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ABSTRACT ;

A closed queueing network model is used to explore the consequences of
varying workloads among multi-server queues, not necessarily of equal sizes.
In addition, the problem of assigning servers of similar types to the queues
in the network, to maximize expected throughput, is solved.

) It is shown that} (1) unbalanced configurations of assigned servers are
superior to balanced; and (2) unbalanced workloads are better than balanced.
Differences in system throughput from balanced versus unbalanced configura-
tions/workloads can be significant. Applications to planning problems of

flexible manufacturing systems are discussed.

Subject classification: 694 and 696-optimization of multi-server closed
queueing networks, 581-planning and control of flexiblg manufacturing

systems.












There is an interesting conflict in firmly held beliefs about the desir-
ability of balancing workloads in production systems. On the one hand, some
authors have considered it so self-evident that an assignment which equalizes
the workload per machine is optimal, that that condition is taken as the objec-
tive in an optimization problem, and all attention is focused on the con-
straints which might interfere with attaining the goal. The large body of
literature on assembly line balancing (see, e.g., Ignall [1965]) adopts this
point of view. On the other hand, it is well known among queueing theorists
that, under stochastic conditions, a pooled group of servers will perform more
efficiently (i.e., complete more jobs per unit time or increase production
rate) than the same number of servers working separately (see, e.g., Kleinrock
[1976]). This fact suggests that an optimal assignment might be to provide
proportionately greater workloads to the servers of a large group than to the
servers of a smaller group or to an individual server. This paper explores
the issue in the context of a closed queueing network model which has proved
useful in representing a wide variety of real manufacturing systems.

There are actually two questions to be answered. The first is: Given the
freedom to arrange the available servers into groups of varying sizes, is it
optimal to équalize the number of servers in each group? The second is: Given
a specified configuration, which may or may not involve equal-sized groups, is
it optimal to equalize the workload per server? As we shall see, the answers
indicate that balancing is hardly ever optimél.

In particular, the problem of how to best partition m servers into g
groups has not to our knowledge previously been investigated. This problem,
which we call the grouping problem, is addressed here. The solution is that
all possible partitiong of m servers into g groups can be ordered according to
the maximum expected production of the system. In particular, the solution to

the grouping problem is as follows:



i) The more pooling (or the fewer groups), the better;

ii) 1If constraints indicate that g groups of m servers are required,

then the more unbalanced configuration provides a larger maximum
expected production.

In addition, we address the problem of optimally allocating a total amount
of work among a syétem of grouped servers, and call this the loading problem.
The solution to the loading problem {is:

1) For a system comprised of groups of unequal sizes (the better
configurations), the expected production rate is maximized by

assigning a specific unbalanced workload per server to each group;

ii1) Balancing the workload per server is optimal only if all group
sizes are equal.

Several previous studies of stochastic production lines have pointed out
that balancing is nonoptimal in serial systems of single-server queues with
finite buffers (Makino [1964], Hillier and’Boling {1966, 1967, 1979], Rao
[1976], Magazine and Silver [1978], El-Rayeh [1979]). However, this phenomenon
is related to the finite buffer coﬁdition,'rather than to the multiple-server
efficiency issue which is studied here. 1In manufacturing terms, this previous
work related to assembly lines, whereas our results would pertain to job shops
and flexible manufacturing systems (FMSs). Indications that highly unbalanced
workload assignments could be significantly better than the balanced solgtions
came in an empirical study of an actual FMS (Stecke [1977], Stecke and Solberg
[1981b]).

The~closed queueing network (CQN) model which forms the basis of our
theoretical study is a product form network. Its value and accuracy in model-
ing real manufacturing systems was revealed in Solberg (1977) and confirmed in
several subsequent investigations (Secco-Suardo [1978], Shanthikumar and
Buzacott [1979], Hildebrandt [1980], Buzacott and Shanthikumar [1980],

Cavaille and Dubois [1982]).
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The paper is organized as follows. The closed queueing network model, its
robustness, and our application of the model are presented in the following
section. Results concerning the optimality of maximum pooling are given in
§2. §3 contains results associated with optimum partial pooling as well as
workload allocation in a partially pooled system. The results and their
applicability to flexible manufacturing are discussed in §4. The final section

suggests directions for future research.

1. THE CLOSED QUEUEING NETWORK MODEL
The description of the CQN model as well as its robustness are given

below. Manufacturing terminology 1s used, since that is our main application.

1.1 Definitions and Notation

One depiction of a CQN as a syétem of arbitrarily-connected machine groups
is given in Figure 1. There are g groups in the system and 8y machines in
group i. The average processing time of an operation by one of the machines in

8
group i is ti. Note that m = 2 si, since we seek to partition m machines

into g groups. For flexible m:;tfacturing applications, transporters, as well ;b

as loading and unloading (L/UL) stations, can be considered by using the

central-server model, as shown in Figure 2, which is a special case of our CQN

model. However, the remainder does not include the transporter and L/UL in

order to solve the theoretical; continuous loading problem addressed here: the

determination of the optimal allocation of a total amount of work among a

system of grouped machines. 1In effect, the analysis and calculations which

follow are as if the transporter and L/UL operations were infinitely fast.
Routing through the system is arbitrary. The routing could be first-order

Markovian (defined by transition probabilities, p, .~—see Figure 1); multiple-
ij P

class Markovian (defined by transition probabilities for each part type k,



Figure 1. An Arbitrarily-Connected Network of Multi-Server Queues.

pij(k) (Reiser and Kobayashi [1975])); higher-order Markovian (for example,
second order is defined by pijk’ which is the probability that a part pre-
viously at 1, now at j, goes next to k (Kobayashi and Reiser [1975])); and even
fixed routes through the system (defined by routing vectors for each part type,
r(k) = (r(k,l), r(k,Z),;..), where r(k,j) is the index of the j'th machine
group visited by a part of type k (Kelly [1979])). All these routing mecha-
nisms produce the same values for certain output measurés as do the 4 which
are shown in Figure 2. For additional routing information, see Stecke ahd
Solberg (1981a).

