n stage shift-register is 2% - 1. Thus if a given output sequence has a

period equal to 2% - 1 = L, then that sequence is called a maximal length

sequence.
L=20 -1 (1)
where L = length of maximal length sequence
n = number of stages in the shift-register generator

Example l:Consider a generator of six stages, with feedback faps on 6 and 5.
This generator is shown in Figure 3. With this connection a sequence 63 long
is obtained; since o6 -1 = 63, this is a maximal sequence and contains all
6-tuples except the all zeros.

If a given output sequence has a period shorter than L, that
sequence 1s termed a non-maximal length sequence. As étated in the introduc-
tion the traditional interest has been in maximal sequences; however, non-
maximal ones may prove interesting in the future and this report deals with
both types.

The feedback connections of a generator determine whether the out-
put sequence will be maximal or non-maximal. Maximal sequences can be obtained
from a generator with any number of stages (n). However, proper feedback con-
nections must be chosen in order to produce a maximal sequence.

If with a given feedbaék connection one obtains a non-maximal se-
quence, then the output sequence depends also upon the initial load in the
register. In other words, with a maximal length sequence one and only one
sequence can be obtained from the connection; in the non-maximal case, how-
ever, a number of sequences can be obtained from that connection and which
one of the possible is obtained depends upon the initial state of the register.

Among the various sequences obtained from the non-maximal connection

one sequence is of more importance than the others: the "impulse response se-

quence." The impulse response sequence results when the register is loaded
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with all zeros except for either the first or the last stage.. For an SSRG
the output will then contain a one followed by n - 1 zeros and another one;
this sequence is termed the impulse response. We shall later see the im-
portance of this sequence in the non-maximal case; for the maximal sequence
case, the single output sequence is the impulse response. Since the impulse
response sequence (abbreviated IR sequence) is of special importance, we will
label its length "L".

! = Length of impulse response (IR) sequence. (2)
Since £ is not uniquely related to the number of stages in the register we
cannot write a relation such as equation (1) which applies to the maximal
case.

Having introduced the concept of maximal and non-maximal sequences
we are nov in a position to formalize some basic properties of these two
types of sequences. We shall state these basic theorems without proof; the
proofs are given later in the Appendix.

Theorem 1: Given an n-stage shift-register generator, each n-tuple
of binary digits appears once and only once among the sequences

of this ‘generator. Note that it may be necessary to place different
initial loads in the register in order to see all n-tuples (the non-
maximal case).

If all the n-tuples (except the all zero n-tuple) appear in the se-
quence before the sequence begins to repeat itself, then the generator is pro-
ducing a maximal length sequence; and there are 28 - 1 total digits in a period
of the sequence, as discussed earlier.

Corollary Tl.l: If the sequence does repeat itself before all the

n-tuples appear several non-maximal sequences occur, and one of

these is the IR sequence. Further, the periods of the various

...ll_



sequences (omitting the all zero sequence) add the equal 20 - 1.
Let p1, Pos P3, etc., be the period lengths of the sequences

other than the IR sequence. Then:

L+p +po+...=2"-1=1 (3)
where I = period lépgth of the impulse-response sequence;
P = period length of other non-maximal sequences in the group.

In other words, given a generator which is connected to give non-maximal se-
quences, the sum of the periods of all the sequences add to equal the maximal
length period.
Example 2: The eight stage generator with taps on 8 and 7 gives a set of non-
maximal sequences. The IR response length (£ ) is 63; there are three more
sequences of length 63 and one sequence of length 3. Hence the lengths add
to 28 - 1 = 255,

Theorem 2: The length of any sequence divides the length of the

impulse-response sequence. The standard notation to indicaté this

is

by { (1")
It should be kept in mind that it is not necessary for each p; to divide L,
the maximal length period, since fand L may be relatively prime. In the ex-
ample of feedbacks on 8 and 7 above, it will be noted that the length of each
sequence divides the IR length.
Another theorem which is importaht enough to consider at this point

is the following:

Theorem 3: No simple shift-register generator which utilizes an odd

number of feedback taps can produce a maximal length sequence.

The proof of this is seen as follows: consider filling the generator

with all 1's; with an odd number of feedback taps the digit fed back will al-
ways be a 1 so that the resulting sequence will be all 1's with a period of

one. Since the sum of the sequence periods must equal L, the longest sequence

..12-



1s at most L - 1; hence no odd number of feedbacks will produce a maximal se-
quence.

Therefore if we seek only those connections which result in maximal
length sequences we need only consider those generators which utilize an even
number of feedback tapé.

A matter of importance at this point concerns the reverse of a given
sequence. Given an SSRG with its output sequence, there exists a known re-

lated SSRG that will produce the reverse sequence of the original one. The

n n

" .cba..."

"...abc ..." is the sequence

reverse of a sequence
that is, it is the sequence read in the reverse order. Every sequence of
course hés a reverse, but sdmetimes'the reverée may be identicél to the se-
quence itself; in this case the sequence (or SSRG connection) is called self-
reverse. The procedure for finding the reverse SSRG is quite simple:

If an n-stage SSRG has feedback taps on stages n, k, my...., the reverse

generator will have feedback taps on stages n, n -k, n - m, ...., etc.

Example 3: Consider the generator of Figure 3, which has taps on stages 5
and 6. The reverse SSRG will have taps on stages 1 and 6. These are maximal
generators, and the output sequence of the one is the reverse of the other.
If a non-maximal SSRG is involved, each sequence from the reverse generator
is the reverse of one of the sequences from the other.

Frequently it is of interest to determine the generator connections
if one knows the output sequence. The following statement pertains to this:
given an n-stage SSRG; if we know 2n - 1 digits of the output sequence of
this generator we can uniquely determine the feedback connections.

The justification for the number 2n - 1 is that n digits are re-
quired as an initial condition, and n-1 additional digits are necessary to
uniquely specify which of the taps are fed back. The nth stage feeds back,

and one must determine if the first, the second, etc., to the (n-l)St stages

are fed back. In general, one finds the feedback connections by using the
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standard methods of solving simultaneous equations. It is necessary to solve
n-1 such equations, and it must be remembered that modulo-two arithmetic is
involved. If the 2n - 1 digits of the sequence start with n-1 zeros followed
Ey a one then a relatively short tabular method can be used to find the con-
nections. This tabular method is outlined in figure 8 for a nine-stage

generator.

.000000001121110111001160.

Figure 8a) Part of the given sequence from a nine stage generator.

-

11110111

1
0]
0
0
0
0
0
0
0

Figure 8b) Initial chart entries taken from the sequence as indicated.

N 0) (1) ) 1(3) ) ) wE) uT) ¥(8)
1 1 1 1 1 1 0 1 1 1
2 0 1 1 1 1 1 0 1 1
3 0 0 | 1 1 1 1 1 0 1
I 0 0 0 1 1 1 1 1 0
5 0 0 0 0 1 1 1 1 1
6 0 0 0 0 0 1 1 1 1
T 0 0 0 0 0 0 1 1 1
8 0 0 0 0 0 0 0 1 1
9 0 0 0 0 0 0 0 0 1

Figure 8c) Chart completed by diagonalization of initial entries.
The column Y(j) is the contents of the register after j shifts.
The i-th row is the successive contents of the i-th stage.

- 1 -



1): "1" IS in feedback Y(4)—» ¥(5): "s5" IS in feedback
2): "2" is NOT in feedback Y(5)—Y¥(6): "6" is NOT in feedback
3): "3" is NOT in feedback Y(6)— Y(7): "7" IS in feedback
L): "4" is NOT in feedback Y(7)— Y(8): "8" is NOT in feedback

Figure 8d4) Steps used to determine that the feedback taps are 1, 5, and 7 in
addition to 9.

Figure 8. Method for finding the simple generator from an impulse sequence

Part of the output sequence from a nine-stage generator is shown in
Figure 8a; seventeen digits from this sequence are required to find the simple
generator. The reader may use the remaining digits to check the result. The
first two steps will form a chart of the nine successive register contents
that are required in order to produce the given seventeen output digits. In
the final step the shift of each successive content column into the next will
be used to establish which of the stages, 1 through 8, are fed back in addi-
tion to the ninth.

The first step consists of writing the first seventeen digits of the
sequence as shown in Figure 8b. Reading the sequence from left to right, one
writes the first 9 digits vertically, starting at the bottom, and then continues
the remaining 8 digits horizontally. The vertical digits are the initial con-
tent column and the horizontal row contains the digits which must appear suc-
cessively in the first stage. It can be seen that this 1s the necessary ar-
rangement of contents in order for the desired sequence to appear. The second
step consists of filling in the content columns by repeating each initial entry
on a descending diagonal, the exact duplicate of the manner in which the SSRG
shifts its contents. The completed set of content columns is shown in Figure 8c.

In the final step one starts with the first content column (contain-
ing a single one in the first stage) and decides whether the first stage is
fed back by considering the first digit of the second column. In the example

it is apparent that stage one has a feedback tap in order to obtain a one in
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the first position of Y(1). Then, using Y(1), one considers whether stage 2
has a tap by comparing the contents of the first two positions of Y(1) with
that of the first position of Y(2). In the example it is seen that stage 2 is
ﬁot fed back; 1f the second stage did have a tap a zero would have been fed
back to the first position of Y(2). Next one compares the first three con-
tents of Y(2) with the first content of Y(3); Y(3) has no tap. This is con-
tinued until all stages have been treated. The success of this method lies
with the fact that each stage j of contents has only zeros until the column
Y(j-1); thus the content columns form a triangular matrix. Under this condi-
tion the assoclated equations can be solved one‘at a time by starting with
the first and then moving downward,tusing the:information from the previously
solved equations. The complete logic for the example is given iﬁ Figure 8d.
It shoﬁld be remembered that the above method can be used as an alternative
to solving equations simultaneously only if the given 2n-1 digits begin with
n-1 zeros.

Another property of considerable importance in digital sequences
is the "shift and add" property. This property is best introduced by consider-
ing two 1ldentical sequences being édded together in a modulo-two fashion. If.
the resulting sum sequence is a shifted version of the original sequence, for
any shift between the original two, then the original sequence 1s said to have
the shift and add property. This property can be demonstrated with a single
generator and a delay dévice, as in Figure 9. If the output sequence is a
shifted version of the original for any amount of delay (quantized) then the
sequence has the shift and add property.

It will be shown later that all maximal length sequences have the
shift and add property. The non-maximal length sequences exhibit what may be
termed a "partial" shift and add property; that is, particular shifts (delays)

do result in obtaining the same sequence again but the remaining shifts do not.

- 16 -



. . Output
Shift Register
Generator > Delay

Figure 9. Illustrating the Shift and Add Property

The above properties, then, may be regarded as the most fundamental
in the study of digital sequences. In the following section we begin the
mathematical formulation for digital sequences. It is intended that the
preceding material serve as a general picture to make the more detailed ma-

terial which follows more easily understood.

- SECTION 5. MATHEMATICAL FORMULATION OF SHIFT REGISTERS AND SEQUENCES

The chief object of this section will be to set up and explain the
notation and mathematical formulation of SRG's and their sequences. These
tools will then be applied to maximal sequences in Section 4 and to non-
maximal sequences in Section D.

3.1 The A Matrix

If we considér the contents of an n-stage shift register as an n-
dimensional veétor, it follows rather readily that the shift register is act-
ing as a matrix operator on such Vectors. Hence we should be able to repre-
sent any given shift register mathematically by a proper matrix. Also, since
we are dealing with binary sequences, the field of the coefficients will be
the integers O and 1 (mod 2).

We wish this matrix to perform the following function: given the

n contents of an n stage generator, if we multiply the n column content
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vector by this matrix on the left, we obtain the contents of the, generator
after one shift. In other words, operating on the contents vector with the
matrix performs the same function as running the generator a step at a time.
In the literature (Ref. 4) this matrix has been called the "A" matrix, and
this notation will be adopted in this report.

The A matrix is constructed in the following manner. First number
the stages of the generator in the same direction as the contents travel under
shifting. For n stages, the matrix will be n by n; identify each row of the
matrix with the input to the corresponding stage in the register. In each row
of the matrix we will place a 1 for each stage that feeds the stage correspond-
ing to that row. Referring back to Figure 3 it is evident that, for a simple
generator, we will always have a diagonal array of ones just below the diagonal
since each stage is fed by its preceding stage except the first one. Let us
construct the A matrix for the simple generator shown in Figure 3 and redrawn
in Figure 10. Considering row 1, we note that stage 1 is fed by stages 5 and
6; hence in row 1 we place a 1 in the 5th and 6th columns. For row two, we
see that stage 2 is fed by stage 1; for row 3, stage 5 is fed by stage 2, etc..

Hence the A matrix for this connection appears as shown in the Figure.

-

OO0OOOH+rHO
QO OH+HOO
OOHOOO
O OO OO
HOOOOHH
[cNoNoNONON

Y

=
no
W

=
1
o

~ J

Figure 10. Constructing the A Matrix for the Generator Shown in
Figure 3

Although most of the A matrices we will deal with will represent

simple generators and hence be of the type shown in Figure 10, it is instructive
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to consider a more complex example. We take as a second example the multi-
return generator shown in Figure 6.1 Considering the rows corresponding to

each stage, it will be seen that the A matrix is as shown in Figure 1l.

[cNoNoNoN NG
OO OH+rHHEO
OHHFHOOO
O HOOOO
HOOOOH
[oNoNoNONON

| [ ' L A =
~1~>ér)—>2 p) u~>é9—>5 6

Figure 11. Constructing the A Matrix for the Generator Shown in Figure 6

Suppose we load a generator with given initial conditions; then,
if we conslder this initial load as a n-row column vector, and multiply it
by the A matrix on the left, we are doing the equivalent of shifting the
generator by one step. The result is the contents of the generator after one
shift. If we repeat this process, we find the contents of the generator after
each shift. Therefore, multiplying on the left by a power of A is the same
as shifting the register by that power. We can write this by using the matrix
notation or by expressing the matrix operation as a summation. Equation 5

shows the function of the A matrix in both notations.

U(5 + 1) = A U(3)

ui(j +1) =k§l 8y (J) (5)

where: ui(j) contents of the ith stage of the register after the
jth shift.

elements of the A matrix.

8ik

lUsing the impulse response of this generator and the reduction method of
Figure 8, it is found that an SSRG with taps on 6, 4, and 1 produces the
same sequences.
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uz ()

u(3) =] u(y) = contents vector of register after
u3(J) J shifts.
u,(J)

From the preceding statements it follows that:

U3 +2) = A U(3)
U3 ¢ 3) = A5;U(J) (6)
U3 b m) = AR'u(s)

The order of a matrix is given by that lowest power of the matrix
which yields the identity matrix. From equation (6) it is seen that when
A® = I, both vectors in the equation are the same. Hence the period of the
sequence from a generator will be given by the order of the matrix which rep=-

resents that generator. This means, in the maximal length case, that
n .
AL o a2t =1 _ g (1)

For the non-maximal length case it means that:

AI =1 (8)

Equation (8) is not obvious from the above reasoning, and is proved
in Appendix A.2. The proof rests on Theorem 2, which states that "the period
of any sequence from an SSRG divides the IR sequence period." It should be
emphasized that the importance of the IR sequence, mentioned before, stems
from Theorem 2 and Equation (8).

It should be noted that in the non-meximal case there will be
sequences with periods shorter than{ but since, by Theorem 2, the length
of every sequence divides the IR period, these shorter sequences will also be

periodic every [ digits. - 20 =



The inverse of the A matrix plays the role of runnihg the generator
backwards. It can éasily be shown (Appendix A.l) that every simple generator
has a matrix which is non=-singular and hence has an inverse; a consequence of
this is that it will have no transients. Also, any multiple-return generator's
matrix has an inverse unless the generator is so consﬁructed as to have
transients.

%.2 The Characteristic Equation

Having established the construction and meaning of the A matrix, we
now wish to consider the "characteristic equation" of the A matrix. In
general, when dealing with matrices, the characteristic equation is of great
value for mathematical manipulations. In the cases here we shall find this
equation of great value in determining the structure behind digital sequences.

In general the characteristic equation of any n x n matrix (A) is an
nth degree equation formed by setting the determinant|A - tI| equal to zero.
Since the coefficients are taken from the field of integers modulo=-two it
makes no difference whether we consider the minus sign to be a plus sign. In

addition, the "characteristic polynomial" is the determinant itself (without

setting it equal to zero. )

Characteristic Polynominal of A: |A - §I| (9)

Cheracteristic Equation of A: |A - ¢I/2 0 (mod 2)

Although one can always find the characteristic equation by con-
sidering the determinant, it is simpler in some cases to use the companion
matrix for this purpose.l With every equation there is associated a "companion
matrix," and the matrix ié defined as follows: If the equation is

§n+ c1 gn'l + ngn-z +.....4c; 50 (mod 2) (10)

then the companion matrix is

Ihe companion matrix refers to either the form as in equation (11) or its
transpose. (Ref. 5) uses one form and (Ref. 6) uses the other.



01000....0
00100. .. 0
companion matrix = 00010....0 (ll)
oooo0l....0
' [
] ]
(] |
Cn Cpel - - - - - Cp

.

