Division of Research March 1988
School of Business Administration Revised, March 1989
Revised, July 1989

ON THE OPTIMAL ALLOCATION OF SERVERS AND
WORKLOADS IN CLOSED QUEUEING NETWORKS

Working Paper #565-C

Yves Dallery
Universite’ Pierre et Marie Curie
Laboratoire MASI

. and
Kathryn E. Stecke
The University of Michigan

Operations Research, forthcoming, 1990.




ABSTRACT

In this paper, properties are derived that are useful for characterizing optimal
allocations of servers and workloads in single-class, multiserver closed queueing networks
(CQNs). The problem is as follows: Suppose a particular workload is allocated to a set of
servers within a subnetwork of a CQN. This set of servers is to be partitioned into several
multiserver stations. The number of stations, the number of servers, and the workload
allocation to each station define a configuration of this subnetwork. Thus, the problem is
determining the best configuration of each subnetwork to maximize the throughput in the
original CQN.

Decomposition is used to address this problem. Results are obtained for
subnetworks in isolation. These results are used to solve the optimal-configuration
problem. Applications of the results to design and planning problems of flexible

manufacturing are also described.



1. INTRODUCTION

Queueing networks are useful tools for modeling and performance evaluation of
integrated systems, such as computer systems (Sauer and Chandy [1981] and Lazowska et
al. [1984]), communication networks (Reiser [1979] and Mitrani [1987]), and flexible
manufacturing systems (Solberg [1977], Dubois [1983], Stecke and Solberg [1985],
Buzacott and Yao [1986a, 1986b] and Dallery [1986]). Under certain assumptions,
queueing networks have product form solutions (Baskett et al. [1975]). Efficient
algorithms have been developed to calculate the performance parameters of such systems
(Buzen [1973], Solberg [1977], Reiser and Lavenberg [1980] and Dubois [1983]). The
robustness of queueing network models has been studied experimentally and shown by
operational analysis (Denning and Buzen [1978], Suri [1983], Dallery and David [1984]).

There is a growing interest in using queueing network models to address the
optimization problems of complex systems such as: routing optimization (Kobayashi and
Gerla [1983] and Frein et al. [1988]), server allocation (Vinod and Solberg [1985], Dallery
and Frein [1986] and Shanthikumar and Yao [1987, 1988]), workload allocation (Stecke
and Morin [1985]), and both workload and server allocation (Stecke and Solberg [1985)).

In this paper, some properties are derived pertaining to optimal allocations of
servers and workloads in single-class, multiserver closed queueing network models
(CQN). In particular, consider a set of subnetworks of the original CQN. The problem is
to determine the best configuration of each subnetwork that yields the highest throughput
for the overall original closed queueing network, where the number of stations, the number
of servers, and the workload allocated to each station defines a possible configuration of
each subnetwork.

In general, a particular workload is allocated to a set of servers that comprise a
subnetwork of the original CQN. This workload is fixed and given, and may be a result of
this set of servers being of a particular server type. This set of servers can be (and may
have to be) partitioned into several multiserver stations and the total workload shared

among these stations.



The paper is organized as follows. In §2, the parameters of the closed queueing
network models under consideration and some results that are used throughout the paper
are presented. In §3, the optimal-configuration problem is stated in detail. §4 provides
results pertaining to subnetworks in isolation. In §5, these results are used to solve the
optimal-configuration problem for the overall original closed queueing network. Finally,
§6 describes the applicability of these results in the design and planning problems of

flexible manufacturing systems.

2. THE CLOSED QUEUEING NETWORK MODEL
Consider a single-class closed queueing network consisting of M stations, i =
1,....M, and N customers. Each station i is composed of a queue and a service facility
with a number of identical servers, S, The network is characterized by tﬁe average visit
ratio at station i, Vi the mean service time at station i, ti, and the relative service rate of
station i when n customers are present, ri(n), given that ri(l) = 1. The visit ratios are a
solution of the following set of equations, where pij is the average proportion of customers

joining station j after completion of their service at station i:
v;= Y p.v, fori=1..M (1)
=1

The relative workload of station i is W=Vt For a station with s, servers, the
relative service rate is given by ri(n) = min{si,n}, 1<n<N.

