Division of Research April 1981
Graduate School of Business Administration
The University of Michigan

An Algorithm for a General Class of
Precedence and Resource Constrained
Scheduling Problems
Working Paper No. 250
F. Brian Talbot

The University of Michigan

FOR DISCUSSION PURPOSES ONLY

None of this material is to be quoted or
reproduced without the express permission
of the Division of Research.

ABSTRACT

A simple yet very general backtracking algorithm capable of optimally or
heuristically solving a large variety of precedence- and resource-constrained
scheduling problems is presented. Examples of such problems include project
scheduling and job shop scheduling under multiple resource constraints, and
assembly line balancing. Although many applications of the algorithm are
possible, this paper focuses on the solution of nonpreemptive, resource-
constrained project scheduling problems in which each job to be scheduled can
be characterized by a set of alternative choice modes, only one of which is
ultimately selected for scheduling. Two major scheduling objectives are
considered: minimizing project duration and maximizing project net present
value. In addition, two major classes of resources are considered: renewable
or period-related resources, and nonrenewable or project-related resources.
The latter category specifically includes cash flow constraints that can
subtract from, or add to, cash availability during the life of the project.

Solved numerical examples illustrate these concepts.

I. INTRODUCTION

This paper presents a simple yet general backtracking algorithm for
heuristically or optimally solving precedence- and resource-constrained sched-
uling problems. In order to illustrate the logic and mechanics of this pro-
cedure, the discussion will focus on the solution of nonpreemptive resource
constrained, project-scheduling problems. As indicated previously [13, 15],
this problem is the generic form of a class of scheduling problems which in-
cludes resource-constrained job shop and assembly line balancing problems.
Thus, the algorithm to be introduced can be used, with appropriate modifica-
tions, to solve these and related scheduling problems.

Simply stated, the problem addressed is how to schedule precedent-related
and resource-constrained jobs in a project in order to accomplish a given
managerial objective. Over the past twenty years a number of techniques have
been developed to help project managers answer this question, the applicability
of each technique being a function of project characteristics and managerial
objectives (see, for example, Davis [2] and Elmaghraby [6] for comparisons of
the various techniques previously investigated). The current study introduces
a scheduling technique that is capable of heuristically or optimally solving
most of the nonpreemptive forms of project scheduling problems previously
examined in the literature. This includes, but is not restricted to simple
time-based, time-cost trade-off, time-resource trade-off, and resource
constrained projects. In addition, the proposed algorithm permits the
scheduling of jobs where job performance can increase as well as decrease the
availability of resources such as cash. Thetlatter situation often occurs in
multiproject environments where the cash flow generated by the completion of
one project supports the continuation of others. It is also observed within

single projects where performance payments are based upon the satisfactory

-2 -
completion of key activities. These payments in turn facilitate the comple-
tion of other activities in the project.

The specific form of the scheduling problem examined here first appeared
in Elmaghraby {6, p. 173] as a cost-minimization model with resource-duration
interactions, and has more recently been investigated in greater detail by
Talbot [14]. In this model each job can be performed in one of several ways
called operating modes, or simply modes. Each mode represents a different
way of combining resources to accomplish a given job. This approach is
analogous to, but much richer than, the job definition used in time-cost
trade~off models. 1In the latter it is assumed that job duration can be
affected only by expenditure levels; that is, by varying one resource: money.
In the proposed model, a variety of multiple resource-duration interactions,
such as using different technologies or types of labor to accomplish the same
job, can be expressed and evaluated.