It must be emphasized that the plus éigns in equation (10) signify
modulo-2 addition. In fact, for the remainder of this report, any equation
whose unknowns are matrices will involve modulo~2 addition.

The object now is to note that, if one is given a companion matrix,
then one can read off the characteristic equation by looking at the last row.
The companion matrix will also play a part in considering the equivalent SSRG
of multiple-return generators which have no transients.

Referring to the generator matrix of Figure 10, we note that this
matrix is only a rotation away from being a companion matrix.2 This will be

true for all SSRG's and can be stated as follows: the A matrix resulting

from any SSRG is only a rotation away from being a companion matrix. There-

fore to find the characteristic equation of a simple generator we need only
take the A matrix, rotate it and then use equation(1ll). Since the first row
of the A matrix for a SSRG is directly related to the feedback taps, a direct
relation exists between the taps and the characteristic equation. This rela-
tion can be stated formally: if the feedback taps are on stages n, k, m, etc.,
the characteristic equation will be:
£D 4+ gDk 4 D 4T 2 0, (mod 2) (12)

where n, k, m. etc. = stages fed back in simple generator.

Observe that a feedback tap will always occur in the nth stage; if this were

not true we would merely be shortening the register, and its length would no

longer be n.

2R n n Rses o
AT is the 'rotate" of A if a'ij = an-i+1, n-j+l
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If we write an equation where the powers appearing are the stages fed
back in one generator we have the characteristic equation for the reverse
generator. In other words, if we have feedback teps on stages n, k, and m,
and write an equation:

8+ 68 4+ %+ T 20, (mod 2) (13)
this is the characteristic equation of the generator that produces the reverse
sequence from that produced by matrix A.

Now, by the Caley-Hamilton Theorem(Ref.5),the matrix satisfies its own
characteristic equation; therefore the importent matrix equation corresponding
to a SSRG with feedback téps on n, k, m, etec. is:

AR 4 AR L A0 T =0 (mod 2) (14)
Example k: Consider the SSRG of Figure 10. Since there are feedback taps on
stages 5 and 6, the use of equation (14) specifies that the characteristic
equation is:
Menr+1=o (14a)

In this manner, then, the characteristic equation can be determined
for any SSRG.

In view of the relation between feedback'taps and characteristic
equations for SSRG's, we wish to set up a notation convention that will be

used throughout this report. The convention is as follows:

[n, k, m, ... 0]: feedback equation and specifies feedback

taps of a simple generator on stages n, k, (15)
My eee o
(n, k, m, ... 0): polynominal, &™ + L L I
Note that a O has been rather fictitiously placed in the feedback equation
(there is no feedback tap from a zero stage), but the value of this will ap=

pear later.
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As two examples of this convention, consider the follow‘ing:l

Ay «> [6,5,0] & (6,1,0) is the characteristic polynomal of A;=3
Al6 +A+I=0 (16)
Ay <> [8,T,4,3,016=(8,5,4,1,0) is the characteristic polynominal
of A2 #

8 5 b
A +A2 +A A +I=0

2

In the first example there are feedback taps on stages 6 and 5; in the second
case the taps are on stages 8,T,4, and 3. The purpose of this simplified

notation is merely to avoid the labor of writing the symbol A again and agaln.
It is of interest to note the reverse of each of the examples of

equation (16). The reverses are, respectively:

6,1,0] &> (6,5,0) =20+ 2° + I =0

[8,5,4,1,0](=)(8,7,u,5,o)=>A8 +00 4 ALL + A 4 I=s0 (17)

The relation between feedback equations, characteristic equations and the
reverse equations illustrated by equations (16) and (17) should be studied
carefully to avoid confusion.

To find the characteristic equation of a multiple-return generator,
the determinant of equation (9) must be evaluated. For the multiple-returﬁ
case the constant term (cn) of the characteristic equation plays an important
part. If the equation has a non-zero constant term, then the companion matrix
of this equation will be the rotate of the A matrix for some SSRG. This SSRG
will then be the "equivalent SSRG" for the given multiple-return generator.
By "equivalent" we mean that all the sequences from the one generator can be
obtained from the SSRG. In section A.2 of the Appendix this equivalence is

proved, and it is shown that such multiple-return generators will have no

transients.

1The single arrow<—» denotes correspondence, while the double arrows are
implications. = is read "implies" while the double implication &> is
read "if and only if". - ol -



On the other hand, if the characteristic equation of a multiple-
return generator has a zero constant term there will be no equivalent SSRG.
Such a generator will produce short transients, and there exists an SSRG of
fewer stages which will produce the periodic sections of the sequences. In
fact, the sequences~=~transient and periodic part together=---can be produced
by an n=-stage SRG in which all of the feedbacks are to a single stage. This
will not be an SSRG, however, since for this a feedback would appear from
the last stage and all teps would be connected to the first stage.

Even for these transient generators, however, we would be most
interested in the periodic portion because, for an n-stage generator, the
transient i1s at most n-digits long, while the period mey be ot a1 digits
long. For a 20 stage generator, for example, the longest transient is twenty
digits long compared to a maximum period of over a million digits. For the
remainder of this report, then, we shall be concerned specifically with SSRG's
or those multiple-return generators which have simple equivalents (unless
mentioned otherwise).

The importance of the material on the preceding pages lies in the
fact that, by considering the characteristic equations of generators as
general polynomials we can epply the tools of algebra to find the structure
behind digital sequences. It is of major importance to determine whether
the polynomials are reducible or irreducible; and if reducible, what their
factors are. Table II on pages 41 and 42 lists all the polynomials resulting
from simple generators with an even number of feedback taps through the 8th
degree. The factors of those polynomials that are reducible are also shown.

In the following two sections these polynomials and their factors
(if any) will be used to portray the structure of meximel and non-maximal

sequences. The purpose of this section is to set up and explain the notation
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and the mathematical formulation; the application of these tools:to the

sequences themselves are given in Sections 4 and 5.

3.3 The Feedback and the Sequence Laws

Thus far we have considered the construction and meaning of the
A matrix, and the treatment of the characteristic equations of the A matrices
as polynomials which may or may not be factorable. It was noted that the
A matrix stems from the generator itself, and that the simple generator is
the most important; évery multiple-return generstor (that contains no
transients) has an equivalent simple generator. We now wish to consider
two laws that apply to the sequences that are produced by the generators.

The two laws referred to we have chosen to call the "feedback law" and the
"characteristic sequence law." These two laws are very closely related to
the characteristic equation and even more closely related to each other. As
a matter of fact, the sequence law and the feedback law are simply two
slightly different ways of looking at the same thing.

Consider a digital sequence that has been generated by a shift-
generator. As time proceeds and we step the generator with regularly spaced
shift pulses, we can regard the generation of the sequence in two different
ways. In the first place we can envisage a simple generastor being placed above
the sequence (the stages aligned with the digits), and consider the register to
move to the right, one step at a time, as the generator is run. This is depicted
in Figure 12. If the generator stages are numbered in the usual way and the
output is considered as being taken from the first stage, then the register above
the sequence must be numbered from right to left as shown in the Figure. A little
thought will convince one that, as the actual generator is run, moving the fic-
titious register above the sequence to the right will correctly display the con-

tents of the generator at each time, and correctly show the generation of the
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sequence. From this simple illustration we immediately verify the "feedback

law".

This refers to the fact that, given an initial loading of the generator,
we can construct the rest of the sequence by noting the feedback taps on the
register, forming the modulo-two sum of the contents of the feedback stages,
and placing the result 'in the Oth stage (the stage to the right of stage 1).
This is indicated by the arrows beneath the sequence in Figure 15.. A prac=-
tical way to form a sequence on paper is to assume an initial load, meke a
template of arrows such as is shown, and then slide this template to the right.
The feedback law is merely the generalization of this phenomenon and is now
stated:

Feedback law: Given a feedback equation and the initial contents of a simple
generator, the entire sequence can be generated by successive applications of
the feedback equation. Suppose the feedback equation is [n,k,m,0], which
implies feedback taps on the nth, kth, and mth stages, then the feedback law
is:

un(3) + we(3) + up(d) = up(§)  (mod 2) (18)

where u,(j) = contents of the nth stage after j shifts.

This is the mathematical equivalent of moving the template of arrows to the
right, as was done in Figure 13. Note that the time shifts (j) play no
importent part in this equation; if the time reference is arbitrary the j's
should be omitted.

The second way to view the generation of the sequence is to con-
sider, not the entire register, but only one stage (prefersbly the last), and
relate the past contents of that stage with the future contents. Viewing
the generation in this manner results in what we term the "characteristic

sequence law."
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——— Direction of Motion

o 01 0 0 0 0 L —> Time

Figure 12: Sequence and Register [6,5,0]

0O 0O 1 O
Ly j

Generation of Sequence by Considering Feedback Law

Figure 13:

u(3-8) u(j-7) u(3-6) u(3-5) u(j=k) u(j-3) u(j-2) u(j-1)
B |

u(3=6) + u(§-5) = u(y)

Figure 1k4: Generation of Sequence by Considering Sequence Law.
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Characteristic Sequence Law: The content of each stage of a simple shift

register generator satisfies the feedback equation. If the given feedback
equation is [n,k,m,0] then the corresponding sequence law is:

ug (J=n) + ug(3=k) + ui(J=m) =u3(j) (mod 2) (19)

where u;(J) = contents of ih stage after j shifts.
This equation says that the present contents of stage i is formed from the
modulo=two sum of the contents of the i'D stage after -n shifts, -k shifts,
and =m shifts; of course negative shifts correspond to previous contents.
Considering the fact that, with a simple generator, the contents of the jth
stage after -k shifts is equal to the present content of the (j + k) stage,
the sequence law is easily justifiable; a mathematical proof is contained
in the appendix. Figure 14 shows the concept of this sequence law. Note
that a given sequence will obey a number of laws, but this particular charac=-
teristic law is directly related to the method of generation. An immediate
consequence is that all sequences from a given generator obey the charac-
teristic sequence law.

Although the feedback law and the above sequence law deal with the
same thing, it is noted that the feedback law of equation (18) contains stage
numbers as the variable, and for the sequence law time shifts is the variable.
For this reason the distinction betﬁeen the two laws should be kept in mind.
Equation (20) gives the conversion which allows a feedback law to be changed
to a sequence law for a simple SRG, and vice versa.

vy (3-k) = ue(3-1) 0<i,k<n (20)

which is a special case of:
uy(k) = ujun (kta)  =j< & <n- (208)
To recapitulate, the feedback law and the sequence law are additional

tools for studying digital sequences. They are useful for constructing
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sequences, knowing the initial loading, and are useful for studying other

structure properties of digital sequences.

3.4 The By Matrix

The remaining tools which we have to consider in this section con=-
sist of two additional matrices. Both of these play a role in studying the
structure of digital sequences.

The first of these is called the By matrix (Ref. L), and it is a
useful tool both for finding the proper connections for maximal generators
and for illustrating the superpositilon property of shift-register generators.
The notation "BA" is used to emphasize the fact that any By matrix is uniquely
associated with a specific A matrix. We remember that the A matrix is con-
strued as that matrix which operates on the content vector of the simple
generator to produce the content vector after one shift. Also, that the
various powers of the A matrix correspond to the respective shifts. We shall
find it necessary, later, to be able to express all the powers of the A matrix
in terms of powers of A which are no larger than n-1 (n is the number of

stages). In other words, we wish to find coefficients such that, for every

k, we can form the relation:

Ak _§ o ne
=% P (21)

Note that the varisble i ranges only from 1 to n:

If we desire to know this relation for all k (k < L for the maximal
length case and k < £ for the non-meximal case), the coefficients byq will
form either an L by n or anf by n matrix. It is this matrix which we shall
call the By matrix.

The construction of the By matrix consists essentlally of successively
raising the powers in an equation, starting with the identity A = A, and ending
with At = I. Whenever the power n appears on the right hand side, it is
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replaced by use of the chéracteristic equation. Of course, the first n-l
equations will consist merely of setting the term equal to itself; consequently
the first n-1 terms form an off-diagonal array.

Example 5: As an example we will construct the By matrix for the generator

H,2,61. The A matrix and its companion matrix are shown in Figure 15. This
generator is self reverse, and the characteristic equation in this case is

(4,2,0).

Companion of A =

oOoro
OHOHH
FHOOO
[ONeNON o
HOOO
OO O+
H OO
OH OO

Figure 15. The A and Its Companion Matrix for the Generator [4,2,0]

Solving for the n®h degree term in the characteristic equation, (An =A% 4+ I)
and using this relation as the powers are successively raised, the following
equations are found:

A= A

A° = AP

pPo= A

AY = A2 47 (mod 2) (22)
P = A+a

a6 = A ea? 21

From this we see that A6 = I, and hence the impulse response length of this
generator is 6. From these equations the following Bp matrix is formed; al-
though the matrix is here written somewhat as a table, we shall refer to the
quentities inside as the By matrix.

Power
of Al 3 2 1 O
110 01 O
210 1L 0 O
3211 0 0 O (23)
1o 1001
511 0 1 O
60 0 0 1
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In the above manner then the By matrix is constructed from the A
matrix.
Referring now to equation (21) and to equation (6), it immediately
follows that:
n=1

n
Y(k) =-21 by Y(n=i) =5 by pn5¥(3) (mod 2) (2k)
1= J=0

This equation relates the content vector after k shifts to the content vector
after j shifts, where j ranges from O to n-l. Thus the By matrix is seen to
relate the content vector for any k shifts (i.e., for n digits anywhere in the
sequence) to the content vectors of the first n-l shifts.

Also, using the By matrix we can quickly verify all sequence laws;
we need only write the equation corresponding to any one stage of the content
vectors of equations (24):

n n=-1
u(k) = L bgu(ne1)= X bgpogu(l) (mod2) - (25)

For our purposes the most importent use of the BA matrix will be to
find the proper connections to produce maximal sequences. This will be
treated in Section 4. Another interesting use, however, lies in the follow-

th

ing: if we read the j°  column of the BA matrix, we obtain the sequence

th position.

which results from a simple generator with a single one in the J
Hence this is one way of determining the impulse response sequence for a
simple generator (the first or the last column). If the generator produces
a maximal length sequence, then only one will appear. If, however, the
generator is a non-maximal one, then the various sequences which can be
produced may be obtained by adding (modulo-two) the various columns of the
By matrix, two at a time, three at a time, etc. When all the n-tuples have

occurred in the resulting sequences, then all the possible sequences will

have been obtained. Since each individual column represents the response
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to an elementary load, this addition of the columns to obtain:the non-meximal
length sequences amounts to a superposition of elementary responses. This is
possible because the generators we have been considering are linear devices
which in turn is due to the arithmetic operations being limited to addition.
We shall consider an application of this in Section D.

3.5 The C Matrix

The remaining matrix to be introduced in this section is called the
commutating (C) matrix, and its use is in giving the relation between non=-
maximal sequences of a generator. It has been found that when the characteristic
polynomial is irreducible, but the output is not maximal length, & number of
non-maximal length sequences of the same length will appear. Further, it has
been found that there exists a matrix which permutes among these equal=-length
séquences. Any such matrix has been termed the C matrix. As a further result
it has been determined that if a generator is wired corresponding to this C
matrix, the permuted sequences can all be obtained by a time sampling of the
resulting sequence. At this point the significance of these results lie in
that they indicate additional structure which may well be important in later
work. The C matrix and its implications will be considered in detail in Sec-

tion D.

SECTION 4. MAXIMAL LENGTH SEQUENCES

In the preceding section we have introduced a notation and general
mathematical formulation for studying digital sequences. In this section we
wish to use these tools to study in a rather detailed manner meximal length
sequences and the generators which furnish them. We will deal with such
questions as: How meny maximal length sequences are avallable from an n stage

generator? What connections of the n stage generator provide these maximal



sequences? Do multiple-return generators give sequences not available for
simple generators? What shift and add properties do maximal length sequences
have? and What are the important statistical properties of maximal length
sequences?

4.1 Determining the Number of Maximal Sequences

Given an n stage shift register generator, it was noted in Section 2
that certain feedback connections will give maximal length sequences, and the
other connections will produce a set of shorter sequences (non-maximal length).
A sequence is said to be maximally long if its period is related to the number
of stages (n), and if the period is 2% - 1. It was noted in the introduction
that thus far in the épplications of digital sequences, the maximal length
ones have been of greatest interest.

We first consider how many maximally long sequences are available
from a given n stage generator. Zierler (Ref. L) has shown the following
result, which we state as a theorem:

Theorem 4: For an n stage register there are exactly

N(2" - 1) sequences of maximal length available with

proger feedback connections. Here 8(2" - 1) is Euler's

phi function and is defined as follows: 8(k) is the number

of positive integers less than k and relatively prime to k,

including 1; i.e., &(k) is the number of integers less than -

k that have no common factor with k.

Example 6: Consider a 5 stage generator. 22 -1 = 31l; hence we seek the
value of Q(31l). Since every integer less than 31 is relatively prime to 31,
there are %0 integers less than 31 and prime to 31; hence 8(31) = 30. Divid-
ing this by 5, the number of stages, the result states that there are 6
maximally long sequences possible with a 5 stage shift register generator.