Under certain assumptions, this network has a product form solution. Then, the
proportion of time that the system is in state i’ = (nl, Ly M)’ where n, is the number

of customers at station i, is given by:

M n
1
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and G(N) is a normalizing constant such that X p@) =1

This product form holds under a multiplicity of stochastic assumptions regarding to
service distributions, scheduling disciplines, and customer routing (Gordon and Newell
[1967] and Baskett et al. [1975]) and also under the homogeneity assumptions of
operational analysis (Denning and Buzen [1978] and Dallery and David [1984, 1986]). A
queueing network having a product form solution is said to be separable. In the following,
the queueing networks considered here are separable.

One of the most important system performance measures is the throughput of the
queueing network, TH(N) = G(N-1)/G(N). If a particular station, say 1, is chosen such
that its visit ratio is vy = 1, then TH(N) can be interpreted as the average number of
customers leaving station 1 per unit of time. For manufacturing applications, the
throughput corresponds to the production rate.

Consider the aggregation property introduced by Chandy et al. [1975], which
enables us to replace any subnetwork SN by an equivalent station e. The function fe(n)
(see equation (2)), which characterizes this equivalent station, is defined by: fe(n) =
"T‘—H—(SlNW’ where TH(SN,n) is the throughput of the subnetwork in isolation, i.e.,
considered as a closed queueing network with n customers. It was shown that if a network
is separable, then the throughput of the network in which one or more of its subnetworks
are replaced by an equivalent station is the same as the throughput of the original network
(Balsamo and Iazeolla [1982]).

In the following sections, we compare the throughputs of any two closed queueing
networks, Q(l) and Q(Z) , consisting of the same number of stations, the same number of
customers, and such that fgl)(n) 2 fgz)(n), for all i and n. It may seem obvious that the
throughput of network Q(2 ) (TH(Q(Z),N)) would then be greater than (or equal to) the
throughput of network Q(l) (T H(Q(1 ),N)). However, this is not always true, even if both
networks are separable.

This is demonstrated by the following counterexample. Let Q(l) be a separable

queueing network consisting of 2 stations and 3 customers. The parameters of station 1

A4



are: v, = 1, ti =35, rl(l) = r1(2) =1, and r1(3) = .5; the parameters of station 2 are: Vo=
Lty =3, 5)(1) = 1(2) = 1(3) = 1. The throughput of this network is: THQ),3) =
0.123. Consider another network, Q(Z), which is identical to Q(l) except that the service
time at station 2 is ty = 2 instead of 3. Then the server at station 2 is faster in Q(Z) and so
is the throughput of station 2 in isolation. One would expect the overall throughput to be
increased. However, the throughput of Q(Z) is only: TH(Q(Z),3) = (.119. Hence,
increasing the speed of the server does not always result in an increase in the overall
throughput. Intuitively, this can be explained as follows. Since server 2 is faster in Q(z),
customers spend less time at station 2. As a result, the marginal probability of having the
three customers at station 1 is larger in Q(Z) than in Q(l). Now, when the three customers
are at station 1, since the service rate of server 1 is reduced by a factor of two. Then the
throughput of Q(Z) may indeed be less than that of Q(l) .

A similar observation is made in Suri [1985], where monotonicity is defined. A
network is N-monotonic if the overall throughput is a nondecreasing function of the
population, i.e., TH(n) 2 TH(n-1), forn <N. A sufficient condition for a network to have
the monotonicity property is that ri(n) 2 ri(n-l), or equivalently, fi(n) < fi(n-l), forall i and
n <N (Suri [1985]).

The following Theorem will be used throughout the paper in order compare the
throughputs of two queueing networks. It can be proved by using the results of
Shanthikumar and Yao [1986]. An alternative proof based on the product form solution is

given in Dallery and Stecke [1988].

Theorem 1: For the separable networks QG), j=1and 2, consisting of a set of stations I

and a population N, assume that:

t V@ <£P-1), forallie Tandn<N. (1)

(8 Ifforallie Iandn<N, £ @) 2@ ),
then  THQW N) < THQY N.



5.