Following the scheme suggested by Slowinski [11, 12] and Weglarz [16],
resources are assumed to be renewable, nonrenewable, or doubly constrained.
Renewable resources are used and constrained on a period-by-period basis. For
example, skilled labor would be considered a renewable resource if it is used
each day of a project and if it is also available in limited quantities each
day. This is the category of resource which has been most frequently modeled
by researchers in the past (see, for example [1], [3], [4]1, [8], [9], [10],
[13], [15], and [17]). Nonrenewable resources are available and consumed on a
total-project basis. For example, money may be considered a nonrenewable
resource if only X dollars can be spent to support all the activities in a

project. Doubly constrained resources are simultaneously constrained on a

period and project basis. Money would be doubly constrained if both per-

period cash flow and total project expenditures were restricted. These three

-3~
categories permit the evaluation of a variety of common resource restrictions.
However, this paper proposes a broader interpretation of nonrenewable re-
sources, which specifically permits the decrease or increase of these resources
as a function of activity status. This will allow, for example, the modeling
of progress payments which can increase cash flow for use by other activities
or projects. In addition, this notion of cash inflows and outflows can better
capture the importance of timing of large cash transactions in projects.

Given the problem of selecting and scheduling job modes in a project under
the various resource conditions posed above, two scheduling objectives will be
considered in this paper: minimizing project completion time and maximizing
project net present value. In the following section these problems will be
defined formally as zero-one integer programs. Section III of the paper intro-
duces a backtracking algorithm as a heuristic and optimal procedure for solving
the project completion time minimization problem. In Section IV, modifications
needed by the algorithm to solve the net present value criterion problem are
presented. Solved numerical examples illustrating both of these problems are
given in Section V, with computational considerations discussed in Section VI.

Summary comments are found in Section VII.

IT. FORMULATION OF THE PROJECT SCHEDULING PROBLEMS

It is assumed that the project can be depicted as an acyclic network such
as that shown in Fiqure 1. Activities or jobs are represented by integer-
labeled nodes, such that the label of a node is always higher than the labels
of all its immediate predecessor nodes. Arrows represent precedence relation-
ships between jobs. Unique starting and ending dummy jobs with zero duration
are appended to the network. Without loss of generality, all model variables
and parameters are assumed to be integer-valued. In some cases, this involves

scaling parameters by appropriate powers of ten.

Figure 1

Precedence Diagram of An Eight-Job Project

Each job j may be accomplished in one of Mj modes. These modes are non-
preemptable oncé started. The duration of mode m of job j is Djm and the
amount of renewable resource k it requires each period it is in process is
rjmk' In order to keep the notation simple, only one renewable resource, cash,

will be considered. Mode m of job j consumes or generates, depending upon al-

gebraic sign, c,

sma dollars during the d-th period this mode is in process. (If

other nonrenewable resources were included, a fourth subscript to cjmd would be
required to indicate the type of nonrenewable resource.) Also associated with
each job mode is a single non-negative cash payment cgm which accrues v
periods after the completion of mode m job j. This parameter can be used to
represent delayed receipt of performance payments, while the cjmd can be viewed
as period cash flows. The decision variables are xjmt where x,mt = 1 if mode m
has been selected to accomplish job j and it is assigned a completion time t.
Otherwise, xjmt = 0. Definitions of other variables and parameters used in the
discussion are given -in Table 1.

The zero-one integer program (1)-(5) depicts the project scheduling prob-

lem described above when the objective is to minimize project completion time.

LJ
Minimize). tx (1)
t=E Jlt
J
Subject to Mj Lj
)) x, =1 (2)
=l teE, J

for 3 = 1,000,J

Table 1
Definition of Terms

Symbol
(Listed Alphabetically) Definition

Bi the i-th job number in the ordered set of job
numbers representing the current best
solution.

B* the completion time assignment of the i-th
job in Bj.

c. the cash flow of job j mode m in its d-th
period in process (d = 1,44, Dip)e If
Cymd < 0 there is a cash withdrawal. If
Cimd > 0 there is a cash inflow.

c*mv a single non~negative cash flow v periods
J after the completion of job j mode m
(v> 1.

c a non-negative integer variable indicating
the net cash position in period t. Cjp
is the cash available at the beginning of
the project.

D.m the duration of mode m of job j: Djm > 0,
] except Dyq1 = 0, and Dqq = 0.