In particular, the qi's in Figure 2 are relative arrival rates to the
var;ous machine groups, i.e., any non-negative solution to the traffic equa-
tions, q = 2 pji q ., where the in 's are routing probabilities. Our
formulas permit any scaling of the qi S In particular, if the qi s are scaled
to sum to onme, ¢, can be interpreted as both the probability that the next

machine visited is one in group i and the average number of visits to a machine
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Figure 2. Central-Server Model.
in group i per visit to a transporter. For a different scaling, a9 is the
mean number of operations per part that visit machine group 1.

Since the system isvclosed, it always contains a fixed number of parts, n.
When a part is finished it can be thought of as being taken to a load/unload
station, where another part immediately enters the system.

The queue discipline can be either FCFS, infinite server, LCFS preempt-
resume, processor sharing (see Baskett et al. [1975]}), random selection (see
Spirn [1979]), or one developed by Kelly (1979) that allows an arbitrary dis-
tribution to be defined at each node. The service time distribution is
arbitrary, except for FCFS machine groups, which require exponential service
times. However, robustness i1s observed in the FCFS case even when service
times are not exponentially distributed (see Suri [1983]).

In fact, queueing network models have been found to be surprisingly

accurate in predicting steady-state behavior of flexible manufacturing systems
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despite requiring only average processing times and visit frequencies to define
workload parameters for each group. One might expect that more information
would be required. However, Solberg (1977) compared results from his model,
CAN-Q, to those of a very detailed simulation of a particular FMS, the
Sundstrand/Caterpillar system (Stecke [1977]), and found that output measures
of average machine utilizations and production rate all differed by less thaﬁ

3 percent. The network-of-queues model has also been used, with good results,
to model other nonmanufacturing systems where the service time distribution was
not eiponential. Hughes and Moe (1973), Buzen (1975), Giammo (1976), Lipsky
and Church (1977), Rose (1976, 1978), and Suri (1983) have validated queueing
network models through empirical studies, and have verified that the models

reproduced observed quantities with great accuracy.

1.2 Our Variant of the CQN Model

For our purposes, it suffices to restrict attention to single-class closed
queueing networks consisting of a single type of identical or similar parts.
This is sufficient since our theoretical loading problem is to allocate a total -
amount of work among a system of machine groups. Multi-class models can be
used, at additional computational expense, to handle multiple part types.

Thé usual measure of the relative workload assigned to group i is W,
(Solberg [1977], Buzen [1971, 1973], Reiser and Kobayashil [1975]), where
w, = qiti’ i=1,...,g. These workloads are relative, since th? qi's need not

sum to one. For our purposes, w, was scaled to provide our workload measure:

i
& g

X, = qm’“jél qjtj)/<j=1l sP1 - 1)
Notice that the numerator is the usual definition of workload assigned to group

i, and the denominator is the average workload per machine.
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This scaling was chosen for several reasons:

i) For a given number of machines in the system, regardless of their
grouping, the total amount of work to be allocated among groups
always. equals the total number of machines:

A

i=1 i=1
ii) The workload is independent of any chosen scaling of qy;

iii) We compare alternative workloads to a balanced workload. For
a balanced workload, regardless of system size or configuration,
Xl/Sl = X2/82 = e = Xg/s = 1.
Xi/sy{ 1s interpreted as being proportional to the utilization
(fraction of time busy) of a typical machine in group i. Balanced
means that all individual machines have identical utilizations;

iv) This scaling provides a normalized, dimensionless evaluator, a
production function (the subsequently defined Pr(g,n;S,X) of
equation (4)), whose values lie between zero and one, while Xj
lies between zero and m. A value of one corresponds to a perfect
system, when all machines are busy all the time, a situation
which would never happen in practice. This situation "occurs"”
in a perfectly balanced system with an infinite number of parts
in the system.

The workload definition (1) allows new alternative, equivalent defiﬁitions
of the production function, which are useful in proving properties of the func-
tion. These are defined and described in Stecke (1981) and Stecke and
Schmeiser (1983). Finally, the workload, Xi’ can be allocated differently
either by fixing 44 and varying ti, or vice versa.

The stéte‘of the system is given by @, which is (nl,nz,...,ng), where n,
is the number of parts at machine group i, both those waiting and those in process.
% n, = n. The steady-state

i=1
probability of being in state n is p(n) = p(nl,nz,...,ng), which has the product

For all 1, 0y is an integer between zero and n, and

~ 1 8 _
form solution: p(n) = HERTINI) 121 fi(ni)’ where § = (sl,sz,...,sg),

X = (XI’XZ""’Xg)’ the normalizing constant is:
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X
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The single-machine, multiple-machine, and infinite-machine groups correspond,
respectively, to s;{ =1, 1 <s;<n, and s; > n.

