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ABSTRACT

Generalized concavity and symmetric mathematical programming are used to
analyze the optimality of balanced workloads to maximize the expected produc-
tion of flexible manufacturing systems (FMSs) using a single-server closed
queueing network model. In particular, we prove that balancing workloads
maximizes expected production in certain types of mmachine FMSs with n parts
in the system. Our results are compared and contrasted with previous models

of production systems.






A flexible manufacturing system (FMS) is an automated alternative to the
conventional means of batch manufacturing in the metal-cutting industry that
consists of a number of numerically controlled machine tools which are linked
together by an automated material handling system. Computers control most
real-time activities such as the actual machining operations, part movements,
and tool interchanges. An FMS can simultaneously and efficiently manufacture
several part types. This combination of automation and increased flexibility
offers the potential for vast improvements in productivity, but as noted by
Graves [198l], also increases the complexity of the problems faced by produc-
tion managers. For example, the operation of an FMS requires a careful system
set-up prior to production to achieve a good system utilization during pro-
duction, even though technological hardware developments eliminate machine set-
up time. Several existing FMSs are described in Cavaillé, Forestier, and Bel
[1981], Stecke and Solberg [1981b], Dupont-Gatelmand [1982], and Barash [i982].

This paper studies an idealized version of the FMS loading problem,

which is one of the set-up problems of an FMS (see Stecke [1983a]). The
loading problem involves determining the best allocation of operations and
associated cutting tools of a set of part types among the machine tools sub-
ject to technological and capacity constraints.

The most widely applied loading objective is to balance, or equalize, the
total workload assigned to each machine in: job shops (Deane and Moodie
[1972], Caie, Linden, and Maxwell [1980]); flow shops (Gutjahr and Nemhauser
[1964], Ignall [1965], Magazine and Wee [1979]); and FMSs (Buzacott and
Shanthikumar [1980], Berrada and Stecke [1983], Kusiak [1983], Stecke and
Talbot [1983]). However, the applicability and optimality of balancing has
recently come under scrutiny. For example, Stecke and Solberg's [1981b]

simulation results demonstrated that balancing workloads is not necessarily
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the best objective in an FMS. Other studies of finite-buffer stochastié flow
lines also indicated that balancing the assigned workload is not always
optimal (see Makino [1964], Hillier and Boling (1966, 1967], Payne, Slack, and
Wild [1972], Rao [1976], Magazine and Silver [1978], and El-Rayah [1979]). In
particular, the numerical studies (see Hillier and Boling [1966, 1967] and
El-Rayah [1979]) discovered a "bowl phenomenon" in which the expected produc-
tion of a finite-buffered, balanced flow line is increased by assigning pro-
portionately lower average processing or service times to the middle machines
on the line.

Queueing network models have recently been used to analyze design issues
and planning problems of FMSs. (For example, see Buzacott and Shanthikumar
[1980], Cavaillé and Dubois [1982], Dubois [1983], Stecke and Solberg [1982],
and Suri [1983].) Queueing networks have been shown to be robust models of
FMSs even when the assumptions of the model are not satisfied (see Suri [1983]
and §1).

In the context of a closed queueing network (CQN), the loading problem
is that of allocating a total amount of work among a system of (possibly
grouped) machines so as to maximize expected production. Using a CQN, it
has been shown that (Stecke and Solberg [1982]):

i) the best way to partition the machine tools of a particular type

into machine groups is to unbalance as much as possible the number
of machines in each group;

ii) for these better system configurations, expected production is
maximized by a particular unbalanced allocation of workload per
machine.

However, in some practical situations, because of the discreteness of

operation times, different machine tool requirements, and limited capacity

tool magazines, balancing the workload per machine can be best. This paper
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characterizes situations in which balancing is optimal: for those systems

in which there is no grouping, or pooling machines of similar type into
machine groups. Also, the fact remains that balancing is the almost univer—
sally applied loading objective, at least at present. Balancing is applicable
to some FMSs.