E. (L.) initially calculated as the earliest (latest)
J critical-path-based completion time for
any mode of job j.

J the identifying number of the unique dummy
terminal job in the project without succes-
sors. Job J has one mode with zero duration
and it consumes no resources. However, a
positive delayed cash flow may occur after
it is assigned.

M the number of modes associated with job j
‘ (m=1,ooc, Mj)o

7n(.) the number of elements in a set.

N* and N, Ng is the number of immediate descendants
J J of job j currently in Yye Ny is the
position index in Yj of the descendant of
j that is to be evaluated for assignment
next.

Symbol

P, (s.)
]

P(S)

Rkt
Jmk

T*

jmt

Table 1-cont'd

Definition

the set of all immediate predecessor
(successor) jobs of job j.

the set of all pairs of immediate predecessor
(successor) jobs. (a,b)eP indicates that
job a is an immediate predecessor of job b.

the amount of renewable resource k currently
available in period t (Ryy > 0).

the amount of renewable resource k required
by mode m of job j each period m is in
process (rjmk > 0).

an arbitrary due date for the project.

a single-payment, present-value discount
multiplier for period t at interest I.

a zero-one variable which equals zero unless
mode m of job j is assigned a completion
time in period t. Then, Ximt = Te

the set of all immediate descendants of job
j in the precedence tree for the current
partial solution. Y., is the job number

of the g-th immediate descendant of job j
contained in set ¥y for the current partial
solution.

the i-th job number in the ordered set of

job numbers for jobs that have a feasible
assignment in the current partial solution

(i = 1,-0.,J)-

the completion time of the i-th job in Zj.

a
-) tx .+)) (t-D_) >0 (3)
m=1 t=E_ m=1 t=E bn’ “pmt

for all (a,b)e P

J M, t+Djm—1
Z XJ z r X < (4)
=1 m=1 g=t jmk jmg — Rkt
for k = 1,444,k
t = 1,coc,T
J %j t+DJm-1
C + z z C. X, + c* X, = C (5)
m - -
=1 j=1 m=1 =t J (Djm + t-q) Jmg Jmv jm(t-v) t

for t=1,00s,T

This objective (1) is achieved by scheduling the unique terminal job J as
early as possible. Constraint set (2) insures that exactly one mode of each
job is selected and scheduled. Precedence relationships are maintained by (3)
and renewable resource restrictions are imposed by (4). Constraints in (5) are
balance equations for the nonrenewable resource cash. Basically they insure
that a job mode is scheduled only if enough cash is available for its use each

period it is in process. Beginning with a cash position C_, cash inflows

0
would typically arise from performance payments cgmv following the completion
of key activities. As written, (5) precludes the use of funds from external

sources once the project is underway. However, (5) could be modified and

various other constraints could be added to depict the impact of external

funds transfers. Finally, doubly constrained resources would simply be those
resources included in both (4) and (5).

When large cash flows occur over a lengthy time horizon, the scheduling
objective of maximizing the net present value of the project or projects is
often more consistent with long-term organizational goals than is the objec-
tive of minimizing project duration. This objective, which has been
considered in a non-resource-constrained model by Doersch and Patterson [5],
can be stated by substituting (6) for (1).

T
Maximize Y (c -Ct 1)w +C (6)

£=1 t t 0
If a performance payment is given upon the completion of the projects
then (2)-(6) is the appropriate formulation. Alternatively, (6) could be modi-
fied to include lateness penalties as in [5], or per-period project overhead
costs as in [14]. Without performance payments, lateness penalties, or period
costs, it is possible that jobs with only cash outflows will be delayed indef-
initely in an effort to maximize net present value. This problem can be over-
come by appending a constraint such as (7), which forces the completion of{all

jobs before a given project due date T*.