Zierler's proof is stated as follows: In order for an SRG to produce

a maximal length sequence, the characteristic equation of the generator must
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be the minimum polynomial of a primitive LJGh root of unity. Further, there
are exactly QQEH - 1) different equations of degree n that are minimum
equations of pri;itive Lth roots of unity. For this reason the above theorem
is true.

The fact that the number of maximal sequences available is ®§2n - 1)
can be justified by the following reasoning. Suppose that we take any oze of
the maximal length sequences from an n stage generator. Further, suppose we
time sample the digits from this sequence; i.e., take every second digit, take
every third digit, etc. Now if we time sample with rates that are relatively
prime to the length L, then we will not get any sub-periods and every sequence
obtained will also be maximal. It is obvious that if we sample at a rate that
is a factor of L, a sub-period will be obtained, and the resulting sequence
will not be meximal. Using only these relatively prime rates, then, all the
maximal sequences will be obtained, and the number of sequences obtained will
be\®(2n - 1). But Zierler's rule states that all of these sequences (which
could be obtained by time sambling a maximal sequence at prime rates) fall
into sets of n, so that there are n of each kind and hence there would be
Q(2" - 1) different maximal sequences.

n

To justify this grouping into sets of n we need to consider the
characteristic equation for the originally chosen sequence. Given that the
A matrix for the original sequence satisfies the characteristic equation,
then A2 also satisfies this equétion; and the square of A2 (Au), etc. This
is true because squaring a polynomial that involves modulo-two addition
amounts to merely doubling each exponent in the equation.l Consider the

equation A6 + A5 + I = 0. Squaring this equation, it is found that A2 also

1n general, the product of two polynomials, modulo-two, is equal to the
ordinary product of the two polynomials with the resulting coefficients
reduced mod=2.
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satisfies the same equation:

(A6 + A+ I)2 = APt a0y 2A6 + 2A5 + I
= A2 40,1 (mod 2) (26)
- (120 4 (42 41
6

(A +A+I = 0 (mod2) = (A2)6+(A2)5+I =0 (mod 2)

L
Hence A, AE, A, A8, etc., all satisfy all of the same equations; hence the

resulting sequences will all obey the same characteristic sequence law. This,
of course, means that the generators corresponding to A, A2, Au, etc., all
generate the same sequences. It remains to note that using a generator of
matrix A® ig the same as time sampling every second digit of the sequence
from the generator whose matrix is A; similarly, A)1L is the same as sampling
every yth digit of the sequence, etc. Therefore, in the entire set of
sequences obtained above by sampling, all those whose matrices are related

by squares form the same sequence and this is the basis for grouping the
entire set of sequences. In effect then, we take every power relatively
prime to 2% = 1 and group all those powers that are related by factors of two;
in this process one must proceed past the power 2% - 1 and then subtract o1

n-l

in order to get all the proper powers. Since 2+[2° p J=p (mod 2"-1) there

are n numbers to each set formed in this manner, and the set of resulting
matrices is called a "similarity class." The following example should clarify
this process:

Example 7: Consider a 5 stage generator; the feedback equation [5,3,0]will
give a maximal length sequence. Earlier we learned that there are 6 maximal
sequences, and that #(31) equals 30. Hence by time sampling any one maximal
sequence (the one from l5,3,0! for example) at the relatively prime rates

(1 through 30) 30 maximal sequences will result. To show these fall into sets
with 5 in each set, we group all the powers which are related by doubling.



1. A, 82, k) 48, 416

2. a3, a8, al2, p24 p1T7

5. 4%, A10, 420, 9, 518 (27)
L, AT, al%) 428 42 Al
11,00 21

1 26
) A 5’ A ) A
22T, 225

5. A™, A
0 .2
6. a¥d, a0, 4%

b

In this way all the sequences acquired from time sampling one meximal sequence
fall into 6 sets, and there are ¢§25-l) such classes.
>

This then is a qualitative justification for the number of maximal

sequences being equal to ngn -1).
n

The calculation of the number (k) falls into two cases on depending
upon whether k contains factors or is prime. If k is factorable, then the

following relation exists for calculating #(k):

Bls) = kH (e;-L) (28)
Pi ‘

where p; are the prime factors of k.

Example 8: Consider a 6 stage generator where it is necessary to know f(63).
The prime factors of 63 are 3 and 7; hence the equation yiélds

§(63) = 63 x %%% = 36 (29)
When k is a prime number,
pk) = k-1 (30)
With the use of equations (28) and (30) ﬁheAnumber of maximal length sequences
available from a generator of a given number of stages can be determined.
Table 1 shows the number of maximal sequences for generators up to
length 21. In this table the number 2" - 1, the number of maximal length

sequences, and the factors of o - 1 are shown. . Figure 16 shows the values

as points on a graph. In this figure an upper bound curve is also drawn.
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Teble 1

Number of Maximal Number of Factors of
Stages Seq. Length Max. Length onal
n ol g(2"-1)
n ——
2 3, 1
5 T 2
L 15 . 2 55
5 31 6 5
6 63 6 377
7 127 18 3.517
8 255 16 3517
9 511 4o T 73
10 1023 60 3+11°31
11 2047 176 23-89
12 4095 1k 3°+5: 1413
13 8191 630
1k 16383 756 343127
15 32767 1800 7+31°151
16 655%5 1536 3°5°17°257
17 131071 7710
18 260143 7776 32.7+19-73
19 504287 2759k 5
20 1048575 24000 3+5%+11°31 41
21 2097151 8L6T2 72127+ 337
107 T T

10

102

n
O Exact values of Qﬁg_:;l
n

— Upper bound 2R=logpn

| | T T | | | ! [ 1

| ] ] l ] | | ] ] 1

©

| |

8 9
Figure 16.

10 11 12 13 1h 15 16 17 18 19 20

Comparison of the number of maximal sequences with the bound
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The equation for the upper bound is

g(2"-1) < on-logen (31)

n

Given the number of sequences desired, the upper bound curve can be used to
specify approximately the necessary number of stages; an n of this order will
always be satisfactory.

4.2 Determining the Connections for Maximal Segquences

The question of how many maximal sequences are available from a
given number of stages has now been dealt with. The next question that ap-
pears deals with what connections provide these maximal sequences. This
query is of no mean importance; for example with an 8 stage generator there
are 16 maximal length sequences available, but there are 128 different pos=-
sible ways of connecting the register as a simple SRG. The major tool for
dealing with the question of proper connections will be the polynomials which
represent the characteristic equations of the possible connections; cognizance
of the material in Section 3 will be assumed in this section.

First, we wish to recall Theorem 3 which appeared in Section 2.

This theorem states that no generator which utilizes an odd number of feedback
taps can produce maximal length sequences. Hence this eliminates approximately
one=half of the possible connections from our consideration. Relating this to
polynomials, this means that when the identity term is included (the 0 term in
the notation), the polynomial will have an odd number of terms. In the future,
then, we will consider only those generators which have an even number of
feedback taps or those polynomials which have an odd number of terms.

Two methods for finding those connections which provide maximally
long sequences will be described in the following pages. Although the second
method (developed later than the first) is preferable to the first, there is

sufficient pertinent material in the first to prevent discarding it.
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k,2.1 First method

The first method, to be described in the ensuing material, is based
on the following theorem:

Theorem 5: No generator whose characteristic equation is a

reducible polynomial can generate maximal sequences.

The proof lies in the fact that, for a maximal sequence, the
characteristic equation must be a minimum polynomial of a primitive Lth root
of unity (stated earlier). Obviously, if a polynomial is factorable it is not
a minimum polynomial.

Note that this theorem does not say that every polynomial that is
irreducible represents a maximal sequence generator; this theorem simply
eliminates a large class of possible connections. Considering the 1list of
irreducible polynomials, there still remains some elimination to find those
connections which do produce maximal sequences.

To make a listing of the connections which provide maximal sequences,
then, one could make a list of all the polynomials (a generator of n stages

corresponds to a polynomial of nt

h gegree) with an odd number of terms. Then
one would investigate each of these to find those that are irreducible.
Table II shows a list of all such polynomials and their factors, if any, from
degree 2 through 8; hence these correspond to generators up to eight stages
long. Observe that the notation introduced in Section 3, equation (15) is
used, and also that those conﬁections which provide sequences that are the
reverse of each other are paired (shown in the same row). In this respect,
also note that the factors of a reverse polynomial are the reverse of the
other polynomial's factors.

The entries shown in this table were obtained by brute force; in

order to find the factorable polynomials of nth degree, all lesser degree

polynomials which multiply to form an nth degree polynomial were multiplied.
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Using some orderly process for doing this, all nth degree polynomials that

A useful theorem in doing this operation is the

are factorable will appear.

following:

If any factor of a polynomial contains an even number

Theorem 6:

of terms, the polynomial contains an even number of terms.

Using this theorem it is

This theorem is proved in the Appendix.

necessary to consider only polynomials with odd number of terms as factors

when constructing, in an orderly manner, all the factorable nth degree

polynomial with an odd number of non=zero coefficients.
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Referring now to Teble II and Theorem 5 above, all the polynomials
in the table which do not show factors may represent generators of maximal
sequences. In each case, however, there may be some irreducible polynomials
which do not represent maximal sequence generators. Our remaining problem
is to find some method 'for eliminating those irreducible polynomials which
do not represent maximal sequence generators. For example, consider a

p(63)
6

generator of 6 stages. From we know that there are 6 maximal sequences,

but from Table II we see that there are 9 polynomials of the 6th degree that
are irreducible. Hence three of these polynomials must be eliminated.

The procedure used for this elimination is based on the fact that,
if the polynomial is irreducible then the period of the corresponding generator
is equal to ool = L, or it divides 2" = 1. Our purpose here is to separate
of eliminate those whose period non-trivially divides L. The previous state=
ment is equivalent to saying that the A matrix from a generator represented
by an irreducible polynomial satisfies the equation:

TS R (32)

A = matrix representing the generator corresponding to an

irreducible polynomial.

But the statement also says that the A may satisfy an equation of the type:

A" =1 (33)

where: Kk is any number that divides L.

Since k must be a number that divides L, we may consider k to be one of the
factors of L.

To determine whether a given irreducible polynomial represents a
meximal generator, we have to check to see whether equation (33) is satisfied
for some k. Although this procedure becomes lengthy for large n, it is not
completely unwieldy. The procedure to be described for performing this check

is a reasongbly quick method. N
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First set the characteristic equation to zero, and then solve for
A", Raise AP to AL/X (it is advisable to start with the smallest k's and
proceed through the larger ones and the products), carrying out the same
operation on the other side of the equation. The object then is to reduce
the right side of the equation, using the equations calculated in finding
AL/k, until the right side is reduced to the minimum powers (determined by
the characteristic equation). If this procedure results in AY/E = I, then
the given polynomial represents a generator whose period is equal to or
divides L/k. If no k works in this process, then the polynomial must represent
a maximally long sequence whose period is L.
Example 9: Consider the feedback equation [8,5,4,3,0 ]. L for n = 8 is 255,
and the factors of 255 are 3, 5, and 17. From Table II we see that this feed-
back connection results in an irreducible polynomial; we wish to check to see
whether the resulting sequence is truly maximal or if its period divides L.
For this, the procedure described above is utilized. The characteristic equa=
tion for this connection is:

BBaedent i di1= (8,5 L4 3,0 =0 (md2) (34)
For the rest of the calculations we will use the short notation form. Divid-
ing 255 by the smallest factor, 3, we will first check for A85 = I. We first
find the equation for A85 by repeatedly squaring the original equationl and
then multiplying by the necessary power of A in the last step:

1. (8, 5, 4, 3, 0)

(

2. (16, 10, 8, 6, 0)
(32, 20, 16, 12, 0)
(64, Lo, 32, 24, 0)

5. (85, 61, 53, 45, 21)
289 w4 a3 L A Ll 2 0 (mod 2)
185 = bl 4 a%3 4 A 122l (mod 2)

lSquaring a polynomial, mod 2, results in doubling the powers, since all cross
product terms have a coefficient of 2=0 (mod 2)
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We now wish to reduce the right side of the last equation; it is desired to
determine whether A2 = I. To do this, we use the lower order equations of
(55), multiplied by the appropriate power of A in each case:

(61, 53, 45, 21)
#3827+ 61, L9, 45, b1, 29

53, 49, 41, 29, 21
#3)a° + 53, 41, 37, 33, 21 (36)
49, 37, 33, 29

@l o+ w9, 37,33, 29, 17

17
#2)a + 17, 11, 9, 7, 1
11, 9, 7, 1
#1)ad + 11,8, 7,6, 3
9, 8, 6, 3, 1
#1)A + 9, 6,5, 4 1
8, 5, 4, 3
#1) + 8,5 430
0
28 = po =

From this we see that A85 does indeed equal I; hence we know that the sequence
from [8, 5, 4, 3, 0] is not 255 long, but its length divides 255 and is periodic
ever 785 digits. Further checking with this example will show that the period
is A+l = T,

This is the method first used by the authors to eliminate those
irreducible polynomials whose periods divide the maximal length L. When the
proper number of such polynomials have been eliminated, all the remaining
irreducible ones must represent maximal sequences. It has also been our

practice, in this work, to check the mathematical results with an experimental

shift register generator.
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We can now summarize the steps of this method for finding the con-
nections for an n stage generator which provide maximal sequences. 1) Con-
sider only polynomials with an odd number of terms. 2) Take all factors of
degree less than n and multiply together all combinations which produce nth
degree polynomials. (All these will also contain only an odd number of terms).
3) Construct all the remaining nth polynomials with an odd number of terms.

These constructed ones will all be irreducible. The number to be eliminated

gen - 1)

n

is equal to the difference between the value of and the number of
irreducible equetions. 4) Eliminate those irreducible polynomials which do
not provide maximal sequences by the procedure described in equations (35)

and (36).

4k.2.2 Second Method

The second method for determining the maximal 1ength connections of
a given n-stage generator differs from the first in two respects: (1) one
need not check a large number of possibilities in order to eliminate most
polynomials (the reducible ones) to obtain the relatively few desired ones;
instead one solves explicitly for the proper connections one at a time, (2) the
characteristic polynomial for one maximal.length generator must be knowne-=the
others will be obtained from it.

This second method makes use of the sampling idea discussed under
Section 4, Theorem L4; namely, if k is relatively prime to L one maximal sequence
can be derived from another by sampling every kth digit. If we let the matrix
for the given maximal generator be A, then sampling its output sequence every
k digits is equivalent to operating with the multiple=-return generator Ak, or
its simple equivalent. Thus, given one maximal generator with matrix A,'one
can find another maximal by finding the characteristic polynomial for A¥ where

k is an integer relatively prime to L.
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The direct way to find the characteristic polynomial for Ak is to
expand the determinant lAk + §I|. Direct expansion of this determinant to
find the coefficients of ¢ becomes difficult for large n; the method detailed
below circumvents direct expansion by using the By matrix introduced in Sec-
tion 3.1 In order to find the characteristic polynomial of the kth power of

a maximal matrix one need only find a nkth

degree equation that contains only
those powers which are multiples of k. In this method this is accomplished
by relating higher powers of A to sums of the first n powers (which is the
function of the Bp matrix) and obtaining the answer by inspection.

The first step in this method is to group together those powers
of the given matrix which are both relatively prime to L and have the same
characteristic equation. Each grouping is called a "similarity class" and is
formed by repeatedly squaring (doubling the powers) of an initial entry. This
process 1s completely formal, dealing only with powers and not with any specific
matrices. (See Section 4, equation 27)

The second step is to form the BA matrix for the A matrix of the
given maximal SSRG. The B, matrix was discussed in Section 3.4, page 30,
together with its fairly simple construction. The power and usefulness of the
B, matrix is that it relates powers of the matrix to the first few, as given

by equation (21), repeated here
n .

AN = YL op, A" (e1)
i=

If r is the lowest power of the similarity class for which we desire the
characteristic polynomial, the (r)th, (2r)th, (Br)th....(nr)th rows of the By
matrix are extracted. From this set of equations the nrth end a subset of the

other rows is chosen such that the mod=-2 sum of the last column is one, and the

Ithe Bp matrix might also be helpful in direct expansion since the powers of

SSRG matrices can be "spotted" in the Bp matrix. AP = (bp+n-i,j)
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mod=2 sum of the other columns is zero. Then it is obvious that the matrices

corresponding to these chosen rows add to the identity matrix:

ARy TRy LT 2 1 (mod 2) (37)

The result is that the rth similarity class corresponds to the
characteristic polynomial (n,k,=-==-5,0) because, by equation (37), A' is a
root of this polynomial. This was the desired objective: +to find the
characteristic polynomial of the chosen power of the original (maximal)
matrix. If this technique is repeated for all similarity classes, all of
the characteristic polynomials that correspond to maximal generators will
be obtained.