(b) Moreover, if there exists i and n such that fi(l)(n) > fi(z)(n),
ten  THQWLN) < THQW N). |

Part (a) of Theorem 1 states that if the throughput of a station i considered in
isolation is larger in Q(Z) than its throughput in network Q(l) for any population n, then the
overall throughput of Q(z) is larger than the throughput of Q(l). Part b states that the
above property becomes a strict inequality if there is at least one station with a particular
population for which the inequality between the throughputs of station i in isolation is a
strict inequality.

Most queueing network models of real systems satisfy the condition (C1) of
Theorem 1. For example, (C1) holds for load-independent single-server stations, multiple-
server stations, and delay stations. Furthermore, if it holds for all stations of a
subnetwork, then it holds for the equivalent station of this subnetwork. In the following,

all networks that we consider satisfy condition (C1) of Theorem 1.

3. THE OPTIMAL-CONFIGURATION PROBLEM
In §3.1, the optimal-configuration problem is defined. The decomposition

approach to solve the problem is described next in §3.2.

3.1 Problem Statement

A closed queueing network is partitioned into a set of K subnetworks. Each
subnetwork SNk’ for k = 1,... K, consists of a set of my stations. Each station i of SNk
is defined by its number of servers, Sk,i’ and its relative workload Wk,i’ fori= 1,...,mk.
Let Sk be the total number of servers in subnetwork SNk and Wk be the total relative
workload of subnetwork SNk' These parameters are defined as:

e
S.= 3 s . 3)
k i=1 k,l



my
Wk = igl wk,i‘ @)

The server-allocation vector and the workload-allocation vector, respectively, are —S)k =

(Sk,l""’sk,mk) and Wy = (Wk,l’""wk,mk)'
The set of parameters m ,°§k, W K define the configuration of subnetwork SNk. A

configuration of a subnetwork is said to be balanced with respect to the server-allocation if

the number of servers at each station is the same, i.e., S 1= = Sem, - A configuration
] ] k
is said to be balanced with respect to the workload-allocation if the average workload allo-
w
Wi | k,mk W .
cated to each server is the same, i.e.,——~=... = =-— The configuration of the
5,1 Sem, Sk

entire closed queueing network is defined as the union of the configurations of each
subnetwork.

With this framework, the optimal-configuration problem can be stated as follows:
Given the number of subnetworks, and the total number of servers and the total workload
of each subnetwork SNk K, Sk’ and Wk’ respectively), what is the best configuration of

each subnetwork that yields the highest throughput for the whole closed queueing network?

3.2 Decomposition

Because of the large number of parameters involved in the optimal-configuration
problem, finding the best global configuration or even comparing two configurations of the
network is very difficult. This problem can be simplified by decomposing it into a set of
optimal-configuration problems, each pertaining to a particular subnetwork in isolation.

Consider the problem of comparing two configurations of a queueing network,
C(l) and C(z). Each configuration C(i), i=1 and 2, is the union of the K configurations
of subnetworks SNk’ say Cg). Our decomposition first examines each subnetwork SNk
in isolation and compares the two configurations Cl((l) and Cg'). Then we determine how

properties that pertain to the subnetwork in isolation can be transferred to the entire

queueing network.
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4. ANALYSIS OF EACH SUBNETWORK IN ISOLATION

In this section, we first present some results pertaining to comparisons between
different configurations of a particular subnetwork, SNk’ in isolation. Isolation implies
that this subnetwork is a closed queueing network having the same parameters as the initial
network. This problem has been studied by Stecke and Solberg [1985], where the analysis
is derived for a particular population n, that is, for a particular number of customers in the
subnetwork. As our final goal is to provide results for the entire network, we need to
compare several configurations not only for a particular population n, but for populations
ranging from 1 to N.

For this purpose, we introduce the useful notion of a dominant configuration.
Consider two configurations, CS) and C(l<2)‘ Let TH(C(li),n) be the throughput of

configuration i, i = 1 and 2, of subnetwork SNk in isolation with population n.

Definition 1. Configuration Cg) of subnetwork SNk is said to dominate configuration
C](gl) if: TH(C](KZ),n) 2 TH(CI((1 ),n) for all n < N. Configuration Cg) is then called the N-

dominant configuration. |

Given any two configurations, it is always possible to compare their throughputs
for a particular population n. However, if N > 1, it may be that neither is N-dominant,
i.e., for some populations, the throughput of one configuration is higher, while for other
populations, it can be lower. As we shall see in §5, results pertaining to a subnetwork in
isolation can only be useful for the whole network if they are valid in terms of N-
dominance.