X tx < T* (7)

III A BACKTRACKING ALGORITHM FOR THE PROJECT COMPLETION MINIMIZATION PROBLEM
Even for modestly sized scheduling problems, the formulations stated
above translate into very large integer problems. Given the limited capabi-

lities of current general purpose integer programming codes, a special purpose

-10-

algorithm has been developed to solve (1)-(5) and (2)-(7) in a more efficient
manner than would otherwise be possible. In developing the algorithm the
major goals were to create a procedure that (1) could be implemented on fairly
small core computer systems; (2) would provide always—feasible solutions (this
guarantees heuristic results if premature algorithm termination is desired
before optimality is assured); (3) would be relatively fast; (4) would be
fairly simple to code; and (5) would permit the consideration of a variety of
scheduling objectives and constraint types. These criteria were selected
because, to the extent to which they can be attained, they largely determine
the usefulness of such a scheduling tool.

The proposed algorithm is a branch-and-bound procedure of the backtracking
variety. This approach was selected because it appeared most promising in
meeting the above five goals. It identifies solutions by systematically
considering job modes for precedent- and resource-~feasible completion time
assignments. Optimality is assured by implicitly or explicitly evaluating all
possible solutions.

The dominant feature of this procedure is an efficiently generated
"precedence tree" that guides the search for solutions. In order to explain
the concept and mechanics of this tree, the discussion is initially restricted
to the problem described by (1)-(4). The single mode version of (1)-=(4),
incidently, is the problem examined in detail first by Davis [1], and
subsequently by most researchers investigating resource-constrained project

scheduling (see, for example, [3], [4], [8], [9], [10], [13] and [15]).

The Precedence Tree

The concept of a precedence tree can be understood by examining a feasible

(optimal or heuristic) solution to (1)-(4). The solution consists of two

-11-

J-element vectors. The first vector identifies the job modes seiected for
scheduling and the second indicates the start time for each mode selected.

(In this section we will use start times rather than finish times because it
simplifies the presentation. Clearly, either is valid.) These two vectors
uniquely specify a solution and permit the calculation of all other solution
characteristics, such as resources consumed, cash flows, and so on. The
solution space thus consists of all precedent- and resource-feasible pairs

of solution vectors. To find the optimal solution in this space, a branch-and-
bound procedure would implicitly or explicitly evaluate all these vector

pairs in a systematic way.

The proposed algorithm accomplishes this search of the solution space
indirectly via a mapping of the starting time vector. This mapping substitutes
for the starting time vector a rank-ordered set of job numbers of the starting
time vector. The procedure then finds the optimal solution by implicitly or
explicitly evaluating all possibilities in the solution space which is
comprised of the mode selection vector and the vector of ordered job numbers.
The benefit of this approach is that the mapping generates a "precedence tree"
of sequences of job numbers that can be used to structure the search through
the solution space.

By considering the hypothetical eight-job project depicted by the pre-
cedence diagram in Figure 1, characteristics of this mapping may be examined
in more detail. Suppose the optimal solution to this problem has the starting
time vector given in Figure 2a--that is, job 1 starts in period 1, job 2 starts
in period 5, and so on. (The mode solution vector is not shown since it is
irrelevant to the discussion.) In Figure 2c the elements in this vector have
been ranked in nondecreasing order and the job numbers in 2d have been

correspondingly changed. Assuming for the moment that the mapping of 2a to 24

-12-

Starting Time Vector

Corresponding Job Vector

Starting Time Vector Rank Ordered

Corresponding Ordered Job. Vector

Starting Time Vector Rank Ordered

Corresponding Ordered Job Vector
Figure

Hypothetical Solution Vectors

(1,

(1,

(1,

(1,

2

3,

5,

2,

to Illustrate Mapping

1,

6,

6,

10,

8,

3,

9,

3,

6,

10,

10,

5,

11,

74

11,

1,

11,

1,

12)

-13-

is homomorphic, it is now possible to see that by evaluating all precedent- and
resource-feasible ordered vectors of job numbers such as those in 24, then

the entire solution space of starting time vectors is considered. 1In particu-
lar, an algorithm that sequentially generates all feasible ordered job vectors
is in effect generating all starting time vectors.