One way to measure system performance is the production rate. Instead,
we scale production (via the scaled workload) so that it is independent of
actual time, but is a function of scaled time. By using a dimensionless pro-
duction function, we can get ; common base with which to compar; allocations.
For a system such as that depicted in Figure 1 with n parts in the system, the
expected production rate, which is the expgcted number of parts produced per
unit time, can be obtained as a function of g, n, S, an& X, that is, as é func-
tion of assigned workload, Xi’ and grouping, Sg- In fact, for a particular
scaling of a4y the normalized production function, Pr(g,n;S,X), is given by

s

Reiser and Kobayashi (1975) as:

Pr(g,n;s,X) = SIS )

The expected production rate is obtained from the production function by an
appropriate scaling factor as follows. The expected departure rate from
machine group i is (see Baskett et al. [1975]):

X, G(g,n-1;3,X) ]
i -
) parts per unit time, i=1,..0,8.

7:'; G(g,n;5,X



-9-

Summing over i, the total production rate of the system (parts per unit time

into machine groups) is A Pr(g,n;5,X), where from equation (1),

g X '
A= ) —=nm § q/(§ q.t.).
1=1 & =1 b 4= 33

Since the parameter A is held constant in what follows, where we optimize over

X and S (with m, n, g, 4> and § qjtj fixed), we maximize total expected

production rate by maximizing the production function of equation (4),
Pr(m,n;5,X), instead.

Any effects that the following assumptions of the model might have on the.
application of the results to FMSs are now discussed.

1. There are always n parts present.

During FMS control, there is usually a fixed number of pallets
on the system, with a new part loaded immediately after
another is unloaded. Having too many parts causes congestion
while having too few parts results in an underutilized system.

2. Each machine group i contains a buffer with room for n-sj; waiting
parts.
The "adequate-buffer” assumption eliminates the consideration

of the blocking or starving of machines. 1If each machine has
a large enough buffer, this assumption poses no problems.
For a very small (or no) buffer, this assumption might seem
to be unreasonable. However, robustness of this model has
been observed (Suri [1983]).

3. The parts follow a probabilistic routing through the system.
The expected production rate provides a robust measure
despite requiring only the mean number of visits to each
machine group (Solberg [1979]).

Further information concerning the relevance of CQN model results to FMS
design, planning, and control can be found in Stecke and Solberg (198la),
Cavaille and Dubois (1982), and Suri (1983). The application of our CQN
results to FMS planning problems are discussed in §4.

We now investigate the cases of maximum pooling (g=l), partial pooling

(1<g<m), and no pooling (g=m). These achieve lower and lower maximum produc-

tion rates with the extreme cases:
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maximum pooling--Pr(l,n;(m),(m)) = min{l,n/m};

no pooling——Pr(m,n;(f),l*) = n/(n+m-1),
where 1* 1s the balanced workload, X} = Xj = ... = x; = 1, that achieves
the maximum expected production in the no-pooling case (Stecke and Morin
[1982]). From now on, regarding X* or 1*, * refers to the optimum

(un)balance that maximizes expected production. In addition,

) =s = (1,1,...,1).

2. MAXIMUM POOLING: ONE GROUP
The first case that is examined maximizes flexibility in a manufacturing
system: all machines are pooled into one group, so g=l. Each machine can per
form any operation. Then, 81=Xl=m‘ The normalized expected production rate
from this system is compared to the best possible normalized expected produc-
tion réte achleved from a single-machine, g-machine group system.

For any workload X, fl(n), from equation (3), is given by:

o
—_— n<m
n! ’ -
fl(n) - o0
, n > m
, n-m
m! m

Consequently, the production function, from equation (4), is

fl(n-l)

Pr(1l,n;s,X) = EACR
1

n/m, 1if n { m;
1, if n > m.
From Stecke and Morin (1982), the optimal solution to the single-machine
machine group system (that is, a single-server CQN with g servers) is a

balanced workload: XY=X;=...=X;=1. The comparison is stated as Theorem 1.
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Theorem 1. Except for those systems in which there is only one part, the pro-
duction rate obtained from a totally pooled system of machines is strictly
greater than the‘best that can be obtained from a system containing no pooling;
when n is 1, the expected pfoduction rate from the two systems is identical.

Proof: For the system of groups of single machines,

Pr(m,n;(f),x*) = n/(n+m-1) (Stecke and Morin [1982])
< min{n/m,1}
= Pr(1l,n;(m),(m)),

which is the production rate for the pooled system. 1In addition, 1f there

+>
is only one part in the system, then Pr(m,n;(l),X*) = Pr(l,n;(m),(m)) = 1/m.

Intuitively, the more pooling the better, with respect to production.
Because of technological considerations, however, pooling all machines into one
group is not usually possible. For example, in an FMS it is usually impqssible
to place all of the cutting tools required for all operations to be performed
by a particular machine type in only one limited-capacity tool magazine. This
implies that some partitioning of the machine tools must occur. The following
section analyzes érouping and loading problems for those cases in which only

limited pooling is possible.