Example 10: Consider that one wishes to find all the maximal connections for
an 8 stage generator, and that we know that the generator with characteristic
polynomial (8, 7, 2, 1, 0) is one of the maximal generators. Ehe first step
is to form the similarity classes for the 8 stage situation; 2° = 1 = 255,

and therefore the following classes appear (these are constructed exactly as

previously in equation (27)). The numbers in these classes all refer to
powers of A; only the powers themselves are shown in equation (38).

{1, 2, 4, 8, 16, 32, 6k, 108 } {127 e, }
T, 14, 28, 56, 112, 22k, 193, 131} {51}
11, 22, Lk, 88, 176, 97, 194, 133}
13, 26, 52, 104, 208, 161, 67, 154}

23, 46, 92, 184, 113, 226, 197, 159}
37, Th, 148, 41, 82, 164, T3, 146}

A A A A A A
‘.—l

9, 38, 16, 152, 49, 98, 196, 157} { 59 terrneenns }

{ 43, 86, 172, 89, 178, 101, 202, 149} { 53 teaannn. }

It will be recalled that this table is constructed by doubling the odd numbers
that are coprime to 255; when 2° = 1 is reached one must begin subtracting

28 - 1 from the number to complete the similarity class. For example, in the
second class of 38, (2)(193) =131 (mod 255). DNote that, for the 8 stage
situation there should be a total of 16 similarity classes, but equation (38)
shows only 8 of them; the reason for this is that the remaining 8 are related
to those shown by simple reverses. Since, if we are given a maximal connection,
we can quickly write the reverse, we need only consider half of the total
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similarity classes. In equation (38) the basic number of the:similarity class
which forms the reverse is shown to the right of each class. 1In each case
this number is achieved by taking the highest number in the similarity class
and subtracting it from the maximal length (255). It should be emphasized
that there is a similarity class associated with each number on the right, but
only the one number is written since we need consider only half the classes.

The next step is to construct the B, matrix, using the known generator
condition: A8 = AT + A2 + A + I. The object, when constructing the By matrix,
is to express each power of A, up to the 255th power in terms of the sum of
powers which are n = 1 or less. The first part of the By matrix for the 8 stages
with the given equation is shown in Figure 17. From this Bp matrix we now wish
to identify a polynomial with each of the classes of equation (38). The first
class, of course, is associated with the given generator and the polynomial
(8, 7, 2, 1, 0). TFor the second class we wish to find the powers in equation
(E?) where the r is equal to 7. We take all the multiples of T up through the
gth multiple and pick out the corresponding expressions from the Bp matrix.

This results in the group of expressions shown in Figure 17(b). As previously,
each of thesE numgers repre ents_a power of A: the second expression, for ex-
ample, is Al + A ¥ A + AD + A + I.

It is now necessary to find the unique combination of expressions
which will cause all powers less than 8 to add to zero (mod. 2) except the

zero power. In this step it is always necessary to use the expression for the
nth multiple because we want a final equation of the nth degree. Using the
last expression, then, and remembering that only the zero term must not add
to zero, it is found that_the unique combination of expressions is that shown
in Figure (1Tb). Hence AT satisfies the following equation:

w8+ )T+ )3+ w12+ 1=0 (39)

=%>A7 is a root of (8, 7, 3, 2, 0) =0

This means, then, that the second similarity class of equation (38) is as-
sociated with the polynomial (8,7,3,2,0) and hence with the generator
(8,6, 5, 1, 0]. In this way all the maximal generators of 8 stages can be
determined provided that one maximal generator is known.

It should be remarked that this last step---finding the unique
combinations of expressions---is somewhat a matter of "art." Pure trial and
error is of course a possibility; however, it seems plausible that a method
could be devised to structure this step so that one proceeds monotonically
towards the solution.

For additional clarity the expressions and final combination for

the third similarity class (All) is given in Figure 17c while the work for
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76543210
1 ... ... 1.
2 .. ... 1.
3 1.
i 1.

5 .1 ...
6 .1..

T 1. .. .0...
8 1....111
9 1...1..1
10 1..1.1.1
11 1.1.11.1
12 11.111.1
13 .1111.1
14 1111.1
15 1111.1..
6 .11.1111
17 11.1111.
18 .111.11
19 .111.11.
20 111.11..
21 .1.11111
22 1.11111.
23 11111.11
2h 111 .1
25 111...1.
6 . 1. .11
27 1 .11.
28 1 .1.11
29 1..1...1
% 1.1..1.1
31 11..11.1
% ., ..111.1
33 .111.1.
3l 111.1.
% 111.1...
36 1.1.111
37 1.1.111.
8 11.11.11
9 ..11...1
bo .11...1.
b1 11...1..
4o ...1111
b3 ., .1111.
L .1111.
b5 . 1111.
b 1111....
b7 . 11..111
4 11..111.
49 .11.11
50 . .11.11.
5. .11.11
5% 11.11.
(a) By

n 76543210 n 876543210
T 1.......

1k 1111.1. e*rT . .1111.1.
21 1.11111 37 . .1.11111
28 R N

% 111.1.

ke ... .1111

b9 .. .11.11 77 .11.11
5% . .111111 87 . 111111

(b)

Those expressions from the By matrix, which specify

the polynomial corresponding to the 2nd similarity

class of equation (38)

11 l1.1.11.1 1-.11 .1.1.11.1
22 1.11111. 2°11 .1.11111.
3 . .111.1. 311 . ..111.1.
by . .1111 be11 .. .1111..
5 11.111..

66 .1.1.11. 6°11 . .1.1.11.
77 11..1.1

88 .1.. 1 g*11 ..1....1.

Those expressions which specify the polynomials

for the 3rd similarity class of equation (38)

Figure 17: Illustrating the method for identifying
the polynomial corresponding to the similarity

classes of equation (38).

matrix (up to A52) for (8:7:2_91)0)

- 50 =



the remaining similarity classes is in Appendix B.
Finally, Figure 18 shows the similarity classes with all the associated

polynomials which specify the maximal generators. Each of these generators

has a reverse (it can be shown that for n > 2, no maximal is self-reverse) and
this total number of generators represent all the simple generators of '8 stages

that can produce maximal sequences.

Similarity Powers Char. Egn. Lowest Power of Reverse

1,2,&,8,16,52,61»,128} (8,7,2,1,0) 127

—r——

7,1&,28,56,112,224,193,131} (8,7,3,2,0) 31
V11,22,44,88,176,97,194,155 } (8,6,4,3,2,1,0) 61
15,26,52,104,208,161,67,15#} (8,6,3,2,0) L7
19,58,76,152,1»9,98,196,157} (8,7,5,3,0) 59
23,46,92,184,115,226,197,159} (8,5,3,2,0) 29

57,74,1&8,&1,82,16&,75,146} (8,7,6,5,2,1,0) 91

— A

l+5,86,172,89,178,101,202,149} (8,6,5,4,0) 53

Figure 18: The similarity clesses and their associated
polynomials for 8=stage meximal generators

This then completes the consideration of the second method for find=
ing those connections of an n=stage generator which provide maximal length
sequences. Both of the methods described become quite lengthy and laborious
when the number n becomes large. However, for any extended work of this type
a digital computer program could be written to find the solutions. Also, it
is felt that the second method offers a unlque advantage over the first: if
only a certain number and not all of the proper connections are desired, the
work for the second method is reduced (the By matrix has only to be completed
to corresponding order). In the first method one must eliminate all the un-

desired irreducible polynomials before one is sure of obtaining any sizable
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number of proper generators. This makes the second of the two methods
described somewhat more attractive.

L.3 Sequences from Multiple-Return Generators

We have now dealt with the two questions of how many maximal se-
quences exist for an n stage generator, and how are the proper connections
which provide the maximal sequences determined. In the previous sections we
have implicitly been considering only simple generators. It appears pertinent
to ask whether multiple-return generators provide any additional maximal se-
quences, or whether their maximal sequences are different than those from the
simple generators.

The answer is negative to both of these questions. It was stated
in Section 1 that every multiple-return generator (that has no transients)
has an éQuivalent simple generator. We shall consider now the reason for
this. Consider a multiple-return generator and its A matrix. One can now
find the companion matrix associated with the characteristic equation of the
A matrix. Having found this companion matrix one has specified in effect
the equivalent simple generator. If one wires a generator according to this
companion metrix, the generator will provide the sequences of the original
one, and it is a simple one.

For these reasons we will not achieve new sequences from multiple-
return generators. This is not to say that multiple-return generators are
of no importance. They may well have useful applications, such as obtaining
a number of sequences from the same generator without relogding, for example.

L.4 Shift and Add Property

An important property of maximal sequences is the shift and add
property. In Section 2 it was stated that the shift and add property implies
that, when a sequence is added to a shifted version of itself in a modulo=-two

fashion, the resulting sequence is in turn a shifted version of the original
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sequence. We can now state this in a more precise fashion:
Definition: A sequence is said to have the shift and add property if, for

every integer m there exists an intéger f(m) such that:

am g pf@) = g (mod 2) (40)
where A = matrix for the simple generator of the sequence.
We now wish to show that every meximal sequence has the shift and add property.
In the Appendix, Lemma 6 states: "Any shift and add sum of digits

of a sequence obeys that sequence's laws."

That is to say, if a sequence 1is
shifted and added to itself, the resulting sequence will obey the same se=-
quence laws as the originél one. The proof is also given in the Appendix.
Now if the original sequence was a maximal sequence, then one and only one
sequence can be generated using its characteristic sequence law. Hence 1f the
shift and add sequence obeys the same characteristic sequence law, it itself
must be the same maximal sequence.

This is the proof, then, that every maximal sequence has the shift

and add property.

4,5 Auto=correlation

Another important property of digital sequences is their auto=-
correlation and this property, because of the definition of auto-correlation
is related vetry closely to the shift and add property described above. In
many applications of digital sequences the auto=-correlation function should
be of a particular type; we shall show here that all maximally long sequences
have a distinctive auto=correlation function.

The auto=correlation for a general given waveform x(t) with no d-c

component is defined as:
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lim _TfT x(t) x(t + k) at (41)

p(k) = T->00

T x2() at
-T

where p(k) = auto=correlation function for the waveform x(t).
If the waveform has é period T we need not consider this limiting process,
and the definition becomes

T x(6) x(b + k) at
p(k) = o

[ x° () at

Since digital sequences are periodic, this is the appropriate definition.

In the past we have considered the digital sequence as consisting
of a series of O's or 1l's. Hence the associated waveform that we think of
consists of a squére wave that alternates between a O value and a 1 value.
We have to alter this conception a bit now, since for purposes of consider-
ing auto=-correlation we do not want a d=c component in the wave. For this
reason, we shall think of the sequence as consisting of either +l's or =1's;
such a wave will not have an appreciable d-c component (at least in the
maximally long case). We will neglect this slight d-c component and use the
+]1 and ~l1 representation to find the auto-correlation.

Since we have a square wave, we can write the integral of equation

(42) as a summation: L
Lox(J) x(j+k)

L
k = J=L - =1 . .
o (k) - — T x(3) x(3+x) (1)
X 2(3) =
J=1
o(k) = digitized auto-correlation of digital sequence
k = integer, corresponding to shifts of a sequence generator.
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To evaluate this equation we can think of the positive and the
negative areas that result when two shifted sequences are multiplied together.
This is most easily done by comparing the multiplication teble for +1 and =1.
with the modulo-two addition table for a 1 and a 0. Figure 19 shows these

two tables side by side for comparison:

Modulo-Two Addition Arithmetic Multiplication
1 0 +1 =1
1| 0O 1 +1 ] +1 | -1
0 1 0 =11 -1 +1

Figure 19. Comparing Modulo-Two Addition for a 1 and O With
Multiplication for +1 and =1

Choose for a moment a given value of k in equation (43); we then wish to
evaluate the sﬁmmation in this equation. From Figure 19 we see that the
summation consists of a series of +l's and =l's, and that we can consider
this in turn to be a digital sequence. Using equation (43), it is seen that

p(k) can be written:

o(k)

(number of matching digits = number of differing digits)

(k)

(L - 2 x numbers of differing digits) = L= 2d

1

S

Further, the summation of equation (43) can be regarded as the result of
modulo-two adding the two shifted sequences with the proviso that a +1 cor-
responds to a O, and a -1 corresponds to a 1. Then using our prior knowledge
about the shift and add properties of maximal sequences, we know how many

+1 areas exist in the summation. The shift and add property states that the
seme sequence is returned if maximally long sequences are involved. Based
on this, then, there are L + 1 ones and L - 1 "minus ones" in the product

2 2
sequence of equation (43).
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The auto=-correlation then, for any value of k not equal to O, is:

o(k £0) = E_:_i%_i_ll = :% (45)

plo) = % = 1 (46)

Equation (45) and (46) then give the value for the auto-correlation
for any maximally long digital sequence. The correlation is always 1 for
zero shift, and drops to -l/L for any other shift. As L increases (with
large n), the correlation function becomes closer and closer to an ideal;
it would be ideal if the value were 1 for zero shift and zero for all other
shifts.

If one rigorously accounts for the remaining slight d-c component
of the +1 waveform, one should replace L by (L = %) in the final expression
of (b4), and L by (L - 1) in equation 45.

Sequences with a general period P have been called "perfect sequences"
if the auto-correlation for non=zero shift is no more than + 1/p-1. Tt has
been shown here that all of the maximél length sequences from linear SRG's
are perfect sequences. This concludes our consideration of maximally long

sequences.

SECTION 5: NON-MAXIMAL SEQUENCES

In this section non-maximal sequences are treated in the same manner
as maximal sequences were treated in the previous section. The purpose here
1s to consider any structure that we have found in non-maximal sequences, and
to use the mathematical tools developed in Section 3 to deal with this
structure. The two major topics for discussion will be consideration of how
many sequences will occur for a given non-maximal connection, and what shift

and add properties are exhibited by non-maximal sequences.
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5.1 Number and Lengths of Non-Maximal Sequences

It will be recalled that a non-maximal feedback connection generates
a set of sequences (Section 2 page 10). Consider the question of the
number of sequences and their lengths for a given non-maximal connection.
The characteristic polynomials for each connection can be used for this
purpose. These polynomials fall into one of threé categories: (1) the
polynomial is irreducible, (2) the polynomial is reducible, but there are
no repeating factors, and (3) the polynomial is reducible and there are
repeating factors. The three cases will be treated in order.

If the polynomial is irreducible, all the sequences will be of the
same length, and hence the number of sequences must be a factor of L = ol - 1.
At present we know of no‘way to predict ﬁhich of the possible numbers is the
correct one from the connections alone. Our practice has been to determine
the order of the A matrix using the procedure described in equations (35)
and (36). When the lowest order of the A matrix has been found, this order
divided into the value of L gives the number of sequences. For an illustra-
tion, consider the example treated previously where the feedback equation is
B, 5, 4, 3, 0].(Section 2, pagehl). After using the procedure to find the
order of the matrix, it was found that the lowest order was 17. Hence, for
this SRG there are 15 sequences all of length 17. Of course the IR response
sequence is one of these 15.

5.1.1 Factorable Characteristic Polynomials

When the polynomials that represent a non-maximal SRG are factorable,
the number of sequences (and their lengths) can be determined by considering
the factors themselves. There are three principles which are useful in this

respect and these apply to the cases of both repeated and non-repeated factors.
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Principle No. 1. Theorem 2 of Section 2 states that the length of
any sequence (from a given generator) divides the length of the IR sequence.
Hence the length of the IR sequence for a given generator is an important
piece of information.

Principle No. 2'will be stated as a theorem:

Theorem 7: Given an SSRG with a factorable characteristic poly=-
nomial, the sequences corresponding to each factor will be among
the sequences of that SSRG.

By "sequences corresponding to each factor" we mean the sequence
from the SSRG whose characteristic equation is that factor. Thus, given the
factors of the polynomial, we can immediately identify some of these se=-
quences===those that belong to the factors themselves. Note also that the
sequénce corresponding to any grouping of the factors must also appear since
this too can be considered a factor.

Principle No. 3 is suggested by the above theorem. It is a physical

representation of a non-maximal SRG whose characteristic polynomial is fac=-
torable. This principle consists of considering each factor as representing
a separate generator, and cascading the resulting generators, as the factors
themselves are cascaded in the equation. Figure 20 illustrates this represen-
tation of a generator whose polynomial is factorable. Each generator in the

cascaded group has its feedback connections made according to the terms

polynomial = (n, Jj, ====) = (k, my ====)(p, n, ====)(s, t, --==) =--

k stage Gen, |—— > p stage Gen. E— stage Gen.

Figure 20. Physical Interpretation of a generator whose Polynomial
is Factorable

in the corresponding factor. The object of this representation is to view

the generation of the entire set of sequences from the total generator as
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stemming from different combinations of factor-generator sequences. In this
process the individual generators are allowed to take on all their possible
sequences including the allw=zero sequence. It has been observed that this
representation is valid, and it serves as a useful means for considering the
set of sequences from a factorable non-meximal generator.

- These principles can now be used to treat the number and the length
of the set of sequences availeble from a factorable non-maximal generator.
When the polynomial of a generator is factorable two conditions are possible:
(1) the polynomial contains no repeated factors, and (2) the polynomial does
contain repeated factors. The case of non=repeated factors will be considered
first.