In particular, in this paper we use a single-server CQN model to analyze
the optimality of balancing for adequately buffered flexible manufacturing
systems in which each operation is assigned to only one machine. We show that
balancing maximizes the expected production in these systems. Specifically,
we use generalized congavity and symmetric mathematical programming to
establish the optimality of balanced workloads. An efficient means of
implementing a balancing FMS loading objective is provided in Berrada and
Stecke [1983].

There is a related Computer Science literature. Price [1974], Trivedi
and Kinicki [1978], Trivedi, Wagner, and Sigmon [1980], and Trivedi and Sigmon
[1981] maximize throughput in central server, single class, single-server CQN
subject to various cost constraints. The studies optimize different param
eters such as service rate (of a CPU, say), capacity of servers (I/0 devices),
device speeds, and main memory size, subject to budgetary limitations. The
parameters relate cost considerations to performance.

In this paper, a different non-central server CQN of single-server
queues is considered. Rather than the budgetary constraints of the previous
studies, we impose a constraint on total system workload that appears as a
result of our unique scaling of workload and throughput. Therefore, the
objective function and constraints are somewhat different. The motivation
of our particular scaling results from our studies of optimal machine

allocation and optimal workload assignment in FMSs.
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Even though the objective function (to maximize expected production, or
throughput) is not concave (see Stecke [1983b]), the production function is
still well-behaved. 1In the situations studied here, the local maximum (which
we prove is a balanced workload) is a global maximum.

The plan of the paper is as follows. The closed queueing network model
is described in §1. Notation and results from generalized concavity and
symmetric mathematical programming that are required to characterize proper-
ties of optimal workloads are summarized in the Appendix. Properties of the
production function and some preliminary results that are required to
establish global optimality of balancing for this particular version of the

FMS loading problem are provided in §2. The main result is given in §3. A

discussion of the relationships between this CQN and other models of

manufacturing systems is contained in §4.

1. CLOSED QUEUEING NETWORK MODEL OF AN FMS

A flexible manufacturing system can be modeled as a closed network of
arbitrarily-connected queues. The particular case of a central server CQN
is depicted in Figure 1. There are m machines and n parts in the systen.

The average processing time of an operation by machine i is ti> i=1, «e., m.

L/UL

@)

Figure 1

A Closed Queueing Network Model of a Flexible Manufacturing System.



Routing through the system is arbitrary, and can be described by the
relative arrival rates (the 9 of Figure 1) to the machines. These can be
obtained by any nonnegative solution to q = Z pji qj’ where the pij's are
first-order Markovian probabilities. OQur foriulas permit any scaling of the
qi's. For example, if the qi's are scaled to sum to one, q; may be inter-
preted as the probability that a part leaving the load/unload station (L/UL)
via a transporter goes next to machine i. Therefore, 94 is the expected
nunber of visits to machine i per visit to the transporter (or L/UL). Other
relevant routing possibilities are described in Stecke and Schmeiser [1983].

A measure of relative workload assigned to machine i is Wy (Buzen [1973],
Reiser and Kobayashi [1975], Solberg [1977]), which is defined as’ the visit
frequency times the average processing time, or 95t i=l,...,m. These
workloads are relative since the qi's can be scaled in any manner.

m

For our purposes W, was scaled, where 2 qjtj/m is the average workload
=1 |
per machine, to provide:

0 .
X = qgty /] e/l M
j=1
X, is a scaled measure of workload, whose values lie between 0 and m, for all
i.

There are several reasons for chooéing this particular scaling: the
total amount of work to be allocated among the machines is a fixed constant
that equals the total number of machines: ? Xi = m; the scaled workload is
now independent of any particular, chosen i;;ling of the 43 regardless of the
nunber of machines, a balanced loading has a unit workload: X1 = X2 = .. =
Xm = 1; this particular scaling of workload results in the production function

