Division of Research September 1981
Graduate School of Business Administration
The University of Michigan

LINEARIZED NONLINEAR MIP FORMULATIONS FOR
LOADING A FLEXIBLE MANUFACTURING SYSTEM

Working Paper No. 278
Kathryn E. Stecke

The University of Michigan

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or
reproduced without the express permission
of the Division of Research.



ABSTRACT

This paper addresses production planning problems for flexible
manufacturing systems (FMS's). Specifically, the grouping and loading
problems are formulated as nonlinear 0-1 mixed integer programs. Several
linearization methods are examined and applied to data from an existing
FMS. Several problems are solved using the linearization that results
in the fewest additional constraints and/or variables. We also discuss
when each linearization is best and the use of the linearized models
in the solution of actual planning problems.

Presented at the Joint ORSA/TIMS National meeting in Houston in October, 1981.



1. Introduction

This paper addresses the grouping and loading problems, two of a series of
five production planning problems that are defined here for flexible
manufacturing systems (FMS's). An FMS is an automated batch manufacturing
system consisting of numerically controlled machines, linked by automated
material handling, that perform the operations required to manufacture parts.
Each operation requires one or more cutting tools. The tools for all operations
that can be performed by a machine are stored in its 1limited capacity tool
magazine. Each machine has an automatic tool interchanging device that can
interchange two cutting tools in seconds. This rapid interchange capability
allows several consecutive operations to be machined with virtually no set-up
time between operations. One or more computers control most activity such as
machining operations, part movements, and tool interchanges. The computer
cannot route a particular part to a machine unless all tools required f?r the
hext operation were previously placed in the magazine. This last requirement
indicates the need for planning prior to production. For additional
information concerning FMS's, see Stecke and Solberg [1981a]. |

Managing production for an FMS is more difficult than for production lines
and job shops because: each machine is quite versatile and capable of performing
many different operations, the system can machine several part types
simultaneously, and each part may have alternative routes through the system.
These additional capabilities and planning options increase both the number of
decision variables and constraints associated with setting up an FMS.

To best utilize an FMS's capabilities, a careful system set-up is required

prior to production. Set-up decisions for batch manufacturing are maQe



frequently to meet new or altered production requirements, for example, whenever
production requirements for a part type are met. Thiswcontrasts with a mass
production system where set-up is part of the design process and set-up changes
are few.

The decision variables of the set-up problem of an FMS are: part types to
be produced next, relative numbers of parts of each type to be machined
simultaneously, number of pallets and fixtures of each fixture type to be
reserved for each part type, and allocation of operations (and tools) to
machines. The objective of a set-up is system dependent, but commonly is to
maximize expected production.

Since the problem in its general form is intractable, the following
approach is suggested. A set of five production planning problems are defined,
the solutions to which are a system set-up. The problems can be soived
sequentially, or alternatively, candidate solutions to the problems can be
generated iteratively until a suitable final solution is found. In addition
surrogate objectives are wused for each problem rather than attempting to
maximize production directly. The problems are:

1. Part type selection problem:

From a set of part types that have production requirements,
determine a subset for immediate and simultaneous processing.

2. Machine grouping problem:

Partition the machines into machine groups in such a way that
each machine in a particular group is able to perform the same
set of operations.

3. Production ratio problem:

Determine the relative ratios at which the part types

selected in problem (1) will be produced.



i, Resource allocation problem:
Allocate the limited number of pallets and fixtures
among the selected part types.
5. Loading problem:
Allocate the operations and required tools of the
selected part types among the machine groups subject
to technological and capacity constraints of the FMS.
For additional information concerning these problems, see Stecke [1981].
The plan of the paper is as follows. The machine grouping (2) and loading
(5) problems are formulated in Section 2 as 0-1 nonlinear mixed integer prbgrams
(MIP's). In addition different methods of solving nonlinear MIP's are surveyed.
Section 3 presents several 1linearization methods. 1In Sectidn 4 these are
applied to data from an existing FMS. Numerical solutions are obtained using
the linearization resulting in the fewest additional constraints and/or
variables. In addition conclusions are drawn concerning conditions under which
each lineafization is best. Computational experience, which shows advantages to
considering the nonlinear terms, is discussed in Sectionru. The péper concludes

with a discussion in Section 5.