This new solution space (ignoring the mode selection vector) can be drawn
as a precedence tree, as shown in Figure 3 for the eight-job project. The
numbers in the tree are job numbers which, when read from top to bottom along
connecting lines, give the elements of the ordered vector of job numbers. For
example, the solution in Figure 2d is given by the fifth sequence from the
right. When this sequence is generated by bringing jobs 1, 4, 2, 6, etc.,
into solution in order, then in effect the starting time vector 2a is found.

This analysis is clearly based on the assumption that the mapping is homo-
morphic--which it is in certain cases. For the problem given by (1)-(4), the
mapping is homomorphic if the optimal solution desired is where all modes
selected are scheduled as early as possible, given precedence and resource con-
straints. To avoid difficulties posed by the lack of the homomorphic property,
this "early start" solution is the one directly found by the proposed
algorithm. Other optimal solutions to this minimization problem could be
found by delaying noncritical jobs within their slack times, as defined by the
optimal project completion time.

To illustrate why the mapping is not homomorphic in general, refer again
to Figure 2. Vectors 2d and 2f are identical and yield identical project
completion times. However, the rank ordered starting times from which they
derive are different. Specifically, job 3 has a starting time of eight in
vector 2c¢c and nine in 2e. The significance of this is that for problems such

as (1)-(5) or (2)-(7) where the early start job assignment may be suboptimal,

LO e (N e PN e OO

SN~) — I — N —— 0
<

I~ ——0 ——— 00
O —— N —00
N —— O ——— 00

<

(O = () ——— [~ ——00
\Q —— LO ———— N ——— 0

ol

o

N<§E;m

'

3o0eloxg qor-aybTa TeOTIdY3odAH °Yl I0F S3IL SOUSIP=3031d
€ oanbTa

R AR AR ANy
LT T L |
W /\\ 1 /M\ g ¢ /W P P /W 9 /W /\ /K g €9 /W 9 /W JW /\‘mw MW
/u,\ /¢ /m\ /¢\ /m\ /m\ /¢\ € ./@ < /m\ /\ /<\
VN SN N

-15=

knowledge of the ordered set of job numbers is not sufficient information to
construct the solution. In this case, the starting time vector is again needed
to completely describe the solution. However, the mechanical use of the pre-
cedence tree as a means for directing the search through the solution space

is still valid. It becomes necessary only to examine each possible starting
time for each job within each ordered sequence of job numbers and to record
starting times for feasible moée assignments.

This is basically how the proposed algorithm works: jobs are considered
for early start (i.e., finish) assignment in the order specified by the pre-
cedence tree. If the ordered set of job numbers generated by the tree is not
sufficient to completely describe a solution, then jobs are considered for
later assignments that are possible without violating the current structure of
the tree. 1In this manner all possible elements of the solution space are

examined.

Algorithm Details

The solution procedure can now be stated. It consists of two phases, a
problem conditioning phase and an enumeration phase. In the conditioning
phase, jobs are relabeled (renumbered) and are assigned late (Lj) critical-
path-based completion times. The purpose of the relabeling scheme is to pro-
vide a good heuristic solution to the problem on tﬁe first pass through the
precedence tree. Relabeling conventions are modifications of priority dispatch
scheduling rules as described in {14]. Unlike their use in [14], however, the
rules do not fix the order in which jobs are considered for assignment. Late
finish times (Lj) for each job are calculated in the usual way critical-path
late finish times are determined: a reverse pass through the precedence dia-

gram is made after assuming a latest project completion time value LJ. The

-16-

only modification to this procedure that is required with multiple job modes
is that the shortest duration mode be used for all jobs. The purpose of the
late finish time parameters Lj is to provide upper bounds for job assignments
during the enumeration phase of the algorithm.

The enumeration phase consists of a procedure for systematically generat-
ing the precedence tree, and for implicitly or explicitly evaluating all possi-
ble job assignments that could lead to an optimal solution. Figure 4 is an
outline of this procedure which is a branch-and-bound algorithm utilizing back-
tracking as a means for directing the search in the precedence tree once a
bound is reached. Backtracking rather than some other form of skiptracking was
selected to reduce the bookkeeping overhead required and to significantly
reduce the otherwise massive data storage requirements of the procedure.