(defined in equation (3) below) being a dimensionless function, whose values

are also normalized to lie between zero and one; and finally, the workload
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scaling defined by equation (1) allows new alternative definitions of the
production function (equation (3) below). See Stecke [1981] or Stecke and
Schmeiser [1983] for these alternative definitions. These are useful for
providing insight into what this production function, associated with a CQN

model, is.
A state of the CQN model of an FMS is given by n = (nl,...,nm), where 0y

is the number of parts at machine tool i, both those waiting and those in
m

process. For all i, n; ¢ {0,1,...,n} and ) n, =n. The steady-state
i=1
probability of being in state n is p(n) = p(ny,+.+,n ), which for this CQN

n, n n
model has the product form solution: p(n) ='6(EEHTXT'X11X22"'Xm?’ where:
] b

i W) By
G(m,n;X) = ) LD AR S i=1, ...,m. (2)
n1+o--+nm=n :

nj > 0

It can be seen that the function G(m,n;X) is the normalizing constant that
is required for the probabilities, p(n), to sum to 1. For the FMS depicted in
Figure 1 with n parts in the system, the expected production rate, which is
the expected number of parts produced per unit of time, can be defined as a
function of G(m,n;X), which in turn is a function of assigned workload, Xi'

In fact, for a particular scaling of 4> the production function, Pr(m,n;X),

is given by Reiser and Kobayashi [1975] as:

n, n n
) X11x22 Lok "
n +n oo+'n =n_l
. - G(myn-1;X) _ "1 m
Pr(m,n,X) G(m,ﬂ;)-(r o n n (3)
1.2 m
) LR AT )
n,+...+n =n
1 m

~ The alternative definitions, referred to above, do provide additional
intuition into just what Pr(m,n;X) means. For these insights, we refer the
reader to Stecke and Schmeiser [i983].
As an example, the production function for two single machines and any

number of parts, n, is:



Pr(2,n;X)
Xl XZ

n1+n =n

) W
2

n-1 n n-1-n

1 1

n ;0 Xl (2 Xl)
-1 , Since X.+X, =m = 2
noon 0-n, 12
-Z-o X" (2X))

bl

L n

X-(2-%))
= 1 n+1’ after dividing both numerator and 4)
Xl -(2-Xl) denominator by (2—x1)-x1 = 2(1-X1).

Many performance measures that can be obtained from CQN models, such as
the expected production rate, are insensitive to the form of the service time
distribution-see Helm and Schassberger [1982] and Dukhovny and Koenigsberg
[1981]. 1In fact, for the performance measure of expected production, the
service time distribution can be arbitrary.

The assumptions of our CQN model of a flexible manufacturing system are
that:

1. There are n parts (or pallets) circulating through a system of m

machines.

2. There is a buffer at each machine tool that has the capacity to hold
all n parts, including the part being machined.

3. The queue discipline at each machine tool can be either FCFS,
infinite server, LCFS preempt-resume; processor sharing (see Baskett
et al. [1975]), random selection, or one developed by Kelly [1979]
which allows an arbitrary distribution to be defined at each node.

The main restrictive assumption is the limited number of allowable queue
disciplines, which is why product form queueing networks are not used to

study scheduling problems.
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Queueing network models have been shown to be accurate in qualitatively
predicting steady-state behavior of FMSs. For example, Solberg [1977]
compared results from his CQN computer program, CAN-Q, to those of a detailed
simulation of the Sundstrand/Caterpillar FMS of Peoria, Illinois (Stecke
[1977]) to find that the performance measures of all machine utilizations and
expected production rate differed from those of the FMS by less than 3
percent. Similar results were observed by Kimemia and Gershwin [1978],
Secco-Suardo [1978], and Dubois [1983]. Queueing network models have also
been used to model other nonmanufacturing systems in which the service time
distributions were not exponential, with encouraging results. For example,
Hughes and Moe [1973], Giammo [1976], Lipsky and Qhurch [1977], and Rose
[1976, 1978] have verified in empirical studies that queueing network models
reproduce observed quantities with reasonable accuracy. Attempts to explain
the observed robustness through operational analyéis can be found in Denning

and Buzen [1978] and Suri [1983].

2. PRELIMINARY RESULTS

The production function given in equation (3) is difficult to character—
ize analytically. However, it can be evaluated numerically using Buzen's
efficient algorithm [1973]. The function behaves so well empirically that
some researchers (i.e., Secco-Suardo [1978] and Solberg [1979]) have con-
jectured that it must be concave. Concavity would be desirable because it
would insure that a local maximum, if it exists, is a global maximum. How-—
ever, Stecke [1983b] has shown that, contrary to conjecture, the production
function is not concave in general, even though it is concave in a few

restrictive cases. Fortunately, however, the function satisfies weaker
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generalized concavity conditions, which are also sufficient to insure that a

local maximum is a global maximum.
Using the Definitions (D) and Theorems (T) in the Appendix, we first

establish two results, which will be used later to prove the main result.