2. Mathematical Programming Formulations
After defining required notation, this section begins by developing the
constraint formulations necessary for the grouping and loading problems. The
grouping problem is then defined and formulated. Finally, several loading

objectives are developed.

Parameters and Variables
The subscripts, input parameters, and decision variables are given in Table

1. Several subscript conventions and parameters require further explanation.



TABIE 1
Notation
Subscripts:
operation i=1,..., b
machine j=lyeee, m
machine group L=1,..., M
machine type n=1,..., M
set of operations k=1,..., K

Parameters (Input):

P,y = processing time of operation i on one of the machines in
* machine group ¥;
g = maximum number of times that operation i can be assigned;

d. = number of slots required in a tool magazine by operation i;
t, = capacity of the tool magazine for each machine in group L

W., = number of slots saved due to common tools when operations
i and k are assigned to the same machine;

= count of the number of spaces (slots) occupied by the
tools contained in the intersection of the sets of tools
required by operations i and k;

Bk = index set of sets of operations;
Wgo = number of slots saved when the operations in BK are assigned
k to the same machine;

P = index set of compatible part types that are to be produced
simul taneously on the system of machines;

a, = production ratio (relative to the remaining part types
P-{i}) at which part type i will be produced;

{jlmachine j is of machine type n};

=]
u

Decision Variables (Output):

My, = {jlmachine j is in machine group %};

X. =

%1, if operation i is assigned to each machine in group Ly
L .
i

0, otherwise.



In the formulations, several parameters of Table 1 might range over either
machines (j) or machine groups (2). In those formulations for which there is
only one machine in each group, the machine subscript j is used.

The differences between machine types and machine groups should be
clarified. All machines of the same machine type are physically identical
(i.e., same axes of motion, dimensions, horsepower, capabilities). Each set of
machine types, mn, might be partitioned into several machine groups. Machines
that are identically tooled comprise a group and are said to be pooled. Hence

each machine in a particular group will be able to perform the same operations.

Constraint Formulations

The constraints of the grouping and loading problems are now given.

First, each operation must be assigned to at least one machine of the
machine type required by the operation. In addition there is a limited number

of duplicate assignments allowed:
X1 £ 45 i=1,...,b. (1)

It is understood that xij(xiﬁ) = 0 if operation i cannot be performed by the
machine type corresponding to machine (group) j or %.

Second, the tool magazine capacity constraint which relates the number of
tool slots required by the operations assigned to a machine (group) to the total
number of slots contained in the machine (group)'s tool magazine, in its

simplest form, is

b
I dg Xy < by, 2oz 1,0..,m.

i=1

N
Since only one tool can be used at a time, however, it is unnecessary to assign



any tool more than once to the same machine. Also the actual number of slots
used depends on the physical placement of the tools in the tool magazine. In
the example shown in Figure 1, two three-slot tools placed side by side require
only five slots rather than six. Another complicating consideration is that
since larger tools are heavier, tool magazines must be weight balanced. 1In
addition, several operations may require some of the same tools. Space in the
tool magazine can be saved by eliminating tool duplication and considering

overlap and weight balancing. These savings are measured by Wg
k

——TOOL SLOTS

TOOL
MAGAZINE
TOOLS
Figure 1. Tool Magazine.
The tool magazine capacity constraint then becomes:
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or, in more compact form,



b b
1
B dgxy ¢ 22(-1)"‘“ T R TR (2)
1= p= hngt R -
VB C Bk 1k€ B
IBl=p
Finally there is the integrality constraint:.
X;y = 0 or 1, for all i,%. (3)

Machine Grouping Formulation

Pooling (see Kleinrock [1976], Stecke and Solberg [1981a]) increases
system performance by decreasing the probability that a part is blocked by
having no machine available for the next operation. Having more than one
machine in a group is one way to allow alternate routes for some part types.

Stecke [1981] considered the best partitions of m items (servers, machines)
into M (machine) groups to maximize expected production using a closed queueing
network model. In particular, the results include:

i. Fewer groups are better, i.e., pool as much as possible;

ii. The maximum expected production is obtained from systems with
the most unequal sized groups. More generally, all possible
partitions are ordered according to expected production.

These results are used here.