5.1.2 Polynomials with No Repeated Factors

Given that a polynomial has no repeated factors, the numbers and
lengths of the sequences are influenced by the nature of the factors; that is,
the sequences depend on whether the orders of the factors are prime to each
other, and whether or not the factors themselves represent maximal generators
(or non-maximal ones). We shall begin with the simplest case==---where the
orders of the factors are prime to each other and the factors are maximal
ones==-===and then consider the alterations which are necessary when this is
not the case.

Under these conditions then, we first consider how to determine the
length of the impulse response sequence. It has been found that the length
of the IR sequence is equal to the least common multiple of the IR lengths
of the factors. It is remembered that the IR length is L for maximal Factors,
and [ for non=-maximal ones. Hence, if a polynomial has the factors:

(kymymmman) (pyrymmmmn) (5,6,=mnm=) (&7)

and 1f the IR response length of these factors are, respectively £7, Lo, and
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39 then the IR sequence length () of the product is:

! = least common multiple of (11, Loy 13) (u8)

Note that equation (48) is true for all polynomials that have non-repeated
factors, no matter whether the 1; are relatively prime or not, and whether
the factors are maximal or not. Using equation (48) to find the length of
the IR sequence, and using the above three principles, we can proceed to
find the number of sequences and their lengths for the non=repeated factor
case where the IR lengths of the factors are relatively prime and the factors
are maximal.

If the IR lengths of the factors are relatively prime to each
other, and the factors represent maximal SRG's, than the total number of se=-
quences is the number of different terms that can be formed by multiplying
factors together. This means that one sequence corresponds to multiplying
all the factors together (this is the IR sequence), one sequence corresponds
to each factor appearing alone (this comes directly from Theorem 7), and one
sequence corresponds to each term that can be formed by multiplying numbers--
lying between all factors and single factors=---of factors together. If there
are two factors in the polynomial then sequences will correspond to the
following terms:

1. (Pl)(Pg) = |

2. Py (49)

3. P2 where P = length of the factor sequences
The first sequence is the IR sequence and its length is the product of the
individual periods. The lengths of the other two sequences are, of course,
identical to the lengths of the sequences from the factors.

For the polynomial with three factors, sequences correspond to the

following terms:
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2. PP,
3. PPy

b. PpPs (50)
5. Pp

6. P,

7. Pz

It is seen that there are seven sequences; the lengths of each of these
seven 1s given by the products of the periods which make up the corresponding
term.

Remembering that the P's are lengths of the maximal length factors,
by use of Theorem 1, corollary 2 and the two preceding equations we find that

L

I+ P + Pp (first case)

(51)
L

I+ P1Pp + PoP3 + P1P3 + P1 + Pp + P (second case)
Example 11: Consider the generator with characteristic polynomial (8,5,0).
The factors are (3,1,0) and (5,3,2,1,0). Both of these are maximal length
factors and their IR lengths are relatively prime. Hence, by equation (49)
there are three sequences; one is 217 long, one is 31 long, and one is T long.
The above example and statements are seen by considering the cascad-
ing of generators, as shown in Figure 20. From each generator, corresponding
to a factor, two possible sequences can be obtained: the normal sequence and
the all-zero sequence (this latter is equivalent to turning the particular
generator off). Since one can arrange the factor generators in any order,
one can always place a "turned-off" genmerator at the front. If one does this,
and turns off first one generator, then two generators, etc., the above state=-
menté seem entirely plausible.
In the above way, then, the number of sequences and their lengths

can be determined for the set of sequences from a non-maximal generator whose

polynomial has no repeated factors, and where the IR lengths of the particular
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factors are relatively prime to each other and the factors themselves are
meximal. We now consider what alterations are necessary when the factors
themselves are non-maximal.

If some or all of the factors represent non-maeximal SRG's, then
subsequences will be formed within the "terms" of equations (49) and (50).
Tt is still profiteble to form the terms as in (49) and (50); now, however,
each term will contribute a number of sequences instead of only one. Note
that we have defined the P's to be equal to the respective L's of the factors;
that is, even though a factor may be non-meximal, the P for that factor is
the length of the sequence if the factor were maximal. Consider equation
(49) and suppose the P; factor is non-maximal and has k non-maximal sequences.

Then the following sequences and lengths will result from this two-factor

generator.
Terms No. of Seq's Length of Sequences
P1P, Kk F1Pe
k
P K P1 (52)
3
P, 1 P,

Exemple 12: Consider the generator (T, 4, 3, 1, 0) = (3, 2, 0) (4, 3, 2, 1, 0).
The IR length of factor one is 7, and of factor two is 5; Py = T, P2 = 15. There
are 3 sequences each of length 5 from the generator (4%, 3, 2, 1, 0). The fol=-
lowing sequences are obtained:

Terms No. of Seq's Length of Sequences
P1Po 3 35

Py 1 7 (53)
Pp 5 >

A third situation occurs when the factors are maximal, but the IR
length of these factors are not prime to each other. As in the previous case,

the result is that the terms constructed in equations (49) and (50) will
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themselves furnish several sequences. It is still desirable to construct
terms in the same fasion. Following this, the general rule to con-

sider is that, in each case, the length of the sequences, which a particular
term will provide, will be determined by the least common multiple of the IR
lengths of the factors which contribute to that term. This can be illustrated
by an example.

Example 15: Consider the polynomial (8,6,5,4,3,0) = (2,1,0)(3,2,0)(3,1,0).
Here there are three factors, and hence the terms shown in equation (50)
will appear. The IR lengths of the factors here are, respectively 3,7, and
T. DNote that the last two factors are reverses; hence their sequences will
be reverses. Using equation (48), the IR sequence is found to be of length
21l. Therefore the length of every sequence must divide 21. We will now
look successively at the terms of equation (50) and determine the sequences
from each term. From term l,(PlP2P5) we see that the product of the IR
lengths is 14T; but no sequence can have length greater than 21 (the IR
sequence appears in the group from this term). Also the least common multiple
of the IR lengths of this term is 21; therefore this term contributes T se=
quences, each of length 21. The third term contributes 7 sequences each of
length T7: the l.c.m. is 7 and the product of IR lengths is 49. These terms
and the number of sequences of each length are shown in equation (54).

Ternm No. of Seq's Length of Seq's
P1P2P3 7 21
P1Po 1 2l
P1=3 P2P5 T T
Pp =7 PpPs 1 21 (54)
P=T ©Pp 1 5
Py 1 7
Pz 1 7

If a combination of the two previous situations occurs=-=-the IR
lengths of the factors are not relatively prime, and the factors are not
maximal length==-; then a combination of the two preceding methods is em=
ployed. A good procedure is to first note the sequences which would occur
if the factors were maximal (as in equations 54) and then break these terms

down further as was done in equations (52) and (53).
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This concludes then the determination of the number of' sequences
and their lengths when the polynomial is factorable but has no repeated fac-
tors. Another interesting physical interpretation can be given for this
case of non-repeated roots (in addition to the interpretation of Figure 20)
which is suggested by equations (49) and(5o). This consists of viewing
the sequences from the factors as "beating" to form the sequences of the
total generator (whereas the conception of Figure 20 considers the factors
as cascaded generators). By beating we mean to take all the possible se-
quences (including the all zero sequence) from any given factor and modulo-
two add it to all the possible sequences from the other factors. For a
general polynomial, this concept is depicted in Figure 21. Careful thought

will show that there will be a sequence (or sequences) from this beat type

(n.o,----) = (k)m;"‘")(P,r,"""‘)(S;t:""“')

[k stage Gen.

Output of non-meximal
generator

|p stage Gen.

| s stage Gen.}

Figure 21. Concept of. "Beating" the Factor Generators of a Non-Maximal
Generator when the Factors are Non=Repeating °*

generator corresponding to every term of equations (49) and (50).

It must be noted that this beating concept applies only to the case
where the factors of the polynomial are non-repeating. We shall see that the
beating concept does not work when there are repeated factors.

5.1.3 Polynomials with Repeated Factors

We now consider the case of repeated factors. We know that
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the sequence corresponding to the factor itself will be included. We will
in addition show that the concept of cascading, as shown in Figure 20, is
still valid but the beating concept of Figure 21 is not.

As in other areas of mathematics 1t appears that the case of
repeated factors represents a singular case. When the polynomial contains
repeated factors, that generator will possess a great number of relatively
short sequences. Table III of the next page shows the number and the lengths
of sequences that can be thained from a generator associated with a repeated-
factor polynomial. This table includes those polynomials obtained by raising
the maximal factors (2,1,0),(3,1,0), and (4,1,0) to every power up to the
tenth power. It is important to note that, for a particular factor, the se-
quences from a given generator consist not only of the ones listed to the

right of the polynomial, but also of all those which precede it (for that

particular factor). The reason for this 1s obvious=----given a factor raised
to a certain power, that factor raised to all lesser powers constitute factors
of the former, and hence by Theorem T the sequences of this latter must appear.
For this reason the third column of Table III is termed "the number of addi-
tional sequences," meaning additional to the preceding sequences. For ex-
ample, the total number of sequences and their lengths available from the
generator whose polynomisl is (12, 10, 6, 2, 0) = (2, 1, O)6 is: 160 se-
quences of length 24; 20 sequences of length 12; one sequence of length 6;

and one sequence of length 3.

One striking fact exhibited by Table III is that when a given factor
is raised to one more power, the new sequences that are achieved (new in the
respect that they did not ocgur in previous powers) are all of the greatest
possible length. The contents of this table can be expressed by the follow-

ing relation: let the repeated-factor polynomial be written: (m,---o)e
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Table IIT

No. of Sequences and their Lengths for Repeated-Factor Polynomials.

Polynomials Number of Additional
Sequences
(2,1,0) 1
(2,1,0) = (4,2,0) 2
(2,1,0)? = (6,5,3,1,0) b
(2,1,0) = (8,4,0) 16
(2,1,0)° = (10,9,8,6,5,4,2,1,0) 32
(2,1 0)6 (12,10,6,2,0) 128
(2,1,0)7 = (14,13,11,10,8,7,6,4,3,1,0) 512
(2,1,0)8 = (16,8,0) 2,048
(2,1, 0y = (18,17,16,10,9,8,2,1,0) 4,096
(2,1,0)%0= (20,18,16,12,10,8,4,2,0) 16,38\
(3,1,0) 1
(3,1,0)2 = (6,2,0) 4
(3,1,0)° = (9,7,6,5,2,1,0) 16
(3,1,0)" = (12,%,0) 128
(3,1,0)? = (15,13,12,7,5,4,3,1,0) 512
(3,1,0) = (18,14,12,10,4;2,0) 4,096
(3,1,0)7 = (21,19,18,17,14,12,11,10,7,4,2,1,0) 32,768
(5,1,0)8 = (24,8,0) 262,14k
(3,1,0)° = (27,25,2%,11,9,8,3,1,0) 1,048,576
(3.1.0)1% (30,26,24,14,10,8,6,2,0) 8,388,608
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12
12
ol
2l
2l
2L
48
48

1k
28
28
56
56
56
56
112
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Table III (Con't)

Polynomials Number of Additional Length
Sequences

(4,1,0) 1 15
(4,1,0)% = (8,2,0) 8 30
(4,1,0)7 = (12,9,8,6,4,3,2,1,0) 64 60
(4,1,0)* = (16,4,0) 1,02k 60
(4,1,0)° = (20,17,16,8,5,1,0) 8,192 120
(u,l,o)6 = (24,18,16,12,8,6,4,2,0) 131,072 120
(4,1,0)7 = (28,25,2k,22,20,19,18,17,13,10,

957555352,1,0) 2,097,152 120
(4,1,0)% = (32,8,0) 33,55k, 432 120
(¥,1,0)7 ='(56,53,32,12,9,8,&,1,0) 268,435,456 2ko
(4,1,0)10= (40,34,32,16,10,2,0) 2,147,483,648 2ko
and let k = 0,1,2, +.vvu... . Then the length of the additional sequences

obtained, when the exponent is increased from e = 1 to e is

£ = (2"-1)2% for all e such that 251 < e < ok, (55)
A SSRG with the polynomial (my===--=0)€ will generate all of the sequences
of the SSRG with polynomial (m,===== )e-1 plus the set of new sequences, and

these new sequences are all of length given by equation (55). There are

2" [1.p7M]
)
tents of Table III.

of these new sequences. These relations describe the con-

Table IITI exhibits the case where maximal factors are raised to
some power. If the basic factor were non=-maximal (they would be irreducible,
or also could be factored further) then the contents of Table III would be

altered in a simple way: the number of new sequences would be multiplied by
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the number of sequences available from the basic factor, and the' length .of
the various new sequences would be divided by this same number.

5.1.4 Using the By Matrix

Thus far we have dealt with non-maximal generators by considering
the factors of their polynomials. Another means for dealing with non-maximal
sequences consists of using the Bp matrix, which was introduced in Section 3.
The BA matrix is formed by using the characteristic equation to successively
write all the powers of A in terms of the first n = 1 powers of A. This process
was illustrated in Section 3. equation (23). The By will be an £ x n
matrix. If we read the jth column of this matrix we obtain the sequence

th position.

which results from a simple generator with a single one in the
If the generator were a maximal length one the resulting sequence would be
the only possible one. For the non-maximal case considered here, however,
the resulting sequences will be the elementary ones due to the single ones
in the initial load: these elementary sequences will be the IR sequence if
either the first or the last columns are read (corresponding to a single .
initial one in either the first or the last stage of a simple SRG). The im=
portant point here is that all sequences of the non-maximal SRG can be ob=
tained by adding the various columns of the Bp matrix two at a time, three
at a time, etc. This process is continued until all the n-tuples have oc=-
curred in the resulting sequence. In this menner all the possible sequences
from the non-maximal generator will be obtained.

Consider as an example the same generator and By matrix that was

treated earlier, in equation (23). The generator is [h,Q,O] and the IR

length is 6. Equation (56) repeats the By matrix for this case.
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(56)

OHOHOO
OOHFHOHO
OHOOOH
HOHKFHOOO

- J

Any column of this is the sequence resulting from a single one in the cor=-
responding stage of the register.
Consider the response from an initial one in the 4tH and in the

rd place. Adding these gives the result:
5

Lth place: 000101
zrd place: 100010 (57)
Result 100111

This is another 6 long sequence that the register provides. A 1 in the yth

and in the 2nd place gives:

4th place: 000101
2nd place: 010100 (58)
Result 0I000T

This sequence is the same as the first and last column of equation (56), and
hence is an IR sequence. If we try a 1 in the 3*® and 28¢ position, we obtain:
374 place:

100010
ond place: 010100
Result TTIO0OITIO

000
101

(59)
This is a 3=-long sequence. We now have obtained two 6=long and one 3=long
sequence; these total to 15, and hence we know we have obtained all the se=-
quences that are possible from this 4 stage non-meximal generator.

This illustrates how the By matrix can be used to find the actual
sequences thatcan be produced by a given non-maximal generator. The work
required to form the By matrix is somewhat lengthy, however; and it is felt
that the polynomial's factors afe more useful for this purpose.

2.2 Shift and Add Properties of Non=maximal Sequences

In the previous sections we have dealt with the question of the

number and length of sequences from a non-meximal shift-register generator.
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Parallel to the case of maximal sequences, an interesting property of non-
maximal ones is the shift and add property. In general we can say that non=-
meximal sequences exhibit "partial" shift and add properties. By this we
mean that, for certain shifts the shift and add property is exhibited. For
the other shifts, however, a different sequence of the same SSRG is obtained.
Further, it has been observed that, for certain sequenées there exists a
matrix which relates the sequences from one generator together and that,
through this matrix, there exists a relation between non-maximel and maximal
generators. We have chosen to call this matrix the C matrix; its construc=-
tion will be illustrated in this section.

The shift and add properties of non=maximal sequences differ ac-
cording to the factor properties of the polynomisl. As noted before the
three major categories are (1) the polynomial is irreducible, (2) the poly=
nomial is factorable but contains no repeated factors, and (3) the polynomial
does contain repeated factors. We will consider the categories in the order
which they are listed.

5.2.1 Irreducible Polynomials

If the polynomial is irreducible all possible sequences are of the
same length and equal to the length of the IR sequence. If one of these
sequences is chosen,by shifting and adding this sequence to itself (as shown
previously in Figure 9) all of the other sequences of the group will be ob=
tained as all‘possible shifts are taken. The original sequence itself
(shifted) will also appear for certain shifts. One can determine which shifts
produce the original sequence by finding certein "basic" shifts and then suc-
cessively doubling these until the resulting shifts begin to repeat mod. £.
This doubling is equivalent to squaring the powers of A, and hence determining

the set of permissible shifts from the basic shifts is identical to the
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grouping process treated earlier in equation (27). The determination of the
basic shifts is the critical step in finding the permissible shifts. For
this, it is convenient to consider two cases: (1) the generator has only
two feedback taps, and (2) the generator has more than two feedback taps.