We now consider comparisons between different configurations of a subnetwork.
Several results pertaining to a subnetwork in isolation can be found in Stecke and Solberg
[1985]. Issues of balancing or unbalancing both workloads and server allocations are
discussed. Most of these results are valid only for a particular population and cannot be
stated in terms of dominant configurations. There are however some results that are useful

in the context of this paper. A first result (Theorem 1 in Stecke and Solberg [1985]) states



that the throughput of a configuration having a single multiple-server station is higher than

the throughput of a configuration with my single-server stations. We now generalize this

in order to be able to compare many different configurations.
Theorem 2: Consider the following two configurations:
C( ) = ( (1) ™ (1)), with my > 22and

=15, W), where

my
5, =8 W= z s(li) and W, =1 Vi= % w Wi
i=1 1= ?

Then: TH( (2) n) 2 TH(CS),n), for any n = 1,...N.

Moreover, if n > mm{ k .}, then TH(C(Z) ,n) > TH(C(l) n).

Proof: The proof is given in the Appendix.

Theorem 2 states that the throughput of a configuration with only one multiple-

server station is greater than the throughput of any configuration with any number of

multiple-server stations greater than one, for any population n. Throughput is strictly

greater when the number of customers is greater than the number of servers at one of the

stations. Therefore, the configuration with a single multiple-server station dominates any

other configuration.

Now partition the set of stations of SNk into Gk groups. Let Cg = (mg, E)g’

¥.) b
wg)e

the configuration of group g. The configuration of SNk, Ck = (m ,_s’k, v_v)k), is then

obtained as the union of these configurations, i.e.,

Gy

Ck=u C

=1 &



G
k - - -
with lnk= gélmg, Sk= @g’ g= 1’..-,Gk)’ and sz (wg9 g= 1’...,Gk).

Theorem 3: Consider the following two configurations:

G
(1) —9(1) ->(1) 5 -
( k, k ’ )_ g-L—Jl (mg’ Sg7 Wg)
and (2) = (Gk""(z) "(2))’
with _(r’|g-—1 ) and W ()—(lvv’|g=1 G,)
FARAS ] k g ’ 3eery k .

Then TH(C(Z) ,n) 2 TH(C( ) ,n), for any n.

oD

Proof: Because of the aggregation property recalled in §2, we can replace, for
stations of each group by an equivalent station. The resulting subnetwork has the same
number of stations as CE{Z). From Theorem 2, any equivalent station has a smaller

throughput than the corresponding station in Cf{z), when considered in isolation. From

(2)

Theorem 1, the overall throughput of SNk is higher for configuration Cj than
for CS). |

Theorem 3 states that starting with a particular configuration and grouping several
stations into a single station (having a number of servers and workload equal to the total
number of servers and the total workload, respectively) increases throughput for the overall
subnetwork. Since this is true for any number of customers, the resulting configuration

dominates the initial configuration.

Now, consider the problem of comparing different configurations having the same

number of stations, m, , and the same server-allocation vector, §k, such that each station
S
contains the same number of servers, i.e., S i = r—%— for all i, but having different
’ k
workload-allocation vectors wk Let C( ) be any configuration and C](_{ ) be the balanced
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A
workload configuration, i.e., the configuration such that Wi = -ﬁl—k—, for all i. The

k
following theorem was proved in Stecke and Solberg [1985] and Yao and Kim [1986].

Theorem 4: If the server-allocation is balanced, then the configuration with a balanced

workload-allocation is N-dominant, i.e.,

TH(CI((Z),n) > TH(C§(1),n), foranyn=1,..N. |

Theorem 5: Consider a particular (balanced or unbalanced) configuration of server-

(D

allocation_s’k. Then for any unbalanced configuration of workload-allocation, C;_’, there

exists a number of customers, NO’ such that:

TH(Cl(?),n) > TH(Cf(l),n), foranyn 2N,

(2).

where Cy is the balanced workload-allocation configuration.