This paper considers a more detailed treatment of the grouping problem than
that of Stecke [1981] by adding constraints on tool requirements and tool
magazine capacity that use actual operation times.

Maximum pooling of all machines of the same type into one group may not be
possible because of some technological constraints such as tool magazine
capacity. The approach we take to maximize pooling is as follows:

1. Set M equal to the minimum number of machines (or, machine groups)



required ta perform all operations of the part types in P.
2. Use the optimal pooling for M groups from Stecke [1981].
Since ail possible partitions'of machines are ordered in Stecke [1981], the
solution to the more detailed model is then the best feasible partition.
Step 1, which determines M, is now described. The problem is to find

{xij|i=1,...,b, j=1y.¢00,m} to

m .
maximize I ydsh,
Y
subject to
b p+1
st, =t -(Zd,x..+ I (-1 I w_ I X,
J J (i=1 i p=2( ) — B . = lk‘]),
HBQBK 1k€ B
IBl = p
and equations (1), (3), and q = 1,
b
where Yy = I di' Note that s%j is the slack in the tool magazine capacity
i=1

constraint of machine j.

Let mon be the maximum number of machines of machine type n required to
perform the operations of the part types in P, if common tooling is not taken

into consideration, n = 1, ..., m. The m,, are obtained by adding the number of

n
tool slots required of machine type n, dividing by the capacity of each
machine's tool magazine, tn’ and rounding to the next highest integer. Then an
upper bound on the total number of required machines is m machines, where
n
m = Z m

e} on*
n=1



The objective‘function formulation allows for the values of the slack (slj)
in the }mnl machines to monotonically increase. For every machine type, the
initial machines will be filled first; if there is insufficient tool slot
capacity and another machine is required, machine i will tend to be filled
before an operation is assigned to machine j, for i{j. The result is the
minimum number of machines of each type that afe'needed to perform the required
operations.

An example will demonstrate the problem. Consider a 15-machine system of

four machine types with mo1=4, m02=3, m =4, and mou=3. Then 14 machines are

3

required if overlap is not considered. The machines, Jj, and their machine

types, n, are as follows:
n: 1 2 3 h
machine j: (1234 (56 7) (89 10 11 12) (13 14 15)
Suppose that the solution ﬁo Step 1 was that M=10, and that 3 machines were
required of the first 3 types, and only one of the fourth type. Then the

optimal pooling into machine groups according to Step 2 is:
machine j: (12) (3) (4) (5) (6) (7) (8 9 10) (11) (12) (13 14 15)

Notice that: all machines of the fourth type could be pooled, none of the second

type could be, and there are 10 machine groups.

Loading Formulations

A usual loading procedure for both conventional systems and FMS's attempts
to balance the assigned workload on each machine; the aim is to equalize the
total weighted processing time, or workload, of the operations assigned to each
machine. The processing time of each operation is weighted by the production
ratio (ai) of the corresponding part type 1 as calculated in the fourth

production planning problem. In addition each operation is often assigned to
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only one machine. The consequence is that each part type has a fixed route
through the shop.

However, the flexibility and capabilities of an FMS indicate that perhaps
new planning and control procedures should be developed for FMS's, which could
also perhaps be applicable to other types of manufacturing systems. In a
previous study (Stecke [1977], Stecke and Solberg [1981b]), alternative loading
objectives are defined. Application of any of several objectives can result in
better system performance than that of a balanced assigned workload.

Stecke [1981] has shown that the practice of balancing is too restrictive
for most FMS's, since the inherent flexibility can often be utilized for better
system performance. Several alternative ioading objectives are listed in Table
2. The decision concerning which to apply is problem dependent. Each may be
best under certain circumstances. Some are contradictory in some situations;

for other systems, several objectives may apply.