3. PARTIAL POOLING: SEVERAL GROUPS
This section addresses questions concerning:
i) how to partition m machines into g~g£oups; that is, choose sy
to maximize Pr(m,n;5,X) subject to z sy = m; and‘
11) how to allocate a total amount of wiztload among the system
of grouped machines; that is, choose Xj (by choosing average

processing times for fixed qi) to maximize production subject -
g

i=1

The section is organized as follows. We first examine the simplest par-

tially pooled system: three machines in two groups (S = (1,2)). Because of
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the cumbersome nature of the production function, only small problems with a
maximun of three parts can be solved analytically. The analysis is continued
numerically and graphically for a system having four parts, on up to a system
having fourteen parts (quite saturated for three machines). Finally, the
limiting case of a system comprising an infinite number of parts is examined.
Next, four-machine systems are investigated in order to demonstrate the pool-
ing, grouping, and loading results. A system consisting of four single
machines has been examined in Stecke and Morin (1982). A system consisting of
four pooled machines is analyzed here in §2. The remaining cases involving two
groups, S = (2,2) and (1,3), and three groups, S = (1,1,2), are presented.

Then several seven-machine systems, grouped in different ways, are displayed,
compared, and discussed. The general results which we have been successful in
proving are given in §3.2. Finally, we discuss the generality of those results
whose formal proofs femain elusive, but which have proven valid for the many

individual cases that we have examined.

3.1 Analytical, Numerical, and Graphical Results
Several systems are analyzed in order of increasing complexity. The
simplest partially pooled system that can be examined is one consisting of two
machines in one group and a single machiné in the other, as shown in Figure 3.
The output from this system is compared to:

i) a system of three single machines (Stecke and‘Morih [1982}), and
11) the system of three pooled machines (§2).

a2

@
®

Figure 3. A Three—-Machine, Partially Pooled System.
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For an § = (1,2) system, g=2, s1=l, and sy=2. Then,

Xy = normalized workload assigned to machine group i
= (s1+s9)(qqty)/(qrty+qaty)
= 3q,t,/(q t,%q,t,).

From equation (3), fj(n;) and fy(ny) are:

M
f1(ny) =X 7, for all nj;
(
b}
%
np! ’ n2<i 2;
f =
2(n2) = { g ™2
2 > 2
21972201 T 7 %
R CHEACY
n1+n2=n-1
Pr(2,n;(1,2),X) = - .
L £ () Eyay)
n1+n2—n

Analyses of systems with one and two parts can be found in Stecke and
Solberg (198la). For three parts in the system, the normalized production rate
is given by:

X, 24K XK, 2/2 ) 4X 24X X, 242X,

Pr(2,3;(1,2),X) = 2 D) k) = 3 ) ] k)
X1 4Ky "Xo+HX1Xo /24X 7 /4 4XpTH4X] TX9+2X X9 THKo

Reducing this expression to a single variable by the elimination of Xj
(=3 - X9), we obtain after some algebraic manipulations,

2(Xp2-6Xp+18)
108-72X2+18X22—X23

Pr(2,3;(1,2),X) =

Proposition 2. For the three-machine, two-group system with three parts, the

expected production rate is maximized by assigning a unique unbalanced workload

per machine to each group.
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oPr(2,3;(1,2),X)
9Xo

Proof:

2

(108-72%,+18X,

3 2 2
Xz )(loX2 12)+(2X2 12X2+36)(72 36X2+3X2 )

(108-72X,+18%, 2%y )?

b3 2
2%, 125 490K, 432, 4648)
NI
(108-72x,+18%,* %)
Setting 8Pr(2,3i(1,2),x) = 0 implies that X, = 2.38965, which is the
2

only feasible, real root in the interval {0,3]. Then, 3 - 2.38965 gives
X1 = ,61035. Pr(2,3;(1,2),(.61, 2.39)) = .7472. Therefore the maximum
normalized expected production rate, .7472, occurs at an unbalanced workload

per machine, that is, at X; = .610 and X,/2 = 1.195.

This maximum production rate is better than Pr(2,3;(1,2);(1,2))'= T143,
which is the balanced assignment's scaled production rate. ‘This illustration
proves that production is increased significantly when the workload per machine
for a particular system of grouped machines of unequal sizes is deliberately
unbalanced. That is, the performance of the unbalanced system 1s better than
that of a balanced system.

Mathematical analysis is useful only for small problemé. The expansion of
Pr(g,n;5,X) becomes too cumbersome to petforq'manually because of the exbonentially
incréasing number of states. However, the function can be evaluated quickly by
using Buzen's algorithm (1973). A computer program called CAN-Q (Solberg [1980]),
that evaluates multi-server CQNs, was adapted (Stecke and Solberg [198la]) to
accept our particular problem parameters. For a system of grouped machines,
the program efficiently calculates:

1) the maximum production;
ii) the balanced production;
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iii) the percentage increase in the maximum over the balanced production;
iv) the optimal loading with respect to maximum production;
v) the percentage decrease in the workload per machine agsigned to
the first machine group.

The computer program was used to evaluate Pr(2,n;(1,2),X) for 400 consecu-
tive points (Xl’XZ) for X1 1n<[0,3] and X2 in [1.5,0]. Figure 4 is a plot of
the 400 points (Xl,Pr(Z,n;(l,Z),X)) for twelve production functions:
n=4,5,...,14, and the limiting case of n equal to infinity. The vertical line
through X1=1 cuts each production curve at the point of a balanced assignment,
that is, where X1=X2/2=1. The crosses mark the points of maximum value. The
following information is extracted from the curves of Figure 4:

i) The functions, Pr(2,n;(1,2),X), are strongly quasiconcave for
n=4,5,...,14 and infinity. This indicates the uniqueness of
the global maximum. (See Stecke [1983b].)

ii) The production functions are not symmetric. If they were, then
from Stecke and Morin (1982), the balanced point would be optimal.

ii1) The unique, maximum production rate is achieved by underutilizing
(overutilizing) the smaller (larger) group of machines. For
each finite n, the maximum is strictly larger than the balanced.
iv) As the number of parts in the system increases, the degree of
unbalance of the optimal allocation decreases. For a totally
saturated system (n==), the maximum expected production rate
is the same as for the balanced system.