If the non-maximal generator has only two taps, its characteristic
equation contains the two basic shifts. These two are obtained by taking
each power of A in the characteristic equation plus the identity term; this
is permissible since modulo=two addition is involved. Consider the generator
[9,8,0] with its characteristic equation (9,1,0). The two equations which
specify the basic shifts are:

(A+I)U=2%

(60)

and (A9 + I)U = AU
Hence, the two basic shifts are 1 and 9. By doubling successively each of
these numbers, it will be verified that the following shifts are all per=-
missible: (61)
shifts ={1,2,4,8,16,52,6u,128 =5(mod T3), 3T; 9,18,56,72,71,69,65,57,41}
That is,if a sequence from a generator whose polynomial is irreducible is
chosen, it will be found that the shifting and adding of this sequence using
the shifts obtained in the above manner, results in a shifted version of the
same sequence. Other shifts of this same sequence will produce other se=
quences from the group of all possible sequences.

When the generator has more than two taps, it is necessary to use
the Bp matrix to find all the basic shifts. Given the Bp matrix, one must
look for two situastions: (1) the case where a power of A is equal to the
identity plus another power of A, and (2) the case where any two rows of

the By matrix differ only by the ldentity term. Consider the generator
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16,5,4,2,0] whose characteristic equation is (6,4,2,1,0). The Bj matrix for

this generator, obtained by the procedure of (Section 3.4t)equation (22), is:

By Matrix

543210
1 T ... 1.
2 1.
3 1.
L1,
5 1. ....
6 .1.111
7 1.111.
8 ..1.11
9 .1.11.
10 1.11.. (62)%
11 . .1111
12 .1111
13 1111..
W 1.1111
15 1. .1
16 1 1
17 1. .1..
18 11111
19 11111.
20 1.1.11
21 .. . .. 1

Looking first for rows having the identity plus only one or other term, we see
that A15 = A3 + I; hence 3 and 15 are basic shifts. Next we look for rows that

6 + I = A9; therefore

differ only in the identity (0) term. It is seen that A
6 and 9 are basic shifts. Also, AT+ 1= Alh, so 7 and 14 are also basic

shifts. Consequently,

basic shifts = {5, 15; 6, 9; 7,14} (63)
By repeatedly doubling each one of these, the following list of permissible
shifts is achieved:

shifts = {5, 6, 12; T, 14; 9, 18, 15} (64)
If we shift any given sequence an amount different from any of these numbers

a sequence different from the original éequence will result. The above shifts,

1pots have been used instead of zeros so that the patterning of ones is more
evident.
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then, describe the partial shift and add property of this non-maximal generator
whose polynomial is irreducible.

Another important structure property that applies to a non-maximal
generator with an irreducible polynomial is that there exists a matrix that
relates all the sequences of the set. This property is very closely as=
sociated with the shift and add property discussed above. If we consider
any shift that does not produce the same sequence then a maetrix can be formed
which commutes between the sequences of the set. That is, applying this
matrix to one sequence of the set, another of the set results; if this is
repeated for the resulting sequence, still another of the set results, etc.
When all the sequences have been scanned the original sequence will result,
but it may be shifted from the original one. If we call the various non=
maximal sequences of the set u,v,w,etc., and label the commuting matrix as

the "C" matrix, then

CU=V

clv =W (65)
)

|

07 = AXU

where u,v,w ===z = pon-meximal length sequences resulting
from a given SRG.

U

any n digits of the u sequence

v

any n digits of the v sequence

As mentioned above, a C matrix can be formed by using any of the
shifts which do not give the same sequence with a shift. As an illustration,
consider the generator [9,8,0] which was treated in equation (60); the shifts
which exhibit the shift and add property are shown in equation (61). Hence,
to form & C matrix we can use any shift (up to 73) not appearing in this

equation. We will use the shift "3" to demonstrate a C matrix; thus we can
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write the equation:

AW+ 1)u=v

C=a0+1 (66)

where A = matrix for [9,8,0]
C = commuting matrix for the A generator

This equation says, that if we take any sequence of ‘the set, shift it three
times and then add this to the original, a different sequence of the set will
be obtained. Furthermore different sequences of the set will be obtained by
repeated applications of the C matrix as shown in equation (65). The generator
[9,8,0] has a set of T sequences, each of length 73; the given C matrix then
permutes between each of these seven sequences. Further, it is found that

ol = 481 (67)
This means that, when the C matrix is successively applied 7 times, so that
all the sequences of the set have been scanned, the C matrix then returns
to the original sequence, but shifted 61 digits from the original reference.

It should be noted that, in general, a C matrix formed as in
equation (66) is not a companion matrix; of course, it will be similar to
a companion matrix. Also it must be remembered that, in the above paragraphs,
we were talking about generators with irreducible polynomials.

Having discussed the C matrix which relates the sequences from a
non-meximal SSRG (with an irreducible polynomial), we are now led to an
interesting propérty that relates this none-maximal SSRG to a set of maximal
SSRG's of the same number of stages. In essence, all the sequences from a
given irreducible SSRG (non=maximal) can be obtained by sampling the sequences
from a set of maximal SSRG's. Although the sequences from the non-meximal
generator can be achieved by some sampling of é&l the maximal generators of

the same number of stages, we shall be most interested in those related
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maximal generators which yield the non-maximal sequences with'a short sempling
plan.

This relation between maximal and non-meximel generators is sug=
gested when one considers the order of the commuting C metrix discussed above.
If a C matrix permutes between all the sequences of a given non=meximal
generator, then the C matrix must, have a maximal order. Therefore if we
consider a generator wired according to a given C matrix, that generator will
be a maximal one. It is further suggested that a sampling of the sequence
from this maximal generator will produce the sequences of the non-maximal
one; this has been found to be true. It has been found that, if there are
k equal-length sequences from a non-maximal generator, then by sampling

every kt

h digit of the associated maximal generators, the sequences from the
non=-maximal one are obtained. If any sampling plan whatsoever is allowed;
then the sequences from a non-maximal generator can be obtained from any
maximal generator (of the same number of stages). There seems to be little
point to this, however, and we shall consider as related only those maximal
generators which can be sampled every kth digit to obtain the desired non=-
maximal sequences.

We will demonstrate the above principle by considerihg the C matrix
of equation (66): C = A2 + I. The A matrix refers to the (9,8,0) generator,
and this SSRG has T sequences, each of length T3. The C matrix is not a
companion matrix, and hence the generator for this would be a multiple-
return one. Since every multiple-return generator has a simple equivalent,
we seek the simple generator equivalent to the given C matrix. This can be
accomplished by the seme method used in Figure 8; 17 digits_of the out=-
put sequence are needed. The generator [9,8,5,4,2,1,0] is the simple

generator corresponding to the given C matrix, and experimentally it has been
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verified that this is a maximal generator. Now the set of T sequences from
the non-maximel generator [9,8,0] are all of length 73. The above discussion
stipulates that, by sampling the generator [9,8,5,4,2,1,0] every 7th digit,
we will obtain the sequences of [9,8,0.], and this has been found to be the
case. Thus, we start anywhere in the maximal sequence and pick up every Tth
digit; this is one of the non-meximal sequences of [9,8,0.] Then we move
over one digit and repeat the selection, and another non-meximel sequence is
obtained, etc.

Thus, we have found one 9-stage maximal generator which, if
samplied every 7th digit, produces the non-meximal sequences of [9,8,0.]
The non-maximal generator possesses T equal=length sequences, and we have
found a related maximal generator=----related in the sense that every 7th digit
of the latters sequence forms the T sequences of the former. It was noted
earlier that we can sample every 9-stage maximal generator and obtain the se=
quences of all the non-meximal ones (including [9,8,0] of course); however,
this will require samplings other than every Tth digit, and there seems to
be little point in this. It is for this reason that we shall regard a
maximal generator as related to & non-maximal one only if every kth digit
of the former produces the k sequences of the latter.

In the above illustration we constructed the C matrix by knowing
a proper "shift." We can, if we wish, synthesize & C matrix by using any
two sequences of the set and any two reference points in these sequences.

If we formed the C matrix in such a manner, we would probably not
know C in terms of A. Therefore the method of finding the simple generator
corresponding to C that was used in Figure 8 would not be available. In

this case it would be necessary to take advantage of the knowledge of the

non-maximal sequences and their chosen references, and then construct the
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output sequence of the related maximal generator. Knowing this, it is pos=-
sible to find the proper simple generator by the method of Figure 8 in Sec=-
tion 2.

It is now pertinent to consider how many maximal generators are
related to a given non-meximal one in the manner stated above. The answer

n_n

is as follows: if there are "r" non-meximal generators (for a given n stages)
of a given length, and if there are "s" maximal generators of n stages, then
there will be s/r maximal generators associated with each of the r generators
in the above sense. Thus, for the 9-stage case there are 8 irreducible non=-
maximal generators (whose sequence lengths are all T3) and 48 maximal
generators. Thus, with each non-meximal generator there are associated 6
maximal generators which, if sampled every 7th digit, produce the sequences

of the given non=maximal one.

From Table IT we find that, for the case of 8 stages, there are 16
meximal generators (L = 511), 8 non-meximal ones of length 85, 4 non-maximal
ones of length 51, and 2 of length 17. Thus, for the 85 long SRG's, there
will be 2 associated maximal generators which can be sampled every 5rd digit;
there will be U4 meximal generators which can be sampled every 5th digit to
produce the sequences of the 51 long generators; and 8 maximal SSRG's which
can be sampled every 15th digit to find the sequences for any 17 long
generator.

We will now demonstrate these conclusions by finding the 6 similarity
classes for the maximal generators related to the [9,8,0] generator. In a
preceding peragraph we found that one related maximal generator [9,8,5,4,2,1,0].
The similarity class for this connection is [1,2,4,8,16,%2,64,128,256]. If
we sample this connection every Tth, we are in effect reading the sequences

of the similarity class [T7,14,28,56,112,224,448,385,259]. Now, we want all
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the similarity classes which, if raised to the Yth pover, give a'number in
this class (we shall chose the lowest number (7) for convenience). The es=
sential procedure then is to find all those numbers which, modulo=511, equal
T; then this number is divided by T, and the result establishes the correct

similarity class. The following numbers are equal to T, modulo=511

T=T71+ (0)(511) = 7 (mod 511)
TeTd = 7-1+ (1) 511 = 7 (mod 511)
To147 = 7.1 + (2)(511) = T (mod 511) (69)
7220 = 7-1 + (3)(511) = 7 (mod 511)
7293 = 7-1 + (4)(511) = 7 (mod 511)
7366 = 7-1 + (5)(511) = T (mod 511)
T439 = 7-1 + (6)(511) = 7 (mod 511)

It is clear that these are the only numbers which equal 7, modulo=51l; the
next number which would occur equals 1 (modulo=511) and hence the numbers
would start to repeat. Note that the number 147 is divisible by T, and
hence this number will establish a similarity class which represents a non=
maximal generator. For this reason we ignore it, since we are seeking those
meximal generators which, if sampled every T, given the sequences of [9,8,0].
Taking the remaining numbers then, to establish similarity classes we find
the following classes:

{ 1,2,4,8,16,32,&,128,256}

{ Th, 128,296,81,162,32k , 137,274, 37 }

{ azo,ulpo,569,227,45&,597,285,55,110} (69)

{ 29%,75,150,300,89, 178,356,201,402 }

{ 366,221, 442,373,255,470,429, 347,185 }

J{ 439,367,223, 446,381,251,502,493 475 }
These six classes now determine the six maximal generators which, if sampled
every TP digit, produce the sequences of the non-meximal generator [9,8,01.

Using the example of the [9,8,0] generator, then, we have just

demonstrated that there are six maximal generators which are assoclated with
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this generator by means of a simple sampling plan. This is meant to serve
as a demonstration of the above conclusions regarding the relation between
non-maximal and maximal generators.

This concludes our consideration of the relationship between non=-
maximal generators and maximal ones when the generator's polynomial is ir-
reducible. This gives us some idea of what happens when we sample a maximal
SRG at a rate that is not relatively prime to its order. Earlier, in equa-
tion (27) we viewed the generation of meximal sequences as the sempling at
relatively prime rates of one maximal sequence. Here we have seen that a
sampling at a non-prime rate resu}ts in sequences which appear in a non-
meximal SRG. This suggests more structure, which we did not pursue.

We have just seen that, when a non-maximal SRG has a polynomial
that is irreducible, the resulting group of sequences are all of the same
length and that this group of sequences exhibit some structure. Specifically,
a matrix exlsts which relates all the sequences, one to the other, and that
all the sequences in the group can be considered as being derived from a
sampling a set of maximal SRG's which are related to the commuting metrix (C).
All of this structure has been the result of investigating the shift and add
properties of non-maximal sequences. We will find that a similer structure
does not appear when the polynomial contains factors.

5.2.2 Non=Repeated=Factor Polynomials

Consider now the shift and add properties when the polynomial con=-
tains factors, but no factors are repeated. From the material considered in
Section 5.1.2 (equations 49 through 54) it will be recalled that we must con=
sider the cases where the p's are prime and non=prime and that within each of
these the cases of maximal and nonemeximal factors exist.

In general those shifts which produce the shift and add property

are found in the menner ldentical to the case treated above (irreducible
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polynomial). If the p's are prime and the factors are meximal length ones
(and only two feedbacks are present) the shifts which produce the shift and
add property are found by grouping each term of the characteristic equation
with the identity term, and then repeatedly squaring each of these terms.
This results in a series of shifts, which, if epplied to any sequence of the
group, will result in obtaining a shifted version of the same sequence.
As an example of this type consider the equation (5,4,0) = (2,1,0)
(3,1,0). It is noted that the orders of the factors are co-prime, and the
factors represent maximal generators. From this equation the two basic shift
properties are:
(a* + 1)U = A%
(0 + 1)U = Aty (10
Hence the shifts of 4 and 5 are the two basic ones; using these and repeatedly
squaring them (and using p%l - I), the following shifts are found to be per=-
missible:
{ 4, 8, 16, 11, 1, 2; 5, 10, 20, 19, 17, 15} (T1)
The remeining shifts, if applied to a sequence of the group, will provide a
different sequence when shifted and added.
If the p's are all relatively prime to each other and some or all of
the factors are non-maximal ones the situation becomes more complex. First
of all, the basic permissible shifts will still be determined by the char=-
acteristic equation as above. From any sequence of the group, these shifts
will always return a shifted version of the same sequence. However, there
will be another set of permissible shifts which operate within the non-
maximal sequences of a given factor. That is, these shifts will be permissible
only with the non=maximal sequences of the given factor.
If the p's are not prime their permissible shifts are still found

in the same manner as above. The only essential difference is that a smaller

- 80 -



number of shifts will be permissible. This is due to the fact that the order
of the A matrix is reduced (from what is would be if all the factors' orders
were prime); this means that the repeated squaring of the basic shifts is cut
short. Hence a smeller number of permissible shifts will result.

Since we considered a commuting C matrix for the previous case of
non-maximal generators with irreducible polynomials, it is natural to wonder
whether a C matrix plays a similar role when the polynomials are factorable.
In general it appears that there is less significance to a commuting matrix
in this latter case. For one thing all the sequences in the group are not of
the same length. Another general statement i1s that, if any of the factors
are maximal ones any C matrix which commutes another sequence to that se=
quence cannot commute any further because the sequence of the meximal factor
will have the complete shift and add property. Hence when maximal factors
are present there cannot exist a C matrix which commutes between all the se=
quences of the group. In the case where the p's are not prime, it is pos=
sible to find a matrix that commutes between a part of the group of the se=
quences. An example of this is the generator whose equation is (8,1,0) =
(2,1,0)(6,5,3,2,0). The orders 3 and 63 are not relatively prime. This
generator provides 4 sequences that are 63 long, and one sequence of length
3, A C matrix can be found that permutes between 5 of the L--63 long sequences
(the 6% long sequence that is a maximal one is excluded).

In general, however, it appears that a C matrix does not add
significantly to exhibiting structure behind non-maximal sequences when the
polynomial is factorable.

5.2.3 Repeated Factor Polynomials

The last case we have to consider is when the polynomial has re=

peated factors. The situation here is similar to the case of non=-repeated
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factors just treated. The permissible shifts are found from the.characteristic
equation or the By matrix and a C matrix can only permute between parts of the
total group of sequences. It has been observed that the permutation group is
related to the power of the factor; if thé power is two, a given C matrix per-
mutes between two sequences at a time, etc.

Before concluding this section it is pertinent to mention those non=-
maximal sequences that can be obtained from generators with an oad number of
feedback taps. It will be remembered that all the previous material was
devoted to generators with an even number of taps. The reason for this re=-
strictrion is that, as stated in Theorem 3, no SSRG with an odd number of
taps can produce maximal sequences.

It will be shown that the set of none-maximal sequences from an odd
feedback SSRG contains the same sequence as that from an even feedback gener=
ator of less stages plus a sequence or sequences related to this one. To
show this we will utilize a theorem:

Theorem 8: If a modulo=two polynomial contains an even number of
nonezero coefficients, it is divisible by the binomial (x + 1).