TABLE 2
Loading Objectives

1. Balance the assigned machine processing times;

2. Minimize the number of movements from machine to machine,
or equivalently, maximize the number of consecutive
operations on each machine;

3. Balance the workload per machine for a system of groups of
pooled machines of equal sizes;

4, Unbalance the workload per machine for a system of groups of
pooled machines of unequal sizes;

5. Fill the tool magazines as densely as possible;

6. Maximize the sum of operation priorities.

v
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Consider the first objective function. Let rj be the relative workload

assigned to machine j:
j=1,..-,m. (5)

Then Pj is also a measure of the relative utilizétion of machine j. If all of
the rj are equal, the system is perfectly balanced. This is usually not
possible because of the discrete values of processing times. The following
formulations optimally balance the workloads assigned to machines as much as
possible. Each objective function is a measure of system imbalance.
The problem is to find {xijI i=1,...,b, j=1,...,m} to minimize hi(x), where
hi(X) is one of the following four:
1. maximum |r, - r |
. h
J=1,--n, m"1
h=1’.ll’ m;
m-1 m Y
2. I I r, - rhl y Y20
Jj=1 h=j+1
m-1 m

3. I I (r,-r
Jj=1 h=j+1

2
n)

4, B-a
subject to 0 £ « S_rj £ 8B, J=1ye0.,m,
The constraints are: (1), (2), (3), (5), and q = 1.

The second objective, minimize the number of movements, is quite different
from the first. The second objective is relevant, for example, when
transportation time or distance from machine to machine is large relative to
average operation time. There are manufacturing systems for which minimizing

movements from machine to machine is best even at the expense of balancing
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(Stecke and Solberg [1981b]). It can be more advantageous for a part type to
remain on a machine for several consecutive operations rather than to move for
the sake of balancing. Furthermore when several consecutive operations require
the same machine type, time may be saved by processing all of them on the same
machine, if this is technologically possible. Both tra?el time (from machine to
machine) and waiting time (for a possibly busy next machine to become idle) may
be saved.

The first two objectives of Table 2 are often incompatible. When
allocating operations in large sets, the potential for balance decreases: if
the operation times to allocate are smaller, a better balance is likely.

We now formulate the second loading objective. Notice that if i and i+1
represent consecutive operations, then

0, if operations i and i+1 are on the same machine j;
T Ty NS . . . .
*1, 1if operations i and i+1 are assigned to different machines.
If N is defined as twice the number of excess movements, then
b-1 m

| = 2 I (
i=1 j=1

m 2
I - -
- 1% 57%541, 3 %5 xi+1,j) y

Some of the differences (x ) need not be included in the

. =X, .
ij i+,

calculation of N. For example for some machine j, operation i may require a

machine type other than that of machine Jj; in this case, xij = 0. In
particular, if (xij - xi+1,j) = Xij or -xi+1,j’ then this term may be excluded
from N. Inclusion is not incorrect, merely unnecessary and inefficient. The

second objective, then, is to

b-1 m
minimize I (x, .-x
i=1 j=1

2
141,30 Cor)
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b-1 m
= I I }x, .-x. N
i=1 j=1 1 "i+1,j

subject to (1), (2), (3), and q = 1.

The édvantages from utilizing flexibility by allowing pooling and hence
alternative part routes provide motivation for the remaining loading
objectives. The third (and fourth) objectives (un)balance the workload per
machine for a system of groups of pooled machines. The applicability of either
depends on the configuration of the manufacturing system, or how the machines
are grouped (see Stecke [1981]). For the third objective, the problem is to

minimize hi(x), where hi(x) is one of the following four:

) l"l r'k
1. maximum ;“ - E‘
2=1,..., M=1 | Sy k
k=41,..., M
M~1 M r r Y
2. 1 3 4 _ Efﬁ N
2=1 k=041 | Sy 8
A M-1 M ry Pk 2
3. Iz —= _ X
221 k=241 Sy Sk
b, B-a
subject to 0 < a .g_r'z/sz LB, 2=1,...,M,

subject to (1), (2), (3), (5), and q = 1.
Notice that rl/s2 is the workload per machine in machine group %,

The fourth problem is to minimize gi(x), where gi(x) is one of the
following four: |

1. max imum lr, - X |
2‘=1,.n0, M 9‘ 2

2. maximum Ir, - XQIY, Y >0
=1

Je ey
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subject to 0 < @ K v, - X, < B, 2=1,..., M,

'y
subject to (1), (2), (3), (5), and q

1, and vwhere Xz is the theoretical
optimal workload that should be assigned to machine group & to maximize expected

production (see Stecke and Solberg [1981b]).