Proof: Let Wi be the total workload. Let v_&)rk be the total workload-allocation vector of

W, .
C(l) , with |\Xl)k| = Wk, and let Yb = max {—-1-(-'-1-} be the maximum average workload per

(M) Wi iUk
server of C ", Let Y = -§-—be the average workload per server in the balanced configura-
k

tion, Cg) . Since CS) is unbalanced, Yb >Y. The following upper bound on throughputs
of closed queueing networks is provided by the asymptotic bound analysis (ABA)
(Denning and Buzen [1978]):

1

Y

TH(CI((I),n) <
b

The following lower bound is provided by the SSD (single-server disaggregation) method
of Dallery and Suri [1986]:

n

2)
TH(Ck ) = Wk—_l_(—nj-)—Y- .



-11-
Wk -Y
It is easy to check that if N 0 is the first integer greater than the quantity-Y?—Y—, then for

any n 2N, TH(cf),n) > TH(CS),n). n

The following result provides a proof of Conjecture 6 of Stecke and Solberg

[1985].

Corollary 6: For a totally saturated system (n = o), the optimal workload allocation is

balanced, even for unbalanced server-allocation configurations.
Proof: The result follows directly from Theorem 5. |

We now provide a conjecture pertaining to the situation where the number of

servers at any station of SNk must not exceed a given value Ek.

Conjecture 7: If Sk SEk and if the total number of servers S is such that there exists
ana, € R such that Sk = kgk’ then for any population n, the optimal configuration of the
subnetwork is balanced with respect to both the server-allocation and the workload-
allocation and is defined by: my =3 = %;— ; Sk,i ='s'k; Wk,i = \%z- . |

This result is a conjecture because it is partly based on Conjecture 8 of Stecke and
Solberg [1985]. This conjecture can be intuitively described with an example. Consider a
subnetwork SNk for which Sk =15, Wk = 30, and §k = 5. The optimal configuration
specified by Conjecture 7 is such that: m = 3, ‘s’k =(5,5,95), v_‘;k = (10, 10, 10).
Consider any other configuration, for instance, a configuration such that: m = 4 and_s’k =
(4,4,4,3). For any population n, the maximum throughput of the configuration (obtained
with the best workload-allocation) is less than the maximum throughput of a configuration
such that my = 4 and E’k = (5, 5,4, 1) (from Conjecture 8 of Stecke and Solberg [1985]).
This in turn is less than the maximum throughput of a configuration such that my = 3 and

S = (5, 5, 5) (from Theorem 3), which is equal to the throughput of the configuration

defined by Conjecture 7 (from Theorem 4).



12-

5. OPTIMAL CONFIGURATION OF THE NETWORK
In this section, results pertaining to the comparison of different configurations of

the entire closed queueing network defined in §3.1 are presented.

Theorem 8: Consider two configurations, C(l) and C(Z), of a network as defined in
§3.1.
(@ Ifforallk=1,..Kandn=1,..N, TH(Cg),n) > TH(CS),n),
then  THCPN) 2 THCD N).
(b) Moreover, if there exists k and n £ N such that TH(C](EZ) ,n) > TH(CS),n) ,
then  TH(C@ Ny > THICD N).

Proof: Let Q(I) ,i=1 and 2, be a network composed of K stations, where station k, k =
1,...,K, is the equivalent station obtained by the aggregation of the stations of subnetwork

SNk in configuration Cl((l). The function fl((l )(n), which characterizes this equivalent station,

is given by (see §2):
fg)(n) = _IT’ forn=1,.,N. )
TH(Ck ,n)

Then the throughput of Q(i) is equal to the throughput of the original network with
configuration C(l) , from the aggregation property (Balsamo and Iazeolla [1982]), i.e.,

HQ®D Ny = TH(CD N). ©)

As a result, it is equivalent to compare the throughputs of Q(l) and Q(Z). On the other
hand, since the original network is separable and consists of a set of multiple-server

(1)

stations, the functions fi."(n) satisfy condition (C1) of Theorem 1, i.e.,

ff(i) (n) < fg) (n-1), forall k and n. )

The result follows by first applying the results of Theorem 1 to networks Q(l) and Q(Z)

and then using equation (6). |
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The following results solve the optimal configuration problem as stated in §3.1.