Proposition 1. The set y of feasible loadings is a closed S-convex set.

m
Proof. From equation (1), we have y = {(xl,...,x )| 2 X,=m, X, ER,
w7 R

0L X, £ m}. Therefore, y is clearly closed. It is also clearly convex

and symmetric. Then by Tll, y is S-convex. ||

Proposition 2. The quotient of two symmetiic functions in the same variables

~on the same symmetric set y is a symmetric function.

Proof. Suppose that f(x) and g(x) are symmetric functions on the

symmetric set y. Then by D5,

f(xP) = f£(x) and

g(xP) = g(x)

for all x€ yx and for any permutation matrix P. Let
h(x) = £(x)/g(x)
for all xg& y such that g(x) # 0. Then

h(xP) = £(xP)/g(xP)

£(x)/g(x)

h(x).

Therefore, h(x) is a symmetric function on y. ||

In Theorems 3 and 4 below, we prove directly the S-concavity of both the
normalizing constant, G(m,n;X), and the production function for two machines,

Pr(2,n;X).
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Theorem 3. G(m,n;X) is strictly S-concave.
Proof. By T8 it is sufficient to show that

_ 3G(m,n;X) _ 3G(m,n;X)
(Xy7%,) ( 3, 3%,

) <0,

for X1 # X2 + 0.

The quantity on the left-hand side of the inequality is

n n n, n n
2 1 1.2 m
(X,-X,) ) (==--=) XX %..X
21 n1+...+nm=n X2 X1 12 n
X, -X n, n n
_ 271 1.2 m
1 LI ) m-

Consider the two cases: either n; =0, or n; + n2.

Since Xi_z 0, i=1...,m, if n, =0, then the quantity is negative and we

are done.
Suppose 1n; # n,. Then for every n;, 0, such that ny >’n2 (say ny - o, =

§ > 0), by symmetry there exists a corresponding pair ni, n& such that

1 1 ! wn! = =
ny < ny and nj n2 S

In fact, n, = n& and n, = ni. Therefore, all terms vanish except those states

such that n, = n,, and we are left with:
-(X,X )2 n, n n
271 1, 2 m
'—‘XT— 2 nlxl Xz oo .Xm < 0,
1 2 n1+0 . d"[lmql

for all X > 0 such that X # X,. Therefore, G(m,n;X) is S-concave. ||

Theorem 4. Pr(2,n;X) is S-concave.

Proof. From (4), we have:
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x‘l1 (2-){1)n
Pr(2,n;X) =
ntl _y¢ ol
X7 @-X))
X%
"l for X) # Xy
1 2
= n/(ntm-1), for X, = X,.

Differentiating yields:

_entl_ bl on-1 .on_.n n
pr(2,nn) _ 1 Ky nky K X)) (m+1)X,
3X2 (X?+1_Xg+l)2
Therefore,
_ 3Pr(2,n;X) _ 9Pr(2,n;X)
SRt o Y u—
1
n,,n _n n~-1, o+l _ntl n-1, o+l _ntl n,,n  n
) (XZ—XI){[(n+l)X2(X1 XZ)-nX2 (X1 —X2 )]—[nX1 (X1 —X2 )-(n+l)X1(X1-X2)]}
N ntl ntl 2 )
(xl _XZ )

Since the denominator is positive for X1 + XZ’ it may be dropped,

yielding after simplification:

‘ n-1 n_.n,_ . ntl_ ntl n-1 n_,n ntl_ontl
(X2 Xl){X2 [(n+1)X2(X1 XZ) n(X1 Xz )]+X1 [(;1+1)X1(X1 Xz)-—n(x1 X2 )13,
which upon rearranging
n-1
- _ 2_,2 2n-2-2i 2i __n-1 n-1
= (X,~X)(X] xz){iz1 X X, -nX; "X, '} (5)