The rationale for the fifth objective of Table 2 is that when tool
magazines are filled, perhaps several operation assignments are duplicated to
result in alternative part routes, which should increase machine utilization and
production, and decrease waiting time. No single tool should be assigned to any
particular machine more then once. In addition the maximum number of times that
an operation could be duplicated can be specified. One formulation of this
objective minimizes slack in the capacity constraints for all machines. Then
the problem is to

minimize slj

"Hn ~M =

j=1

subject to (1), (3), q > 1, and

The aim of the sixth objective in Table 2 is similar to the aim of the
fifth: to duplicate assignments of some operations. Operation assignments
should not be duplicated arbitrarily. Some operations are more critical than

other operations, such as bottleneck operations. In such cases, weights could
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be assigned to prejudice operation assignments. If wi is the weight assigned to

operation i, then the problem is to

b m
maximize I I w.x..
i=1 j=1 1

subject to (1), (2), B),mﬂqi21§

* Almost all of the objective functions and some of the constraints are
nonlinear. There is a variety of approaches to solve nonlinear MIP's. They can
vbe solved directly (Cooper [1981], Ginsburgh and Van Peetersen (1969], Hammer
[1969], Hansen [1971,1979], Marsten and Morin [19781, Morin [1978], Lawler and
Bell [1967j). Alternatively, piecewise linear approximations (Dantzig [1962],
Hu [1969], Watters [1967]), or heuristic algorithms (Stecke and Solberg [1981a])
can be used. Another approximate approach is to ignore some tooling
considerations that result in the nonlinear terms in the capacity constraints.
Ignoring these factors results in feasible, but worse solutions. An exact
approach is to linearize the nonlinear terms (Balas [1964], Glover and Woolsey
(1973, 19747, Glover [1975]). - The resultant linearized 0-1 problems could
either be solvedldirectly, or relaxed. The applicability of a direct nonlinear
approach versus a transformed linear approach is problem-dependent (Taha
[1970]). The direct approach is more difficult while linearization results in
much larger problems.

In the following section, we present several methods to linearize the

nonlinear terms, and apply combinations of these methods to data in Section 4.

3. Linearization of the Product Terms
Fortunately the nonlinear terms in the formulations are products of 0-1

integer variables, for which there are several methods to linearize the terms.
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The standard procedure is to replace each cross product term with a new
vériable. Additional constraints are required to insure that the new variables
take on the correct values.

In this section we survey five linearization methods, which differ in both
the numbers of additional variables (either integer or continuous) and
constraints generated. The difficulty of integer problems depends primarily on
the number of integer, rather than continuous, variables. Additional details
concerning the linearizations of the formulations in Section 2, in particular,
the generated variables and constraints, can be found in Stecke [1981].

The first method was developed by Balas [1964]. Each product term

I x, i is replaced by a new variable x_

i,€8 k S _
T _xi j - X_ -(_ p-1’ p = ISI (6)
i €S k S
k
I x, .+px_ £0, j=1y ceey m (7)
- L1J
i €S k S
k

For each product term, there are two new constraints and one new integer
variable.

The second method, described in Glover [1975] for quadratic terms, can be
used for higher order terms by recursive application (Stecke [1981]). For m x m
quadratic terms, Balas's approach (method 1) introduces m(m-1)/2 new integer
variables (one for each cross product term) and m(m-1) additional constraints.
Glover's approach adds 4m constraints and m continuous variables, which are
automatically 0-1 without requiring an integer restriction. The second method
has the advantage that the transformed linear integer program has the same

number of integer variables as the original nonlinear program.
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The third method (Glover and Woolsey [1974]) allows the new variables x_
‘(of equations (6) and (7)) to be continuous by replacing the second inequaliti
of Balas' method (equation (7)) with IS| additional constraints. Despite the
additional constraints method 3 can be better than the first method since the
additional constraints are simpler and the new variables are continuous.

The fourth method (Glover and Woolsey [1974]) also allows x_ to be
continuous by replacing several of the constraints (7) that contain tzrms with
common variables, by a single constraint. If there are no variables in common,
there is no reduction.

The final method (Glover and Woolsey {1973]) consists of a series of three
rules that reduces the number of required constraints of the first of the pair

of constraints (equation (6)) generated by Balas's method. The new variables

are continuous.