The algorithm develops a precedence tree, such as the one illustrated in
Figure 3, where each numerical node is generated only upon the successful
precedent- and resource-feasible assignment of the job with that identifying
number. Once job j is assigned to a completion time, a list Yj of current
precedent-feasible jobs (descendants of j) is created. BAn attempt is then made
to assign one of these descendant jobs to its earliest precedent- and resource-
feasible completion time. If job j cannot be assigned a completion time within
its upper bound Lj' an attempt is made to assign another descendant of the last
job successfully assigned. If this also fails, the algorithm backtracks up the
precedence tree along the same limb from which it extended to the most recently
assigned job. Its next untested descendant is then tested for a feasible com-
pletion time, and so on. Once all jobs have been assigned, upper bounds are
redefined to correspond to one less than the bounds for the solution found,

which forces the algorithm to always seek improved, reduced completion time

-17=

solutions. Optimality is assured when an attempt is made to backtrack to job
zero or when a solution equal to a known lower bound has been found.

The flow diagram in Figure 4 illustrates these details. Initially,
however, the discussion will be restricted to the linear program represented by
(1)~(4) where each job has one mode. Before step 1 is reached in Figure 4, a
number of parameters and arrays are initialized, such as the resource available
array Rkt' and immediate predecessor Pj and successor Sj arrays. In step 1 the
dummy job 1 is assigned a completion time of zero. Its descendant list Y1 is
simply equal to its set of immediate successors. ('=' indicates that the set
on the left hand side is made equal to the set on the right hand side. For
scalers, '=' is used). In step 2, the first descendant of job 1, g=Y11, is

selected for possible assignment. In general, the search for a resource-

feasible assignment for job g is restricted to the interval t' to Lg where

t'=max {(Z*i + 1) for all i such that Zi € Pg' and (8)
(ZI - ng + 1) for the current value of i}.

The first part of (8) insures that precedence relationships are not vio-
lated. The second invokes the job numbering sequence assumption underlying the
use of the precedence tree. That is, the starting time of an as-yet unassigned
job cannot be earlier than the starting time of the job most recently assigned.
(At any stage of the enumeration i jobs have been assigned.) The job g is thus
assigned a feasible completion time when the earliest contiguous interval D
periods long is identified where rgmk < R.kt for t € (t', Lg) and k=1,¢4¢4,Ke
If this completion time assignment is t*, then in step 11 the resource avail-

ability array Rkt is reduced by r for all k and t=t*-ng+1,...,t*. If a

gk

-18-

1 : .
L___ Assign job 1
Zl =1 a completion
time of zero
Zi =0 and make its
immediate
i =1 descendant set
equal to its
j =1 set of immediate
successors.
Yl = Sl
* =
Ny = (Y
N. =0
‘ J Vﬁ
{ L4 B
Nj =Ny 4l l*2~ Select the
e = Nu next untested
] job from the
= Yie descendant set
of job j for
feasibility
testing.

B
Find the earliest

precedent and resource
" feasible completion time
for job g.

Figure 4
A General Flow Diagram of the Enumeration Phase

Y

[R T P S NS

Remove job j from
solution and adjust
resource remaining

arrays

o]

Terminate

Figure 4 - continued

All immediate
descendants of

j have been
evaluated so
backtrack to

the next untested
immediate descendant
of j's parent.

Terminate if an
attempt is made to
backtrack to job
zero. The optimal
solution is contained
in Bi and Bi for

i=l,..I,J.

-20-

i=1i+1 1 Record the sequence
and completion time
j =g of job j, and adjust
‘ resource arrays to
Zi = j reflect the assignment.
7z* = completion time
i of j
Adjust resource
availability arrays.
. ,
1= 2 12 Define immediate
descendant "set for
Y. = s.uY., - {j} job 7.
]]
N*¥ = n(Y.)
]

NO T LTS
<_Is i=J? lly If all jobs have been
- assigned then save
\97 YES the solution and adjust

_ upper bound late finish
14 times before restarting.