If the SSRG has an odd number of feedback taps its polynomial has
an even number of terms (due to the added zero). The theorem than says: if
an n stage SSRG has an odd number of taps, its polynomial can always be

D=L cececaa=sl), The second polynomial will always

factored into (x + 1)F (x
be of degree less than n; and it might also be factorable. Also, this second
polynomial has an odd number of terms=-=~hence the corresponding SSRG has an
even number of taps.

Consider as an example the case where r = 1. Since the factor (1,0)

corresponds to a one=stage SSRG, the above theorem results in the following:

One seqguence from this odd feedback SRG will be the Sequence corresponding
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to the n-1 stage SRG whose polynomial is the second factor above; one sequence
will be the complement of this sequence; and the final sequence will consist
of the all one sequence. This conclusion is achieved from Theorem 7 and the
fact that "supplementing" the feedback digit results in supplementing the oute-
put sequence=----it is observed that adding constant one to whatever digit is
fed back supplements this feedback digit. The above conclusion will be
obvious if one considers the cascading of factors as illustrated previously
in Figure 20.

It will be noted that the lengths of the sequences above add to
ofal, Suppose we have an n stage register with odd feedback and with r = 1;
then there are two sequences of length En'l-l, and one sequence of length 1.
The total is:

el o)+ @l o1)+1=20c1=1 (63)

Thus we see how the non-maximal sequences from an odd feedback
generator are related, or reduced to, the non-maximal sequences that we have
already considered. For r different that 1 other sequences, in addition to
those described above, are obtained. If r=2 the complement of the second
polynomials' sequence will also be obtained (the complement of a sequence is
formed by changing every second digit of the original sequence).

We can now summaerize the situation for non-maximal generators. In
general one can determine the number and the lengths of the sequences by con-
sidering the characteristic polynomial of the generator. If the polynomial is
irreducible the order of the matrix will specify the informetion; if the poly=
nomial is factorable the information can be derived from the factors.

When considering the shift and add property we saw that non-maximal
sequences have a "partial" shift and add property in that shifting and adding

to get back the same sequence only works for certain shifts. For all three
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cases of polynomials the permissible shifts can be obtained from the character-
istic equation of the SRG. Further we saw that the sequences from non=-meximal
SSRG's whose characteristic polynomial is irreducible exhibit a great deal of
structure; i.e. there exists a C matrix which commutes between the entire
group of sequences. This then leads to relating the original non-meximal SRG
to a maximal SRG of the same number of stages. All of the sequences from the
non-maximal generator can be obtained by time sampling the related maximal
generator. Finally it was noted that those sequences from SSRG's whose
characteristic polynomial is factorable do not exhibit this structure, and the
C matrix appears to have little significance.

As a last point it was shown that the sequences from an odd feed-
back generator are included in those sequences obtainable from even feedback

generators which have been considered throughout this report.
Sunmary

The properties of maximal and non=-maximal sequences from linear
shift register generators have been studied with the use of the A matrix,
which represents the generator, and its characteristic polynomial.

In dealing with maximal sequences in Section 4, it was shown that
the number of sequences obtainable, for an n=-stage generator, is Qﬁ%;:ll.
All of these output sequences will be of length 2% = 1. Two methods were
described for finding the proper connections for these generators. The
first method consists of first finding all the nth degree irreducible poly=-
nomials (which have an odd number of terms), and then eliminating the proper
number of these which have periods less than o = 1. Each of the polynomials
which remain correspond to a maximal generator. The second method allows

one to identify all the maximal generators of n stages if one is known. In
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this method one first writes the different similarity classes, involving
powers which are prime to 2B - 1, for the given generator. Then, using the
Bj matrix, a polynomial is associated with the lowest power of each of the
similarity classes. The resulting polynomials are the characteristic poly=-
nomials for the desired maximal generators. Also, in Section 4, it was
shown that every maximal sequence has the shift and add property and hence
all maximal sequences have perfect autocorrelation functions.

For non=-maximal sequences, Section 5, it was shown that for each
given generator the number of sequences and their lengths can be determined
By considering the factors of the characteristic polynomial. To accomplish
this it 1s necessary to consider whether the impulse response lengths of the
factors are relatively prime to each other, and whether the factors them=
selves represent maximal or non-maximal generators. In dealing with the
shift and add properties of non-meximal sequences it was found that only
some shifts result in obtaining the same sequence back again. A procedure
was described for finding these permissible shifts.

Further, it was found that when the non-maximel generator has an
irreducible characteristic polynomial the resulting sequences possess an ime
portant structure property in the form of a commuting C matrix. In this
irreducible case a set of C matrices exist which will permute between all the
sequences of the generator. The method for fiﬁding these C matrices was
discussed. The set of C matrices were then considered as a set of maximal
generators which are related to the original non-maximal one. The relation
is that any of thé C maximal generators can be sampled in a simple manner
to obtain the sequences of the original non-meximael one. Thus, for the
irreducible non-maximal generator, the set of C matrices establish a relation
between the non=maximal one and a set of maximal generators. It was also con=
cluded that, for non-maximal generators with reducible polynomials, the C
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matrices do not appear to play a very important part.

In conclusion it must be stressed that the sequences considered in
this report are generated by linear shift register generators. There are two
possibilities for accomplishing a non-linear generator: (1) using non-linear
feedback, and (2) placing a non-linear output matrix on a linear generator.

The non-linear feedback generator would use both multiplication
and modulo-two addition. If both of these are allowable it is possible to
obtain all possible sequences of length o .1 using only n-stage generators.
Thus we can regard the Qﬁg&%&l sequences of length 2% - 1 from linear
maximal generators as a subset of the total possible sequences of this length
which are obtainable from non-linear generators. Another property of non-
linear generators is that the transients may be as long as 2% - 2, for an
n-stage generator.

If a non-linear output is placed on the linear register all the
transient and periodic properties of the linear register will be preserved.
Therefore the transients will not be longer than n digits long. Also, with
this arrangement it is possible to obtain all the possible sequences of the
period of the linear generator. Thus if the linear generator is a maximal
one, using a non-linear output enables one to obtain all the possible se-

quences that are o long.
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APPENDIX A

The easiest exposition of the text material does not follow the same
order as the internal logic. For this reason the theorems of this appendix
are not in the same order as they appear in the report. The ordering of this
appendix 1s in accord with the internal logic but the numbering of the theorems
coincides with the numbers in the text. All equation numbers are preceded by
A; any equation number without the prefix A refers to the body of the report.

All the material in this first section A.1 will deal with SSRG's.
The material in Section A.2 will deal wich general SRG's, and important
equivalences between the general SRG and the SSRG's.

A.l Theorems dealing with SSRG's

The first set of items to be proved in this appendix deals with
simple shift register generators (SSRG's), and the shift matrix A defined in
Section 3.1. The general form of an A matrix for a lL-stage SSRG is the

4 x 4 matrix below

N

Cp C, C3 1
1000

A = (A1)
0100
(00 1 0]

The second, third, and fourth rows are the characterization of a simple shift-
register generator, since the shift matrix will shift the contents of the
first stage into the second, the second into the third, the third into the
fourth--as simple as that, no modulo-two adders between stages. The term
a1,y = lbecause the last stage must feed back to the first. The first

lemma will show that the inverse of this matrix is simply

(a 2)

HOOO
QO O+
QO KO
QHH OO
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because the product of these two is

(A 3)

H O OO

The elements of the matrix are from the field of integers modulo 2, and hence
the terms
261 = 0 (mod 2) (A k)

The proof below is just a formalization of thils procedure.

Lemma 1 If A is an SSRG, A has an inverse

Proof':
A= (ag3) 81y = cj 1<j<n
where ¢y = 1 (A 5)
ai,i-i = 1 2<1i<n
8,11 = 0
Consider D = (dg35)  di,i+l = 1 1<i<n-l
dj, j#i+l = 0 (& 6)
dp,; = 1
o,y = ¢jel 2<y<n
DA = (%dik ax;) (A7)
Now for i <mn only di,i+1 # 0, and so the E degenerates:
Ldgg ok = Ay g1 %14L,5 = 1 AF J=i
= 0 if J# (A 8)
For i=n
n
Ednk axy = dn,1 21,3 +k§2 el B, (A 9)

Because only aj+l,j % O in the second sum, i.e. k = j+l

- 88 =



lrcy+ cj 0 (mod 2) j <n-l

%dnk " (A 10)
=l‘cj+0=l jJ=n
Hence D A = (8ij) = I, proving that D in the inverse of A. (A 11)
In order to establish further basic properties of SSRG's we must
recall the notation used in the report. The notation for the column vectors
called contents or content vectors was introduced in Section 3, equation(5).

Specifically,

contents of the 1th cell after J shifts

ui(j)

and (5)
u(3) = (ui(3))

When a SSRG is being used, the contents of cells simply shift down the

register,
uipl (3+1) = uy(3), 0<i<n (A 12)
The limitation on the index is because the "physical" range of the cell index
is from one to n. It is convenient in this appendix to ignore the physical
meaning of the subscripts, and to allow the cell index to take on any value.
Since every SSRG has an inverse, the shift index is also allowed

unlimited range without ambiguity. This is crystallized below.

Remark 1 For any given SSRG and given initial load Y(o), for all integers
i, j, end k
vi(3) = yi4x (J+k). (A 13)
Another immediate consequence of the existence of an inverse for
A is the existance of an "order" for A, and hence its periodic nature and
the lack of transients. The next remark and two corollaries will establish

this.
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Remark 2 The null load Y,(0) = (yi(o) = 0) has period one, i.e:
A Y5(0) = Yo(0) (A 14)

because any sum of zeros is still zero.

As was mentioned throughout the body of the report, an output
sequence is the successive contents of a given cell; for convenience, this
is usually the last stage. This means that the null load will always yield
the all-zero output sequence. In addition, a similar consequence is that
n successive digits of an output sequence correspond to the contents of the
register at some time during the production of those digits. For example,
if the output is from the last stage, starting after the jth shift, Remark 1,
leads to the relation:
(¥ (3)s Tn(3#1),==-yn(3#0-1)) = (70(3)s ¥o1(d)s---¥1 ()5 ¥(3) (2 15)
In géneral
(7(3)5 ¥c(3#1), ==y (340-1)) = (yp(n-kd), .. vy (moketd)) E3 ¥ (noke)  (a 26)
Because of these simple relations, the periodicity of an output sequence

is equivalent to the periodic reappearance of the same register contents.

Corollary L 1.1

Using a SSRG, every initial content vector will reappear periodical-
ly. I.e. given A, Y{o) ab, a function of A & Y(o) BAbY(o) = Y(o).

Proof For the null load Y,(0), b = 1 can be used. (Remark 2)

For any specific non-null load Y(o), consider the set of
next 2"contents: Y(o), Y(1),-==Y(2"). Because there are only
281 non-null vectors of zeros and ones, there is at least one
repeated contents, say

Y(a) = Y(a+b) (A 17)

That means that

ABY (o) = ABFPY (o) (A 18)
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and applying the inverse a times
Y(o) = AP Y{o). (A 19)
and apply the shift k times

(k) = AP Y(k) (A 20)

Corollary L 1.2

The shift matrix of a SSRG has an order, and the order is the least

common multiple of the periods associated with the different possible initial

loads.

Proof The Corollary L 1.1 proved that each initial contents will
reappear periodically. The period of a periodic event is the
minimum such periodicity. Since there are a finite number of
initial conditions, there are only a finite number of such periods,
and hence there will be a least common multiple. Call this l.c.m.
b¥. Since b¥ is a multiple of every period,

Y(o) = AP* Y(o0) (A 21)
for all vectors Y(o), then

I = AP* (a 22)
Finally, assume there is some lower power of A which equals the
identity, then equation (A 21) holds for this lower power is a
common multiple of all periods, and this contradicts the definition

of b* as the least common multiple.

Now that it has been established that all possible output sequences from a

SSRG are periodic with no "transient" section, there will be no error in-

volved in using the "obvious" definition that two sequences are the same

if translating one in time will align it with the other so that there is

complete agreement, digit by digit for one full period. Two sequences are

different i1f there is no such translation possible.
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Theorem 1. For a given n-stage SSRG, each possible n-tuple of zeros and ones
appears in one and only one sequence.
Proof  Given any n-tuple of digits (dy, dp, ==--dpn),
there is the possible initial load
Y(0): yi(o) = dpe1-1 (A 23)

Consider the output sequence yn(j) for small J

yn(j) = yn-j(o) dn+1-(n-j3) (A 24)

dj+1s © S J S -l
That is, the specified n-tuple appears in the sequence corresponding
to a content vector (initial or shifted) with those specified
digits reading from bottom to top.

To show that these digits are in only one sequence, suppose
two sequences contain the digits dj to dp; consider the contents
vector of equation (A 23). This must have been the contents of
the SSRG at the time the diglt d; was produced, and hence both
sequences are the same as the sequence yn(j), where Y(o) is given
by (A 23).

In the body of this report, the period of the impulse response (Y(o) =(511),

a simple one in the first stage) is denoted by {1, and the periods of the

other non-null sequences are denoted by p, po, etc. Considering a specific
n-tuple in a sequence from an n=-stage SSRG, this n=-tuple reappears periodical=-
ly with exactly the period of that sequence. Thus in the impulse response
sequence there are [ different n~tuples which reappear in the same order.

Corollary 1.1 Considering all of the different sequences of a specific

SSRG, then
f +Lpg=1L (3)

Proof L = 2«1 = number of non=null n=tuples.



The objective of the next two lemmas is to reach theorem 2, "the
period of every sequence from a SSRG divides the impulse response period {."
For this proof we need one more item of notation for special content vectors.
These special vectors are the "elementary loads" consisting of a single one
in some stage. A subscripted E for "elementary" is used instead of the’
usual "Y".

DEFINITION The j°O elementary load is the vector
Ej5(0) = (3 4) (A 25)

As in the ordinary use of the notation,if an SRG A is being used,

then the k'P contents after an elementary load is

AK Ey(0) = B, (k)
Lastly, the sequence which results from the elementary load Ej(O) is
denoted as the sequence Ej.
LEMMA 2 The period of any sequence from a given SSRG divides the least
common multiple of the periods of the elementary sequences.

Proof Consider any initial load

Y(0) = (y1(0)). (A 26)
In terms of the elementary loads
' n
¥(0) =2 ¥;(0) E(0) (A 27)

since each Ei(O) contains exactly one 1 in the appropriate row.
Applying the shift matrix A to the sum of (A 27) we have

Y(k) = A¥y(0) =5 y; (0)A%E, (0) (mod 2)
i=1 (A 28)

sél y4(0) By (k)  (mod 2)

Reading equation (A 28) for the contents of any particular stage:
"The initial load Y(0O) selects which elementary sequences are to

be added together to form the output sequence." Since the sum of
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periodic sequences is periodic, with period equal to or dividing

the least common multiple of the periods of the summed sequences,

the lemma is proved.

The impulse response is the sequence E;. Since no special use is
made of the actual digits'of the impulse response elsewhere in the report,
no general notation is established for it. However, from here to the end
of the proof of Lemma 4, an asterisk will be used to denote the impulse
response sequence.

Y*(3) = Ep(3)
and (A 29)
IR sequence: y *(J)
Note that for a SSRG,
v£(3) =vy§.5(0) =0 0<j<n-2

i(n-1) = 3% (0) =1

(A 20)

It will be very useful to consider the matrix whose columns are the first
n content vectors of the register with the impulse load. Hence the follow-
ing definition:
DEFINITION  The matrix E, associated with a SSRG A is defined as

E, = (El(O), El(l), ... El(n-l)) (A 31)

The elements of the matrix E) are related to the digits of the
th th

impulse response. Specifically, the elements in the i*" row and j”* column,
usually denoted ejj, is the 10 cell contents after J=1 shifts

e1y = v§(J-1) = yA(n+j-i-1) , (a 32)
In particular it can be seen from equation (A 30) that the principal
diagonal is all ones,

ej,i = v¥(nt+i-i-1) = y¥(n-1) = 1; (A 3%a)
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and the subdiagonal triangle is all zeros,
e; » 5 = ¥& (n-1-(i=3)) = 0. (A 33b)
LEMMA 3 The elementary loads are linear combinations of the first n impulse
response contents Ey(0), . . . , Ey(n-1).
Proof ~ Because E, is triangular, the determinate of E, is the

A
product of the elements on the principal diagonal.

n
|EAI =[T es53=1 (A 34)
J=1
Because the determinate is non-zero, the matrix has an inverse,
-1
Ep- |
B, EjY = I A 35)
A BpT o= 35

Now the columns of E, are the first n content vectors under the
initial load Ej(0), while the columms of the identity I are the
elementary loads EJ(O). Thus the existance of the inverse, and its
definition (A 35) becomes |
(B,(0), B (1),eney By(ne1) ) + Egm= (1(0),...,E,(0) ) (mod 2) (A 3
Thus the rows of EAl specify the desired linear combinations of
coefficients which express the elementary loads as combinations of the first
n impulse response contents. Using the above two lemmas, Theorem 2 can now
be proved.
Theorem 2 The period of any sequence from a SSRG divides the impulse
response period, i.e., p;|f-.
Proof By lemma 3, each elementary load is a linear combination of
the first n content vectors under the impulse load. Hence each
elementary sequence is a sum of shifted versions of the impulse
response sequence. The resulting sum will be periodic every £ digite
since it is a sum of sequences with period f. Because [ is the

period of the first elementary load, { is the least common multiple
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of the periods of the elementary sequences. The theoret then follows
directly from Lemma 2.