4, Application and Computational Results

Combinations of the five linearizing methods are applied to data from. the
Sundstrand DNC (Direct Numerical Control) 1line at the Caterpillar Tractor
Company in Peoria, Illinois. The Caterpillar. FMS consists of nine metal-cutting
machines plus an inspection station. This set of machines includes four 5-axis
Omnimills, three Y-axis Omnidrills, and two vertical turrent lathes (VIL's). In
addition there are two automatically controlled transporters, which provide in-
process material handling and also deliver parts to the inspection station. The
16-station load/unload area is located midway along the line's length. These
stations also provide some in-process inventory. A remotely 1located DEC PDP
11/20 computer and supporting equipment control the entire system on a real-time
basis.

The parts machined on this line are two sizes of housings for automatic

transmissions. Each type of housing is composed of two parts, a transmission
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case and a cover. The parts arrive at the facility in rough casting form and
leave as an assembled matched pair. There are three part types: transmission
céses, covers, and assemblies.

Caterpillar's loading objective was to balance the assigned workload per
machine as much as possible; in addition each operation was assigned to only one
machine.

The machines have different capabilities. Some operations require a mill;
others can be performed on either a mill or a drill (mills can do drilling
operations, but not vice versa). The two VIL's could be pooled although they
were not in management's original set-up strateégies. After certain operations,
a proportion of the parts will visit the inspection station. For additional

information concerning the management and control of the DNC line, see Stecke

[19771.

4.1 Input

Some operations are collected in advance into operation sets. For example,
a large case requires U9 operations (Stecke [1977]), which Caterpillar had
aggregated into nine operation sets. These operation sets, along with those of
covers and assemblies, are allocated among machines according to various
loading objectives.

The input data includes for each operatioﬁ set: the machine type required,
the total number of tool slots required, the tool number and number of slots for
any tool of that operation set which is required by at least one other operation
set, and the processing time.

Initial calculations include a table of the number of tool slots saved

(WB ). This table, as well as the constraint formulations, are found in Stecke
k

and Solberg [1981a].
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4.2 Constraints Linearized and Compared

The tool magazine capacity constraint is formulated, and then linearized,
according to the different methods. The basic nonlinear formulation consists of
U8 integer variables and 25 constraints. See Table 3, which also contains the
number of additional (continuous) integer variables and constraints that are
generated by each of six combinations of the five linearizing methods.
Application of each of the first two methods results in different constraint
linearizations. Methods 3 and 4 replace the second of each pair of constraints
generated by method 1, while the fifth method replaces the first constraint of
éach pair of method 1.

The best combination of methods, with respect to fewest additional
variables and/or additional constraints, was to be chosen to run on a CDC 6600 in
conjunction with each loading objective.

TABLE 3

Number of Variables and Constraints Generated by Linearizing

Linearization Methods
Nonlinear
Formulations 1 2 3 i 5 4,5
Variables
Integer 48 +[113 | (76) | (113) | (113) | 113 [ (113)
(Continuous)
Constraints 25 +1218 | 2281 373 157 152 91

The variables in parentheses are automatically O0-1 when the original
variables are constrained to be so. Then the two sets of linearized constraints
that are candidates for selection to use for solving the MIP's are method 2, and
methods U4 and 5. Method 2 generates fewer variables, methods U4 and 5 fewer
constraints. Since the difference in the number of constraints is 1large, the

constraint set chosen to run the MIP's is that generated by the fourth and fifth
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methods.

4.3 Comparison of Linearizations

Eéch linearization method is applicable to different types of nonlinear
problems. If the product of nonlinear 0-1 variables is quadratic, then the
second method (Glover [1975]) may be best. Since higher order product terms are
present for our problem, the second lineariziné procedure must be applied
iteratively to result in an increasing number of generated constraints. In

similar situations, methods 4 and 5 would usually be better than method 2.

4.4 Objective Functions Linearized

The first objective function formulated is the grouping objective, which
maximizes pooling. To accomplish this, the number of machines required is
minimizéd. The remaining machines can then be pooled as indicated in Stecke and
Solberg [1981a].