Proposition 9: The optimal configuration of a subnetwork, SN, , is such that SN}
consists of a single multiple-server station, if this is feasible. This is independent of the

configuration of the other subnetworks.

Corollary 10: The optimal configuration of the network, i.e., that which yields the
highest throughput, is such that each subnetwork SNk consists of a single multiple-server

station, if this és feasible: (rnk = 1,_3.’k = (Sk)’ and v_v)k = (Wk)).

Proposition 9 follows from Theorem 2 and Theorem 9 and Corollary 10 follows
from Proposition 9. Corollary 10 states that within each subnetwork, grouping all servers
into a single station maximizes the throughput. However, because of physical constraints
on the system being modeled, it may not be possible to group all servers into one station.

An example of such constraints is the féllowing: for each subnetwork SN, , the
number of servers at any station is limited, i.e., Sk,i SEk, i= 1,...,mk. In such cases, it is
not easy to determine the optimal configuration, in general. Even if we could determine the
optimal configuration of each subnetwork, SN, , for each population n (from Conjectures 5
and 8 in Stecke and Solberg [1985]), this would often be useless because the optimal
configuration of SNk might be different for each population n. Therefore, no configuration

would be N-dominant. However, the following useful results can be provided:

Proposition 11: Consider a configuration C(l) of the queueing network, and a
configuration C(Z) obtained from C(l) by grouping at least two stations of a subnetwork
into a single station. Then the throughput of the network is higher with configuration C(z)

than with configuration C(I) .

Proposition 12: If the server-allocation of subnetwork SNk is balanced, then the
optimal workload-allocation of subnetwork SNk is balanced, independent of the

configurations of the other subnetworks.
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Corollary 13: If the server-allocations of all subnetworks are balanced, then the optimal
configuration of the network is provided by a balanced workload-allocation at each

subnetwork.

Proposition 11 follows directly from Theorems 3 and 8. Proposition 12 follows
directly from Theorems 4 and 8. Then Corollary 13 follows directly from Proposition 12.
Finally, Conjecture 7 may be used at the entire network level in a similar way as

follows.

Conjecture 14. If the number of servers at any station of subnetwork SNk is

constrained by Sk,i SEk, and if there exists an integer R such that Sk = kgk’ then the opti-

w
o e o . I
mal configuration of SNk is defined by: my =3, Sy ;= Spr and Wy = —ak This is

independent of the configuration of the other subnetworks. Then both the workload and

server-allocations are balanced.
Conjecture 14 directly follows from Conjecture 7 and Theorem 8.

Conjecture 15: If for each subnetwork SNk’ the number of servers at any station must
not exceed a maximum number's'k, and the total number of servers Sk is a multiple of Ek’
then the optimal configuration of the network is such that the configuration of each

subnetwork SNk is defined by:

5
- . k
my = =I(- S =S for any i; and W i= -S—k—Wk, for any k.

v

For each subnetwork, the workload and server-allocations are balanced.

Conjecture 15 follows directly from Conjecture 14.
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6. APPLICATIONS TO FLEXIBLE MANUFACTURING

In this section, we demonstrate how the previous results can be used in the context
of flexible manufacturing systems (FMSs). An FMS is able to process simultaneously
several types of parts. During their processing in an FMS, parts are fixtured onto pallets.
The total number of pallets available is a constant, N. When all operations on a part are
completed, it is unloaded and a new part is input into the system. An FMS is composed of
K types of resources (machining centers, inspection stations, loading/unloading (L/U)
stations, a material handling system (MHS),...). In the following, we use the term
machine type for each resource type, and machine for server. Each machine type k, k =
1,...K, consists of a set of Sk identical machines. The average workload required by a
part on a machine of type k, Wk’ can be derived from the manufacturing plans of each part
type and the prescribed production ratios (Dallery [1986]).

Such an FMS can be modeled as a closed single-class, multiserver queueing
network, as described in §3.1. Each machine type k can be modeled by a subnetwork
SNk' The total number of machines in subnetwork SNk is Sk and the total workload of
subnetwork SN, is the average workload of a part at machine type k, W, The number of
customers (parts) is equal to the total number of pallets, N.