In order to show that equation (5) is not positive, it suffices to show that

2n-2-24 21 21 2n-2-2i n-1.n-1
X] X, X K > 26K, (6)

since the summation of (5) can be separated into n/2 inequalities of the form

(6). Assume that 2i < 2n-2.
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Subtracting the RHS from the LHS of (6) yields:

21,21

2n-2-4i_, nm-1-2i, n-1-2i,,2n-2-41
Xl XZ (X1 2X1 X2 +X2 )
_ ¢2ig2i 0 2(n=1-2i) _,n-1-2i n-1-2i . 2(n~-1-2i)
X1 X2 (X1 2X1 X2 +X2 )
_ ¢2i2i,0n-1-2i n-1-21,2
= Xl X2 (X1 X2 )
2 0.

Therefore, (6) holds for all i < n-1. The proof for 2i > 2n-2 follows

mutatis mutandis and equality holds if i=n-1. Il ,

Next consider the m machine case.

Lemma 5. Pr(m,n;X) is symmetric.
Proof. By D5 and T9, Pr(myn;X) is symmetric if the value of the function
remains the same when the Xi are permuted.

n

ly2 xm
m

n n2
G(myn;X) = Y x1 x2
n,+. 00+nm=n

1
By Theorem 3, G(m,n;X) is strictly S-concave. Then G(m,n;X) is symmetric by
T9. Since the production function is the quotient of two symmetric

functions, by Proposition 2, Pr(m,n;X) is a symmetric function of X. ll

If in addition Pr(m,n;X) is quasiconcave, then by T12 Pr(m,n;X) is S-

concave and we can use Tl5 to prove that balancing is optimal.
Theorem 6. The production function, Pr(m,n;X), is strictly quasiconcave.

Proof. The result is proven in Stecke [1983b]. ||
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3. CHARACTERIZING OPTIMAL WORKLOADS

We now state and prove the main result.

Theorem 7. A balanced allocation of workload maximizes expected production;

i.e.,

X% = [X),Xy5 000X ] = [1,1,000,1].

2
Proof. By Proposition 1, the set of feasible loadings, y, is closed and
S—-convex.
By Lemma 5, Pr(m,n;X) is symmetric.
By T12, since Pr(m,n;X) is quasiconcave by Theorem 6, then Pr(m,n;X) is
S—-concave.
By ?Eé, the set y* of points maximizing Pr(m,n;X) over the set y is a
closed S-convex set.
x* is not empty since Pr(m,n;X) & ([0,1] for all m, n, and XE€ [O,m].
The symmetric point of y is the point [1,1,...,1].
By Tl4, [1,...,1] € x*.

Therefore, a balanced allocation maximizes the expected production. ||

Balancing is now justified for the systems examined here, i.e., FMSs with
no pooling of similar méchines.

The following computer-drawn graphs demonstrate the behavior of the
production function. First, Figure 2 is a graph of Pr(2,n;X) as a function of

X, for n=4,5,.;.,14 and infinity. For each curve, 400 points (X,Pr(2,n;X))

1
were plotted. These were calculated using a variation of Solberg's CAN-Q
program [1980]. The maximum functional value, also calculated and plotted, was
attained at X = [1,1]. Table I displays the calculated optimal allocation
ratios and the maximum normalized production rate for each n. For 4 =4, = 5

(each machine is visited half of the time on the average), the average pro-

cessing times, t and ty, vary so that t, + t, = 2. The optimal allocation
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Machine 1 for 2-Machine Systems.
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occurs when g =ty = 1. Then Xi = Zqiti/(qlt1 + q2t2) =t where 1 is 1 or

2. The optimal allocation of workload in this system is balanced.

TABLE I

Maximum (Balanced) Production Rates and Corresponding
Workloads for Two-Machine Systems

Max (Bal)
n t1 tz Xl XZ Production Rate
4 1.0 1.0 1.0 1.0 .800
5 1.0 1.0 1.0 1.0 .833
6 1.0 1.0 1.0 1.0 .857
7 1.0 1.0 1.0 1.0 .875
8 1.0 1.0 1.0 1.0 .889
9 1.0 1.0 1.0 1.0 .900
10 1.0 1.0 1.0 1.0 .909
11 1.0 1.0 1.0 1.0 917
12 1.0 1.0 1.0 1.0 .923
13 1.0 1.0 1.0 1.0 .929
14 1.0 1.0 1.0 1.0 .933
- 1.0 1.0 1.0 1.0 1.000