The two machine types, n, are mills and drills. Let moM(moD) be the upper
bound on the number of mills (drills) required when overlap is not considered.
The m,, are obtained by rounding to the next highest integer, the ratio of the
number of slots of all operations that require machine type n (M or D) divided
by tn. Then
r169/607

m [2.87 = 3 mills

oM

)

[ 68/601 [1.113]1 = 2 drills,
where [x] denotes the least integer greater than or equal to x.

The grouping objective maximizes a 1linear combination of the slack
variables to find the minimum number of required machines of each type. There

are no additional constraints and variables that have not already been

linearized for the capacity constraints in Section U.2.
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The second objective formulated minimizes movements. The number of
additional constraints required by an application of the second method is 48,
and there are 16 new continuous variables. The first method introdﬁces 16
integer variables and 32 constraints. However, several of the variables have
previously been defined and linearized for the capacity constraints. Hence the
first method introduces only 9 new integer variables and 16 new constraints.
This information is summarized in Table 4. The constraint set cannot be reduced
further by methods 4 or 5 because no two co;straints contain any common
variables.

TABLE 4

Objective Function Linearizations

Nonlinear Linearization Methods
Formulations 1 2
Minimize | _Variables - +] 9 1 (16)] Constraint set cannot
Movements | Constraints - +] 16 48 | be reduced further
Balancing | Variables (1 +](12) -
Copstraints 1 +1 29 =

In general, the second method can require additional constraints using
variables that previously have been linearized. The other methods do not
require additional constraints for these variables.

Finally, note that a composite objective can be defined that minimizes both
movements and the number of required machines. This is achieved using a linear
combination of the two objectives. |

The next loading objective ﬁhat is linearized balances the assigned
machine processing times. Some inequalities were used to reduce the number of
new variables and constraints. Summarized in Table 4, the basic formulation
introduces 7 continuous variables (the rj) and 7 constraints. Linearization by
method 1 adds 12 continuous variables and 29 constraints.

Formulations of the third (and fourth) loading objectives, (un)balancing,

are similar to that of the first objective. In addition the resultant
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formulations are smaller than the first. Since machines are partitioned into
groups and assignments are identical for each machine in a group, a capacity
constraint is required only for each group rather than for each machine. The

resultant smaller formulations are not linearized and solved here.

4.5 Problem Sizes
A summary of the sizes of the linearized MIP formulations of the grouping
pfoblem, and the two representations of the loading problem, is given in Table
5.
TABLE 5

Problem Sizes

OBJECTIVES
Maximize Minimize
Pooling Movements Balancing
Variables 48 + (113) 57 + (113) 48 + (132)
= 161 = 170 = 180
Constraints 116 132 152

The computer code wused to solve the three linearized mixed integer
programming problems, MIPZ1, is described in McCarl, Barton and Schrage [1973].
Solution times ranged from about 1.5 to 2.5 minutes on a CDC 6600. The code is
an adaptation of the code developed by Bravo, et al. [1970] and requires
integer variables to be either zero or one. The algorithm is a modification of
Balas's Additive Algorithm [1965] along the lines suggested by Glover [1968] and

Salkin [1970]. Details are described in McCarl, et al. [1973].

4,6 Solutions
The nonlinear magazine capacity constraints result in larger linear MIP's,
but also in better solutions. For the example, the solution to the grouping

problem was that all three drills could be pooled. If overlap were ignored, the
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solution is that two drills are needed to hold all required tools.
Consideration of tool duplication also allowed more pooling of mills than
otherwise.

The optimal solutions of the three MIP's are identical to those in Stecke
and Solberg [1981b], which were obtained by heuristic means according to the

same balancing/minimizing movements/pooling objectives.

5. Discussion
The detailed nonlinear MIP formulations of the grouping and loading
problems discussed in this paper provide optimal solutions that are feasible in
actual applications. Lineariéing methods have been suggested that are
appropriate for different problems. For common problem sizes, the linearized
MIP's can be solved. For larger systems, additional research needs to{be done.
Perhaps heuristic procedures, piecéwise linear approximations, or 1linear

relaxations of the MIP's could be used if optimal loadings are not r'equir-ed.1

! The author would like to thank Bruce W. Schmeiser and James J. Solberg of

Purdue University for their helpful comments during the preparation of this
manuscript. The research was supported in part by the National Science

Foundation Grant No. APR T4 15256.
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