The configuration of each subnetwork depends on how the FMS is designed and
operated. Let P(k) be the set of parts which, at a given time, are waiting for a machine of
type k. The machines of type k may be partitioned into several subsets (called groups)
such that any part of P(k) is waiting for any machine of a particular group. Then the
configuration of the corresponding subnetwork is such that the number of stations, m, , is
equal to the number of groups. For each group, the number of servers, Sk,i’ is equal to
the number of machines in this group. The workload, W i is equal to the average
workload of a part required in this group.

To illustrate this application, consider the following: If a part that is waiting for a
particular type of machine can be processed by any machine of this type, then there is only

one group. However, because of physical constraints, such as tooling, this may not be
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possible. For instance, it is usually impossible to place all cutting tools required for all
operations to be performed by a particular machine type in only one limited-capacity tool
magazine. As another example, there may not be a single storage area for all machines.
Therefore the parts in P(k) would be located at several local storage areas, each feeding a
group of machines. In both cases, partitioning of machines into groups must occur. The
results presented in the previous sections can then be used to determine the optimal
configuration of the FMS.

Figure 1 provides an example FMS configuration. The FMS consists of two L/U
stations, five machining centers of a first type, six machine tools of a second type, two
inspection stations, and an MHS consisting of four carts. The machining centers of type 1
(subnetwork SNZ) are distributed into two groups, one with two machines and the other
group with three machines.

The FMS can be modeled in terms of the queueing network described in §3.1.
Then the results provided in §5 can be used to determine the best FMS configuration.
Corollary 10 says that the optimal FMS configuration is where all machines of a particular
type are gathered into a single group. However, as previously mentioned, because of
technological considerations, this is not always possible. In such cases, the following
conclusions follow from the Theorems and Conjectures of §5:

1. For any machine type for which there are no physical constraints, group all

machines into a single group (Proposition 9).
~ 2. For any machine type for which the group sizes are prescribed and equal for the
different groups, then the optimal workload-allocation is balanced within this
machine type (Proposition 12).
3. For any machine type for which the maximum group size is limited and such
that the total number of machines of this type is a multiple of this maximum
size, then the server-allocation is balanced and each group size is equal to the

maximum group size. The workload-allocation is balanced (Conjecture 14).
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FIGURE 1. An example FMS configuration.
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APPENDIX
Proof of Theorem 2: The throughput of configuration Cf(z) is:
—Wll-, n < Sk;
TH(CI(CZ),n) =15
Wli, n > Sk‘
k

1)

Consider configuration Gy~

Case1: n< min(s, .}.
i ot
Since the number of customers is never greater than the number of servers at any
station, no queueing occurs. Therefore, the overall response time at each station i,

i=1,.,m,,isR.=w, .. Th
el 5 18 R wk’1 erefore,

THCY p) = af—: Vls;‘f THC ),  for anyn.

Y R.
i=1 !

Case 2: m'in{sk,i} <n< Sk‘

Without loss of generality, we can assume that S 1= m@n{sk’i}. This subnetwork
in isolation has a product form solution. From equation (2), it ils easy to check that p@’) >
0 for any n’ such that In’l = n. As a result, we have p(n1 > Sk, 1) > 0, where p(n1 > Sk,l)
is the proportion of time that station 1 has more than S 1 customers. Then queueing does
occur at station 1 and therefore R1 > W 1 We also have Ri 2w it for any i # 1.

Therefore,

(1) n n n
TH(C; ' ,n) = < —_—
k my my_ W

> R. ¥ w, .
= R = R

1

= TH(CI({Z),n), for any v—v)k.
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Case 3: n> Sk.
S| ,
Without loss of generality, we can assume that === min{—==—:. Again from
i1 i Yt

product form, we obtain p(n1 <8 1) > (0, where p(n1 <8 1) is the proportion of time
that station 1 has less than S 1 customers. Then at least one server of station 1 is idle.

Therefore, throughput is strictly less than the maximum throughput that could be obtained
S
if all servers of station 1 were always busy, i.e., —V—VI&L Then we obtain:
k,1

r;k
S
S ~ "k,1 S
THC p) < Ll < =l = o=THC ), for any W, n
K1 My K
2 Wy