Corollary 2.1 The order of a SSRG is the period of its impulse response.

Proof By Theorem 2, and the fact that SSRG's have no transient

response,

Aty (0)=1(0) (mod 2) (& 37)

Further

AEE, (0)XE, (0) (mod 2) 0 <k < ¢ (A 38)
by definition of {. Since equation (A 37) holds for all Y(0), { is
the least power of A which is equal to the identity.

Although the material in the remainder of this section has no
direct relation to the material in the report, it is deemed of sufficient
importance to warrant its insertion here. This material deals with the fact
that it can be very usefﬁl to know the relation between the elementary loads
and fhe impulse response more specifically than as the inverse of the Ep
matrix. It will now bevshown that this inverse is simpler to obtain than
Ep, and that it is the feedback matrix Fy defined below.

DEFINITION For a SSRG having the feedback

n
Ar yo(3) E kél i (3)  (mod 2) (& 39)

the associated feedback matrix Fp is the triangular matrix

fi,j = Cj-i 1 <J
=1 i=3] (A L40)
= O 1 >J

LEMMA 4 F, is the inverse of the elementary matrix E,, i.e., FyEy = I.
Proof Form the product P ='FAEA
n

piJ Ekz,l fik ekj (mod 2) (A )"'l)
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By definitions of E, and F,, equations (A 32) and (A 40),

n
Pi; =k§i ckoq V¥ (n+j=k-1), (mod 2) (A ko)
where
c. . =1

is added for simplicity.

Shifting the index on the summation
n-i

P 5 Eréo ¢, v * (n+j-r-i-1) (mod 2) (A L43)
or
_p-i
Pi ; =;E; cp v%  (-i-1) (mod 2) (A 4k4)

Three cases are considered depending on the magnitudes of i and j.
For i > j (the subdiagonal triangle of the product) the argument of
yﬁ in (A 43) is bounded between zero and n-2, which is shown as
follows:
n-i> r >0 (& 45)

ntj=(n=i)-i-1 < n+jer=-i-l < n+j-i-1 (A 46)
The left hand side of (A L6) is j=1, which is non=-negative, and the
right hand side of (A L6) can be grouped as

n+j-i-1 = n-1-(i-j) < n-2. (A 47)
For this range of argument, the impulse response digits are zero

(see equation A 30). Hence

pi > =0 (A 48)
The second case is i=j
n=i
Py =) cyp yp(n-r-1)  (mod 2)
r=0 Nei
Pii= coyp(n-1) + X cyyn (n-r=-1) (mod 2) (A 49)

r=1

This last summation is zero, since the arguments range from n-2 dowr

to i-1. By equation (A L42), c, is one, and by (A 30), yﬁ(n-l) is
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pij =1 (A 50)
For i < j the summation is not so trival, and must be further
manipulated. The first trick is to notice that

% (3=1-1) = y¥ (n-r+j-i-1) (A 51)
and for

n > r > n-i+l (& 52)

0 < j-i-1 < n-r+j-i =1 < n-(n-i+l)+j-i-1 = j=2

Since this is the range for which y; is zero,

n

Lo ey ¥ (j-i-1) = 0 (mod 2) (A 53)
r=n-i+l

Adding this zero to equation (A 44)

n
pijEZ c,v¥ (j=i=1).  (mod 2) (A 5h4)
r=0
The feedback equation, equation (A 39) can be rewritten as

n
0o =X Cy Vi (3)  (mod 2) (A 55)
k=0

Since the impulse response sequence y* is generated according to
this feedback law, (A 55) holds for y*, and comparison with (A 54)
yilelds

Pi <3=0 (A 56)
Collecting (A 48), (A 50), and (A 56) we have the result that

P =TI and hence Fp is the inverse of the elementary matrix EA'

A.2 Theorems dealing with SRG's

The theorems in Section A 1 dealt specifically with SSRG's. In

this section those properties which are true for general SRG's are con-

sidered, and the conditions under which the general SRG has an equivalent
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SSRG is treated. The main features of a SSRG which distinguish it from a
general SRG are the guaranteed existence of an inverse, and the index
manipulation which relates output sequences to register contents, equation
(5).

Certain properties of an SRG can be easily established from those
of the SSRG. For instance, Remark 2 "The period of the null sequence is 1"
is still obviously true. Since Corollaries L 1.1 and L 1.2 followed from
the existence of an inverse, we can conclude the following remark.
Remark 3 If an SRG has an inverse, there will be no transient segments
to the output sequences, and the A matrix for the SRG has an order equal to
the l.c.m. of the periods of the different output sequences.
DEFINITION: A sequence law corresponds to an algebraic equation as follows

n ) 1-1 m
2, cy tl=0 <«—— 12 cju(i+k)=0 (mod 2) 0 <k (A 57)

i=0 i=0

LEMMA 5: The sequence of contents of each cell of a shift register obey
each sequence law that corresponds to an equation that the shift matrix
satisfies.

Proof

m .
Assume A satisfies 2, d; td =0 (mod 2) that is

J=o

m .
2 d AJY (k) = 0 (mod 2) for all contents Y(k) (A 58)
j=o
Thus
m
% a5 Y(j+k) =0 (mod 2) o<k (A 59)
J=o

Because Y is a column vector (yi), (A 59) must be simultaneously

satisfied by each row of Y;



m
) dyyy (J#k) =0 (mod 2) o<k Q.E.D. (A 60)
j=o ©7

If we single out the sequence law that corresponds to the characteristic

equation, and call it the characteristic sequence law, the a natural con-

sequence of Lemma 5 is Theorem 8.

Theorem 8 The sequence of cell contents of each stage of a SRG obeys the
characteristic sequence law.

LEMMA 6 Any finite shift-and=-sum of the digits of a sequence obeys every
sequence law that the original sequence obeys.

Proof: Let the original sequence u obey the sequence law

s

0=

Locy u(k+i) (mod 2) (A 61)
i

O

and the new sequence is the sum of u delayed 57, Sp, === up to

Sy shifts.
k
Z(3) = L u(j+Sy) (mod 2) (A 62)
r=1
Then the trial sum
m m k
Loc. Z(s#1) =X e, X u(j+i+sr) (mod 2)
. i~M i Lo
i=0 1= r=1
k mnm
= ) cju(j+8,+1) (mod 2) (A 63)
r=1 i=0

(mod 2) Q.E.D.

o
o
Il
o

- 100 -



The following material treats the equivalent simple shift register,
for those SRG's that have simple equivalents. The objective is to show that
the simple equivalent generates all of the sequences of the SRG; it may
generate some additional ones too. In the same vein a simplified generator
called the characteristic shift register generator, CSRG, is introduced to
play the same role for all SRG's, not just those with simple equivalents.

If the SRG has a simple equivalent, that simple equivalent and the CSRG are
the same. If the SRG has no simple equivalent, the CSRG consists of a short
SRG feeding some additional delay stages.

DEFINITION: The matrix, Sp, of the CSRG associated with a shift matrix A 1is

the rotate of the companion matrix of the characteristic equation of A. In

symbols, if

|A+ &I = £y +cp 270 + o= cpt® (mod 2) (A 6k4)
then

Sy = (sij) D sl = cjy i=1 (A 65)

and 84y = Bi,j-l 2<1i<n

Cor |a+eI] = |sp + &7 (mod 2) (A 66)
Cor If A is an SSRG, A = S).
Cor Sy is a SSRG if and only if cp=1 in equation (A 64)
Cor Sp i1s non-singular if and only if Sp is a SSRG

Theorem 1 for SSRG's states that each n-~tuple appears in some sequence
from the SSRG. Since by Theorem 8 all sequences obey the characteristic
sequence law, which relates each digit to no more than n preceding digits,
all sequences that obey that law are produced by the SSRG.

Remark 4: If an SRG has an SSRG as a characteristic shift matrix, the
sequences of the SRG (as well as those formed by shifted sums of these)

will be among those of the SSRG. These sequences have no transient sections.
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This remark substantiates the statement made in the report: if the
characteristic equation has a non=zero constent term then the SRG has an
equivalent SSRG.

Remark 5: A CSRG enjoys almost the same index manipulation as a SSRG,
(Remark 1), namely

vi(3) = yigx(+k) for all i; and for j, k >0 (A 67)
The shift indices are restricted to the positive range because of the pos-
sible lack of an inverse.

If the proof of Theorem 1 is reviewed it is seen that it is an
immediate consequence of the index manipulation. Hence we can make an
equivalent statement for CSRG's.

Remark 6. For a given n-stage CSRG each possible n~tuple of zeros and ones
appears in one and only one sequence. Part of this n-tuple may be in the
transient section of.the sequence.

Combine this with Theorem 8 the same way as Theorem 1 was above in
Remark L4=-nemely, that the appearance of every n-tuple in some sequence

nth degree characteristic equation means that cell sequences

together with an
obeying the characteristic are generated by the CSRG.
Remark 7. The sequences of an SRG, and the sequences formed by summing shifted
versions of these sequences, are among the sequences produced by the cor=
responding CSRG.

Finally we consider the transient of the sequence. If the CSRG

matrix's first row is given by

Sl’j = CJ j = 1,2,---k-l (A 68)
81,k = 1
Sl,j = O j = k+l, o= orm])

the generator is a k=stage SSRG followed by ne~k stages with no feedback
connections. Obviously the transient is no more than (n~k) digits long,
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followed by the periodic sequences possible from the corresponding k-stage
SSRG. This is a complete characterization; only one feature is specifically
singled out.

Remark 8. The transient of an n-stage SRG occupies no more than n digits.

Section A.3: Characteristic Equations of SSRG's

These last few theorems of the appendix deal with the characteristic
polynomials of SSRG's and their factors. The characteristic polynomial of an
SSRG has a non=zero term.

Theorem 7 If the characteristic polynomial of an SSRG is factorable, con-
sider the sequences that are generated by the SSRG's which have these factors
as characteristics. These are also generated by the given SSRG.

Proof  Every factor of the characteristic polynomial has a non=-

zero constant term (because the product does), and hence is the

characteristic of some SSRG. Consider the factor f(&) of the

characteristic polynomial p(t)

p(€) =q(e) £(¢) (mod 2) (A 69)
et p(t) =2 pyt’ (a 70)
1=0

¥k
£(g) =L fyt
k=0
and

N
S

a(e)

agt
S=0

where the p; are related by the usual product formulae

1
Py Eréo qi.p T (mod 2) (A T1)

Any sequence y(j) generated by the SSRG with characteristic

polynomial (&) obeys the corresponding characteristic sequence

law:
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m
L fy(k+j) =0 (mod 2) for all A 72)
k=0

Hence the sum of n=m of these is still zero

0  (mod 2) (A 73)

n=m il
% dg (Z £ y(k+j+s))

S=0 k=0

Collect terms

n=m m

X L qgf) V(k+j+s) = 0 (mod 2) (A T4)
s=0 k=0

and use the index change s=i=k, to obtain
n i
L T qiufiy(i+i) =0 (mod 2) (A 75)
i=0 k=0

The coefficient of y(i+j) is simply p; by (A 1)

n
iZ p;y(i+3) E 0. (mod 2) (A 76)
=0

That is, the sequence obeys the characteristic sequence law as=
sociated with p(t). By Remark 6, this sequence will be one of the
sequences from the SSRG with the characteristic polynomial p(t).
Q.E.D
An immediate corollary is Theorem 5.
Theorem 5 No SSRG with a factorable characteristic polynomial is maximal.
Theorem 8 Every polynomial with an even number of nonezero coefficients is
diviseble by (&+1) i.e., by (1,0).

n
Proof If p(t) = z pigi has an even number of coefficients,
i=0

then the sum of the coefficients is even:

n
X P4= 0 (mod 2) (A T77)
i=0
Hence
n n
p(I) =2 piI‘JL = (X Pi) I=0 (mod 2) (A 78)
i=o 1=0



Because the identity is a root of p(t), the minimum polynomial of the -
identity divides p(¢). This minimum polynomial is E+1. Q.E.D.
Cor Every SSRG with an even number of non-zero coefficients will produce
the all-one sequence.
Proof The all-one sequence obeys the sequence law
y(3+1) + y(3) = 0 (mod 2) (A 79)
which corresponds to the polynomial (&+1).
Another corollary is Theorem 3.
Theorem 3 Every SSRG with an odd number of feedback taps is non-maximal.
Proof An odd number of taps implies an even number of non-zero

coefficients in the characteristic polynomial. Now apply Theorems

9 and 5.
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APPENDIX B

In Section 4.2.2 of the report, the second method for determining
all maximal connections from the characteristic equation and Bp matrix of
one maximal connection was discussed. The example used there was the deriva=
tion of all eight stage maximal SSRG's from the one with characteristic
polynomial (8,7,2,1,0). Figure 17a shows the By matrix up through the
fifty-second row,while Figure 17b shows the derivation of the characteristic
polynomial for the similarity class containing AY, and Figure 17c shows the
work for AMl. The remaining similarity classes are given in equation (38)
and the lowest powers of those classes are 13, 19, 23, 37, and 43. The
characteristic equationé for the other eight classes are found by reversing
the characteristic equations derived for these classes. For example, equation
(38) lists the similiarity class beginning with ALRT gg being the reverse of
that beginning with AL; Al has the feedback [8,7,6,1,0] and therefore ateT
has characteristic polynomial (8,7,6,1,0).

Rows fifty=-seven through one hundred eighty=-seven of the By
matrix are given below. Using this and Figure 1Ta, all of the necessary
equations are listed except those for rows 215 and 222. These were easily
picked up from the low part of the table as follows: From row 107 one obtains
the polynomial (107,3,2,1). Squaring this yields (21%,6,4,2). Multiply by
A to form (215,7,5,5), the desired row. From row 111 one obtains the
polynomial (111,7,6,5) which squares to (222,14,12,10). This is reduced by

using rows 14,12, and 10 to form (222, 5, 4, 1).
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The continuation of the Bp matrix of Fig. 17.

Figure 22a.
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13
26
39
52

78
91
104

19
38
57
T6
95
11k
133
152

25
L6
69
92
115
138
161
184

37

111
148
185
222

b1

86
129
172
215

L6
89

76543210 76543210

1111.1
1....11 2413 . 1....11
.11...1 3413 11...1
11.11.
.1.1.11
1..11 613 1..11
1..11..1
11..... 8:13 11.....
.111.11.
11.11.11
.111111. 319 ., 111111
.11..1.1
1.111.1. 519 1 .111.1
1..11.11
1..111.. 7°19 1..111
1.11..1 8419 .1.11..1
11111.11
1111.... 223 1111..
..111..1 303 , ,111..1
1.11.1.1
1.11...1 523 1 .11...1
.1.1..11
1..111.1
.1111..1 83 ,1111..1
1.1.111. 1°37 1.1.111
1.111.11 237 1.111.11
111.....
..1.11.1
1111..1. 537 1111..1.
..11..1. 637 . .11..1.
P I T°37 .. 1. ..
11...1. 837 11...1.
1111
11.1..11
.11.1. ..

..1..1.1 hehz , .1..1.1
1.1.1... 5443 1 .1 .1. ..
e .1 643 ., . . . 1.

1111....
1....1.. 843 1 ... .1.

AL satisfies (8,6,%,2,0)

ALY satisfies (8,7,5,3,0)

123 satisfies (8,5,3,2,0)

A5T satisries (8,7,6,5,2,1,0)

A*3 satisries (8,6,5,4,0)

Figure 22b. Continuation of the identification of the polynomials

Figure 22: Continuation of Fig. 17, the Method of Identifying the
Polynomials with the Similarity Classes of Equation (38)
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LIST OF SYMBOLS

A =n x n matrix applying to a given shift-register connection, either simple
or multiple-return.

A= n x n matrix for simple shift-register.

'BA= n x I matrix related to the A matrix and expresses all the powers of A
in terms of the first n-l1 powers.

Q
]

any n x n matrix which relates the sequences in a set of non-maximal
sequences. ‘

ci= general coefficients of algebraic polynomial from the field mod-2.
C(&) = characteristic polynomial.

£ = length or period of impulse response sequence.

L = length or period of any maximal sequence.

n = number of stages in any shift-register generator.

p = length or period of any general digital sequence.

P = maximal length or period corresponding to a given n number of stages.

py (&) = general polynomial of nb

h degree.

u,v,w,xX,y,z = reference to any entire sequence.

U,V,W,X,Y++*Z = reference to any n digits of the u,v,x**--z sequences.
ui(j) = contents of the 18 cell of the u sequence after j shifts.

U(k) = register content vector of the u sequence after k shifts.

£ = general indeterminant.

=z
w
n

Euler's phi-function.

©

—~
=

o
n

auto-correlation function.

symbol‘for feedback connections

( ]
( )

symbol for characteristic polynomial

110