Table I provides values of the balanced (Pr(Bal)) and maximum (Pr(Max))
production rates, and the optimal allocation per machine in each group. Note
that with only three machines, six or seven p&rts begin to saturate the
system.

For a totally pooled systen, Pr(l,ﬁ;(3),X) =1 for all n > 2, which indi-
cates that fewer groups are better. Similar evidence is found in Table I by
comparing the maximum (which is also the balanced) production rate achieved by

three single machines to the partially pooled system. In particular, for each

finite n > 2,
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TABLE I

Three Machines:
Balanced Versus Maximum Production Rates and Optimal Workloads

a Two Groups of One and Two Machines: S = (1,2)
Percent Percent N .
Increase Decrease Xl/s1 X2/52
n Pr(Bal)* Pr(Max)** in Prod in Wkld
Rate on Mac 1
4 J77 .801 3.15 24 .757 1.121
5 .817 .837 2.38 18 .817 1.091
6 .845 .861 1.92 15 .855 1.072
7 .856 .880 1.61 12 .877 1.061
8 .881 .894 1.39 10 .900 1.050
9 .894 .905 1.23 9 .907 1.046
10 .904 914 1.11 8 .922 1.039
11 .912 .921 1.01 7 .930 1.035
12 .919 .927 .93 6 .937 1.031
13 925 .933 .86 6 .937 1.031
14 .930 .937 .80 5 .945 1.027
o 1.000 1.000 0 0 1.000 1.000
b Three Groups of One Machine Each: S = (1,1,1)

n Pr(Max) and Pr(Bal)

4 .667

5 J14

6 .750

7 J77

8 .800

9 .818

10 .833

11 .846

12 .857

13 .867

14 .875

o 1.000

*tPr(Bal)
**pr(Max)

= Pr(g,n;s,X[S = i)

Pr(g,n;s,X")
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Pr(Max) (3,n;3(1,1,1),1) < Pr(2,n;(1,2),Max or Bal X) < Pr(1,n;(3),X).
For four-machine systems, all possible groupings include:.
i) one group: S = (4);
ii) two groups: S = (1,3) and S = (2,2); see Figures 5 and 6,
respectively;
1ii) three groups: S = (1,1,2); see Stecke (1981);
iv) four groups: S = (1,1,1,1); see Stecke and Morin (1982).

First, two systems of two groups are compared. All of the production
functions are explicitly quasiconcave. For the equal-sized groups ((2,2)--
Figure 6), the functions are symmetric and the balanced point is optimal. For
unequal-sized groups ((1,3)--Figure 5), the fuﬁctions are not symmetric and the
balanced point is not optimal. Also, note from Table II that the grouping
5 = (1,3) is better than S = (2,2) and, in addition, that Pr(Max)(l,3) is sig-
nificantly higher than Pr(Bal/Max)(2,2), which is only slightly better than
Pr(Bal)(1,3) for all finite n. These observations demonstrate the grouping
and loading results that were summarized in the introduction. A reason for
these unbalancing phenomena is that a larger group of pooled machines 1is more
efficient (i.e., can complete more jobs per unit time), and can hence be
assigned more than its “fair share" (i.e., balanced) amount of work.

T6 i1llustrate the results, notice from Table II that when there are four
parts in the system, say, the lone machine should be assigned a proportion of
only .5 units of work on the average, while each of the other three machines
should be assigned 1.167 units. This unbalanced workload per machine increases
production rate by 8.23 percent. Tables II and IIIL show that both configura-
tions S = (1,3) and (2,2) produce larger maximum production rates than system
S = (1,1,2). Finally, Table IV shows the optimality of a balanced workload for
a syétem of four single machines. Note that for all finite n, Pr(Max)(1,1,1,1)
< Pr(Max)(1,1,2).

The analysis is similar for systems of five, six, seven, and fifty

machines (see Stecke and Solberg (198la]). For example, for seven machines in

two groups (summarized in Figures 7 and 8 and Table V):
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-21-

TABLE II

Four Machines:
Balanced Versus Maximum Production Rates and Optimal Workloads

Two Groups of One and Three Machines: 5 = (1,3)