Figure 3 is a graph of Pr(3,n;X) as a function of X1 for n=4,5,...,14 and
infinity, along the plane X2 = X3. It is interesting to note that this two-
dimensional slice of Pr(3,n;X) is nonsymmetric even though the entire function
is symmetric. The maximum is shown to be at X1=X2=X3=1. The computer program

generated both the balanced and the maximum normalized productions, as well as

the optimal allocation ratios. These are shown for each n in Table II.
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TABLE II

Maximum (Balanced) Production Rates and
Corresponding Workloads for Three-Machine Systems

Balanced Maximum * %
n Production Production X1=t1 X2=t2
Rate Rate
4 667 667 1.0 1.0
5 J14 J14 1.0 1.0
6 .750 .750 1.0 1.0
7 778 .778 1.0 1.0
8 .800 .800 1.0 1.0
9 .818 .818 1.0 1.0
10 .833 .833 1.0 1.0
11 .846 .846 1.0 1.0
12 .857 .857 1.0 1.0
13 867 .867 1.0 1.0
14 .875 .875 1.0 1.0
o 1.000 1.000 1.0 1.0

Finally, Figure 4 displays Pr(4,n;X) for n=4,...,14 and infinity along
the intersection of the planes X1=X2 and X3=X4. Table III gives values for
Pr(4,n;X). Notice that for all finite n, Pr(3,n;X) > Pr(4,n+1;X). That is,

as the number of machines increases, the actual expected production obviously

TABLE III

Maximum (Balanced) Production Rates and
Corresponding Workloads for Four-Machine Systems

Balanced Maximum
n Production Production X1=t1 X2=t2
Rate Rate
4 571 571 1.0 1.0
5 625 625 1.0 1.0
6 .667 667 1.0 1.0
7 .700 .700 1.0 1.0
8 727 27 1.0 1.0
9 750 .750 1.0 1.0
10 .769 .769 1.0 1.0
11 .786 .786 1.0 1.0
12 .800 .800 1.0 1.0
13 .812 .812 1.0 1.0
14 824 824 1.0 1.0
o 1.000 1.000 1.0 1.0
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increases but the normalized expected production decreases. The apparent
anomaly is the result of the normalization of production to the scaling
between 0 and 1.

We conclude that even though Pr(m,n;X) is not concave for any m > 2 and

n > 2, balancing is optimal for all cases (fixed-route FMSs) considered here.

4. DISCUSSION

The results can be related to similar studies of workload allocation in
manufacturing systems. OQur results differ from the finite-buffer stochastic
flow shop studies (Hillier and Boling [1966, 1967], Magazine and Silver
[1978]) mainly because we assume an adequate buffer at each machine.

In fact, using our CQN model, the expected production is identical for
both flow shops and job shops in which each operation is assigned to only one
machine. To see this, let ty (the average processing time of an operation by
machine i) be identical for both systems. The routing mechanism, defined by
Markovian probabilities pij’ for a three-machine flow shop is given by the

following transition matrix:

0 1 0
By = |0 0 1|
1 0 0

the routing for the job shop is given by:
1/3 1/3 1/3
P.=|1/3 1/3 /3| .

1/3 1/3 1/3

Then solving balance equations:

m
qi(k) = JZI piJ(k)q(k)’ i=1,...,m

(k)=F or J,
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for the two systems produces identical, steady state results. That is,

U (F) = 43(3)> i=1, .., m.
Since 4y, tys M, and n are identical for both the flow and job shops, the
expected production rate is the same for both systems.
Some implications are as follows. Under the assumptions of our CQN model
(in particular, random procegsing times and an adequate buffer at each
machine), the two extreme system types (flow and job shops) are equally
efficient. Intuition indicates that as variability decreases, the flow shop
becomes more efficient than the job shop.
The Hillier and Boling [1966, 1967] result is basically the.following:
For a stochastic flow shop with aliigigg buffer at each machine,
the expected production is maximized by a specific unbalanéing
in the workload assigned to each machine.
Our analogous result is:
For a stochastic flow shop with an infinite buffer at each
machine, the expected production is maximized by balancing
the workload assigned to each machine.
In other words, as buffer size increases, the degree of unbalance in the

optimal workload decreases, until in the limit, a balanced schedule is optimal.
APPENDIX:

RESULTS CONCERNING GENERALIZED CONCAVITY AND
SYMMETRIC MATHEMATICAL PROGRAMMING

Definitions and previously published results which are required to prove
the optimality of balanced workloads are reviewed below. The definitions and
results concerning generalized concavity can be found in Mangaserian [1969] or

Bazaraa and Shetty [1979], those concerning S-concavity can be found in Berge
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[1963], and those on symmetric mathematical programming can be found in
Greenberg and Pierskalla [1970].
Let £ be a real-valued function mapping x + 1}, where y is a closed sub-
set of I}m. We require the following Definitions (]2) and Theorems ('E):
Q} f is a quasiconcave function on the nonempty convex set y gl}m
if and only if (1ff) for any two points xl, xze x> and for all
A € [0,1],
£Oxt + (1-0x2) > nin{f(xD), §(xD)]

Dl is not enough to insure that a local maximum is a global maximum. For this

to be true we have:

D2 f is a strictly quasiconcave function on the convex set y CRm iff

for any two points xl, xze x> and for all ) ¢ (0,1), with f(xl)
+ £(x0),
et + 10D > minge(xh), ((xD)] -
In order to insure that a global maximum is unique, we require:

'

D3 f is a strongly quasiconcave function on the convex set y C R iff

- for any two points xl, xze x such that xl # x2 and for all ) € (0,1),
FOx! + (1-0)%%) > min{f(x}), £(xD)]} .

D4 y is a symmetric set if x € y = xP ¢ x for all permutation matrices

~

P

-5

where P is a permutation matrix if

i) each row has only one entry equal to one;
ii) each column has only one entry equal to one; and
iii) all remaining entries are equal to zero.

D5 f is a symmetric function on a symmetric set y if for any permutation'

~ e~

matrix P

f(xP) = £(x) for all x¢gy.
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D7

~

T8

~~

T9

T10

~ o~
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x 1s S—convex if xgy —= xS € y for all doubly stochastic matrices

S, where S is a double stochastic matrix of order m if all of its

entries, pij’ satisfy

i) Pi j 20, for all i,j;

m
ii) y p,.
=1 1]

1, for all j; and

m
114) | p,. =1, for all i.
=1

f is a (strictly) S-concave function on an S-convex set y if for any

3

£(x8) (>) 2 £(x) for all x € x.

let D be an open interval in R and let £ be a symmetric differentiable
function in Dmg lfm. If for all x = (xl,...,xm) e D™ such that
Xy # x, we have

(x,7%,) —2{;— —2%;) () <0,

then the function is (strictly) S-concave in ot (Theorem 5, p. 221,

Berge [1963]).

An S-concave function f in K is éymmetric in the components

Xy yee Xy of x € y; that is, the value of f(xl,...,xm) remains
the same when the x, are permuted (Theorem 3, p. 220, Berge [1963]).
If D is an open interval in R, a necessary and sufficient condition

for a differentiable and symmetric function f to be (strictly) 5=

concave in D' is that for all X|» XZGEIL

(%) (3;2-" -a-)-q) SO

(Theorem 6, p. 224, Berge [1963]).
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Tll Symmetric convex sets are S-convex (but not necessarily conversely).

~ e

T1l2 Symmetric (strictly) quasiconcave functions defined on a symmetric

~~~

convex set y are (strictly) S-concave (but not necessarily conversely).

D13 A point x = (xl,xz,...,xm) is symmetric iff X, =Y ¥ i=1, ...,m.

~~~

Tl4 Every nonempty S—-convex set contains a symmetric point.

~ o~

T15 If y is a closed, S-convex set and f is S-concave on y, then the set

x* of points maximizing £ over y is a closed S-convex set (Greenberg

and Pierskalla [1970]).
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