Percent N N
Increase Percent Xl/s1 XZ/SZ
n Pr(Bal) Pr(Max) in Prod Decrease
Rate on Mac 1
4 /43 . 804 8.23 50 .500 1.167
5 .795 .842 5.87 36 .640 1.120
6 .830 .868 4.56 28 .720 1.093
7 .855 .887 3.72 23 .770 1.077
8 .873 .901 3.14 19 .810 1.063
9 .887 .912 2.71 17 .830 1.057
10 .889 .920 2.38 15 .850 1.050
11 .908 .927 2.13 13 .870 1.043
12 916 933 1.92 12 .880 1.040
13 .922 .939 1.75 11 .890 1.037
14 .928 .943 1.61 10 .900 1.033
© 1.000 1.000 0 0 1.000 1.000
Two Groups of Two Machines Each: S = (2,2)
Percent
Increase Percent X:/s1 X;/s2
n Pr(Bal) Pr(Max) in Prod Decrease
- Rate _on Mac 1 )
4 .750 .750 0 0 1.00 1.00
5 .800 .800 0 0 1.00 1.00
6 .833 .833 0 0 1.00 1.00
7 .857 .857 0 0 1.00 1.00
8 .875 .875 0 0 1.00 ‘1.00
9 .889 .889 0 0 1.00 1.00
10 .900 .900 0 0 1.00 1.00
11 .909 .909 0 0 1.00 1.00
12 917 .917 0 0 1.00 1.00
13 .923 .923 0 0 1.00 1.00 -
14 .929 .929 0 0 1.00 1.00
© 1.000 1.000 0 0 1.00 1.00
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TABLE IIIL
Four Machines in Three Groups: S = (1,1,2)
Percent
Increase Percent X’;/s1 X;/s2
n Pr(Bal) Pr(Max) in Prod Decrease
Rate on Mac 1
4 640 .665 3.81 24.00 .760 1.240
5 . +695 .715 2.89 17.33 .827 1.173
6 .735 7152 2.32 14.00 .860 1.140
7 .766 .781 1.93 11.33 .887 1.113
8 .790 .804 1.65 10.00 .900 1.100
9 .810 .822 1.44 8.67 .913 1.087
10 .827 .837 1.27 7.33 .927 1.073
11 .840 .850 1.14 6.67 .933 1.067
12 .852 .861 1.03 6.00 .940 1.060
13 .863 .871 .94 5.33 947 1.053
14 .872 .879 .86 5.33 947 1.053
1.000 1.000 0 .00 1.000 1.000
TABLE 1V
Four Single Machines: .S = (1, 1, 1, 1)
Balanced Maximum X1 * Xo*
n Prod Rate Prod Rate
4 571 571 1.00 1.00
5 625 .625 1.00 1.00°
6 667 667 1.00 1.00
7 .700 .700 1.00 1.00
8 1217 727 1.00 1.00
9 .750 .750 1.00 1.00
10 .769 .769 1.00 1.00
11 .786 .786 1.00 1.00
12 .800 .800 1.00 1.00
13 .812 . .812 1.00 1.00
14 .824 .824 1.00 1.00
o 1.000 1.000 1.00 1.00
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Pr(Max) (1,6) >> Pr(Max)(2,5) > Pr(Max)(3,4) > Pr(Bal)(3,4)

> Pr(Bal)(2,5) > Pr(Bal)(1,6).

3.2 General Results

First, the optimality of balanced workloads when all machine group sizes
are equal is proven. Definitions of generalized concavity and symmetric func-
tions can be found in Berge (1963) and Stecke and Solberg (198la). Proofs can
be found in Stecke and Solberg (198la) and are direct generalizations of those

in Stecke and Morin (1982); hence they are not repeated here.

Theorem 3. If each group contains the same number of machines (si =g, for
all 1), the expected production rate is maximized when the allocation per
machine is balanced, that is, Xi/s =1, 1 = 1,...,8.
Proof: The set of feasible loadings, X, is closed and S-convex (Stecke and
Solberg [198la], Stecke and Morin [1982}).
Pr(g,n;S,X) is a symmetric function (Stecke and Solberg [198la], Stecke
and Morin [1982]). |
Pr(g,n;5,X) is strictly quasiconcave, but not concave (Stecke [1983b]).
By symmetry and quasiconcavity, Pr(g,n;S,X) is S—concave (Berge [1963]).
The set, x*, of points maximizing Pr(g,n;S,X) over the set x is a
closed, S-convex set (Greenberg and Pierskalla [1970}).
x* is not empty since Pr(g,h;S,X) e [0,1] (i.e., is bounded) for all
g and n, and for x € [O,gs].
The symmetric point of y is the point [s,s,...,5] (by definition).
The symmetric point [s,...,s] € x* (Greenberg and Pierskalla [1970]).
Therefore, a balanced allocation per machine maximizes thelexpected

production rate, or Xi/s =1, i=1,...,g.
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(1,6), (2,5), and (3,4).
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TABLE V

Seven Machines:
Balanced Versus Maximum Production Rates and Optimal Workloads

a Two Groups of One and Six Machines: S = (1,6)

Percent Percent
n Pr(Bal) Pr(Max) Increase Decrease X’;/sl X;/s2

in Prod in Wkld

Rate on Mac 1
4 529 571 7.98 100 .000 1.164
5 .637 T14 12.07 100 .000 1.164
6 731 .857 17.19 100 .000 1.164
7 .786 .885 12.53 62 .385 1.102
8 .822 .905 10.05 48 525 1.079
9 847 .918 8.40 39 .612 1.064
10 .866 .929 7.24 34 .665 1.055
11 .880 .937 6.37 28 17 1.047
12 .892 943 5.70 25 .752 1.041
13 .901 .948 5.18 23 .770 1.038
14 .909 .952 4,75 13 .787 1.035
o 1.000 1.000 .00 00 1.000 1.000

b Two Groups of Two and Five Machines: § = (2,5)
4 .552 571 3.52 100 .000 1.396
5 .667 J14 7.09 100 .000 1.396
6 749 .787 5.04 39 612 1.155
7 799 .830 3.95 27 .726 1.109
8 .832 .859 3.23 21 .787 1.085
9 .856 .879 2.72 18 .822 1.071
10 874 .894 2.36 15 .849 1.060
11 .887 .906 2.08 13 .866 1.053
12 .898 .915 1.87 12 .884 1.046
13 .907 .923 1.70 11 .892 . 1.043
14 915 .929 1.56 9 .910 1.036
© 1.000 1.000 .00 0 1.000 1.000
¢ Two Groups of Three and Four Machines: S = (3,4)

4 «565 571 1.14 100 .000 1.756
5 .678 .682 .69 16 .840 1.120
6 .756 .760 .54 10 .904 1.072
7 .804 .807 A4 7 .927 1.054
8 .836 .838 .36 6 .945 1.041
9 .859 .861 .31 4 .957 1.032
10 .876 .878 .27 4 .962 1.028
11 .890 .892 .25 3 .968 1.024
12 .901 .902 W22 3 .968 1.024
13 .910 911 .21 3 974 1.019
14 917 .918 .20 3 974 1.019
s 1.000 1.000 .00 0 1.000 1.000
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The nonsymmetry of the production function for systems with groups of dif-

ferent slzes has been observed in §3.1.

Theorem 4., For a system in which there are at least two groups of different
sizes and n > m{n Sy Pr(g,n;S,X) is not symmetric in X.
The proof is straightforward, but tedious, and can be found in Stecke and

Solberg (1982).

Conjecture 5. Given a system of groups of pooled machines of unequal sizes,
the production function is maximized by a unique unbalanced allocation of the
workload per machine. In particular, more (less) than the balanced amount of
work per machine is assigned to the larger (smaller) groups of machines.

The validity of Conjecture 5 has been observed for all of the systems we
have examined. The generality of the assertion is conjectured but not proven
to date because of the numerical nature of the pFoduction function.

There 1s an interesting relation between a balanced and maximum allocation

in the limiting case:

Conjecture 6. In a totally saturated system (n=®), the optimal allocation is

balanced, even for unequally-sized machine groups.

Corollary 7. For a totally saturated system (n==), the maximum expected pro-
duction rate is the same as the production rate for the balanced system, that
is,

lim maximum Pr(g,n;5,X) = 1 = lim Pr(g,n;S,I) for any g and S.
n¥e® X n+®

The following conjecture and assoclated corollary define how to best group

m machines into g groups. Throughout, groups are ordered according to

increasing size, that is, Sl.ﬁ 8y < ve S_sg. When machines are shifted into



-28-

different groups, the ordering according to sizes 1s preserved. A general
statement 1is first provided which all of our investigations indicate to be

valid.

Conjecture 8. Suppose there are m machines, g groups, and s, machines in group

i

— —

i, and groups are ordered so that 81 < S, e K sg. Then, for any integer
K > 0, we have that:

1) maximum Pr(g,n;(sl,...,s

1+K,...,s -K),X) is strictly less than
x g

maximum Pr(g,n;(sl,...,s

yee,8 ),X);
X g

i

ii) Pr(g,n;(sl,...,si+K,...,sg-K),S) is strictly greater than

Pr(g,n;(sl,...,sg),S);

iii) mﬁx Pr(g,n;(sl,...,si,...,sj,...,sg),X) is strictly greater than

mix Pr(g,n;(sl,...,si+K,...,ss,...,sg),x),

for §1+K = 51+1+K PN Sj'

The order of groups according to size 1s preserved throughout. 1In particular,
8, K< L sg - K.

The first and third parts of Conjecture 8 state that the maximum expected
production rate is larger for more unbalanced system configurations of pooled
machines. Similarly, the second part indicates that equalizing group sizes
decreases the maximum expected production rate. Finally, if the allocation per
machine is balanced, then group sizes should be equal to maximize expected
production.

The following special case demonstrates Conjecture 8. Tf m machines are
to be partitioned into two groups, with x machines in group 1 and y machines in

group 2, all partitions can be sequenced according to the maximum expected pro-

duction rate.

Corollary 9. All partitions of m machines into two groups are ordered accord-

ing to the maximum expected production rate as follows:
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1, wl)
(2, m2)

(3, n-3)

(m-1)/2, (mkl)/2, if m is odd;
( ‘ )
m/2, m/2, if m is even.
Additional interesting properties of the production function can be found

in Stecke and Solberg (198la) and Stecke and Schmeiser (1983).

4, DISCUSSION

The unbalanced grouping result is not initially intuitively vaious. To
see this, suppose that a new machine tool is purchased and could be pooled with
either group of an existing three-machine system, S = (1,2). Since there are
advantages (and diminishing returns) to pooling, one might Fhink it best to
include the new machine tool with the single-machine group, to obtain system
(2,2). 1f the workload per machine were to be balanced, then the expected
production rate from system (2,2) would be slightly higher than that of the
alternative two-group system (1,3) (see Table I1). However, since the expected
production rate of a (1,35 system is maximized with an unbalanced workload per
machine and also is higher than that of a (2,2) system, then one would attempt
to include the new machine with the secqnd, larger group.

The optimality of unbalanced allocations for unbalanced partitions of
pooled machines can also initially seem to be counterintuitive. The most
heavily utilized machine 1s traditionally referred to as a bottleneck machine;
the idea is that operations which require the bottleneck machine tend to wait
longer in the queue to be processed. The practice in industry is to shift work

to lessen the load on the bottleneck machine, which is called load-leveling.
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However, our results indicate that a machine could be critical to overall
system behavior even if it were assigned less work thaﬁ another machine on the
average. A machine could be assigned less work than another, and still be a
"bottleneck,” not in the usual sense of the word, but in that system peformance
could improve by assigning even less work to this lower assigned machine. 1In
addition, the advantages of pooling are over and above a savings realized in
the travel time required to get from machine to machine.

The application of these results to flexible manufacturing can now be
described. Suppose that there is a set of operations, whose total workload has
been scaled to equal My that require a particular ma;hine type j. (There are
mj machines of type j). The best possible éolutions to the FM3 grouping and
1oadihg problems would be that all mj machines are pooled into one group and
hence identically tooled. Then each machine would be capable of performing all
operations. However, this maximum pooling situation is rarely possible since
the cutting tools required for all of the operations cannot qually fit into
each machine tool's limited-capacity tool magazine. If gj tool magazines are
required to hold all required tools, then the mj machines have to be parti-
tioned into at least gj groups. The gsolution to the continuous FMS loading
problem is a set of optimal allocation ratios, X;j’ i= 1,...,gj, or ratios
at which the machine groups of type j should be loaded to maxim}ze expected
production. Operations should éhen be assigned to the machine groups so that
total operation time/machine would be as near as possible to the ratios:
XIj/Sijf rather than balanced.

At present, there are no known simple conditions (of an operationally use-
ful nature) by which to characterize the optimum unbalanced solutions. Specu-
laiions that the production function would be optimized at a point where theA

probabilities of finding an available server are equal, or where the mean queue
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lengths per server are equal, or several other possibilities, are not supported
by our computational experiments. The optimal allocation ratios to maximize
expected production are found by searching over the possible workload
parameters.

A larger group of pooled machines can be loaded more heavily simﬁly
because pooled servers are more efficient than single servers. In addition, a
larger group automatically increases flexibility by increasing the number of
job routes. Production of more than one part type, each with alternate rtoutes,
increases system variability. Pooling machines helps a system automatically
" adapt to congestion (in part caused by increased by system variability) and
machine/cutting tool/cart breakdowns.

The benefits of pooling machines can be obtained only in conjﬁnction with
an on-line control strategy, where decisions are baéed on the present state of
the system. A CQN model was chosen in order to approximate real-time control
capabilities via the probablistic routing and also to consider queueing and
congestion in an FMS. Because of the flexibility available in automated manu-
facturing and the use of computers, real-time scheduling can become a viable
and welcome alternative to a fixed, static, off-line-generated schedﬁle.

This paper reports a study of balancing versus unbalancing, with bartlcu—
lar applications to FMS grouping and 1déding problems. However, additional
loading objectives have been suggested that also proved superior to balancing
when applied using a detailed simulation of,‘and data from, an existing FMS
(Stecke and Solberg [1981b]). The superior performance was surprising because:

i) the resultant system was extremely unbalanced; and

ii) there was no pooling involved.

In addition, pooling objectives performed well.
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5. DIRECTIONS FOR FUTURE RESEARCH

One goal is to apply these theoretical results to real FMS design, plan-
ning, and control problems. To increase applicability, the existing analytic
models can be further refined and extended. For example, CQN methodology
allows multiple part types, each with 1ts own branching probabilities, provided
that each FCFS server has the same exponential service time distribution for
all part types that visit it (Baskett et al. [1975]). Since it is impractical'
to compute the normalization constant, G(g,n;5,X), for more than four or five
part types, it may be preferable to use an approximate mean value analysig
(MVA) to evaluate such a situation (Bard [1979], Chandy and Neuse [1982]). 1In
fact, some FMS modeling using MVA to develop heuristic algorithms has been done
(Hildebrant [1980] and Cavaille and Dubois [1982]). However, at present, MVA
is applicéble only to single-server, load-independent systems, with possible
heuristic extensions'ﬁo the multi-server models examined here."

In addition, more detailed models, such as mathematical and simulation
models, can be developed. Some model development has been accomplished. Both
the grouping and loading problems, with several loading objectives, have been
formulated in detail as nonlinear mixed integer problems (Stecke [1983a]).

The optimal allocation ratios XI, characterized in this paper, serve as objec-
tive function coefficients of detailed loading pFoblems having unbalancing
objective functions. Several methods to 1ineariie the nonlinearities were
applied using data from an existing FMS. However, the resultagt linearized
problems can be quite large and time-consuming to solve. TFor this reason,

an efficient optimum-producing algorithm was developed (Berrada and Stecke
[1983]). Further research is required to reduce the problems to a coumsistently
manageable size for FMS application. For example, fast, efficient, and good

heuristics should be developed to solve grouping and loading problems.
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Finally, in an effort to apply the theoretical results presented in this
paper to the detailed formulations of Stecke (1983a), a hierarchical approach
to solving realistic grouping and loading problems is provided in Stecke
(1982).

In addition to planning problems, several control issues have been
investigated for FMSs. Kimemia and Gershwin (1978) provide models for deter-
mining the operation sequence prior to the release of jobs to the system.
Although such methods are applicable to the control of automated transfer
lines, they limit flexibility in an FMS. Alternatively, Buzacott (1982) sug-
gests delaying the sequencing decision until either:

i) the job is to be released to the system; or

ii) the moment such a decision 1s required, i.e., when a machine becomes
free. (Real-time control of an FMS helps maximize flexibility.)

Buzacott also provides various operating rules.

The analytical and mathematical models can be used to generate alternative
loadings and groupings. However, the "best” objective is highly system-
dependent, -and the various available alternatives should be evaluated. Every
FMS should employ a detailed self-simulation to use with mathematical models to
help determine appropriate planning and control strategieé prior to ?heir

implementation.
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