£

Il
£

1
]
*

I
[NN]
%

jor
%
I
N
%
5y

Figure 4 - continued

-21=

feasible assignment for job g does not exist, then an effort is made via step 5
to assign a different descendant of the last job successfully assigned.

This procedure continues until either all jobs are assigned or it is
impossible to assign any immediate descendants of the last job assigned. In
the former case, the upper bounds Lj for all jobs are decreased to one less
than those corresponding to the current best solution and the enumeration
begins again. As indicated in Figure 4, step 14, it is possible to restart
with job 1. However, this may needlessly lead to the regeneration of a sizable
portion of the precedence tree. An improved restarting procedure, which is
incorporated in the algorithm actually programmed, requires only that the
restart begin at the lowest indexed job with a current completion time later
than its revised‘Lj. Thus at step 14, rather than transfer to A and job 1,
the algorithm would transfer to job j'=j € Z for the minimum i, such that
Z; > L . Continuation to B would then occur after appropriate updating of
affected arrays and parameters.

If it is impossible to assign any of the immediate descendants of the last
job j assigned, then the algorithm backtracks to the next untested descendant
of j's parent. This is illustrated in steps 6-9. If an attempt is made to
backtrack to job 0, then all sequences of job numbers that could potentially
lead to an improved solution have been either explicitly or implicitly eval-
uated, so the algorithm terminates. The optimal solution is the last solution
found.

Thus far the discussion has been limited to the single-mode case of (1)-
(4)s The multiple-mode version requires one substantive modification to the
logic depicted in Figure 4. During the job selection phase (steps 2-5), if a
job mode fails the feasibility test, then the next mode of that job needs to

be tested. A transfer to a different job occurs only when a feasible mode is

-22-

found or when all modes for that job have failed the feasibility test. Of
course, during backtracking a transfer is made to the next mode of the last
job assigned rather than to the next untested descendant of the last job
assigned. Thué the multiple-mode model, although potentially increasing the
number of calculations required for solution, has little effect on the amount
of bookkeeping required or on the complexity of thé algorithm.

The inclusion of (5) greatly increases the generality of the model and
slightly increases the bookkeeping overhead. However, it does not affect the
basic logic of the algorithm. Additional checks and adjustments of cash flow
must simply be made in steps 3, 6, and 11 of Figure 4. Thus, the model given
by (1)-(5) is quite similar to that given by equations (1)-(5) in [14]. The
major formulation differences are that in [14] nonrenewable resource require-
ments are associated with an entire job mode, and [14] does not explicitly per-
mit delayed positivg cash flows to affect resource availability. The current
formulation defines nonrenewable (cash) requirements on a period basis for each
job mode and does permit delayed positive cash flows, both of which conditions
make the current formulation much more versatile and capable of depicting real-
world project conditions.

Algorithmic differences between [14] and the proposed approach are more
fundamental. In [14], since job modes are considered for assignment in a pre-
determined sequence, it is not possible to always maintain cash flow feasibi-
lity when positive cash flows exist. Temporary infeasibility would occur, for
example, when a smaller-numbered job in the sequence requires the use of cash
that would not become available until a larger-numbered job is assigned. The
proposed algorithm, by considering jobs for assignment according to the pre-
cedence tree, insures that all partial solutions are totally feasible. This

is a more natural approach to scheduling jobs in a project environment, and

-23-

it can significantly reduce the amount of explicit enumeration required to find
either heuristic or optimal solutions.

There is one "pathological case" that could prevent the proposed algorithm
from finding the optimal solution. This occurs when two or more job modes must
be assigned simultaneously to maintain cash flow feasibilify. For example,

suppose job mode m has c;m

iml = =3, and Con = +5, and job j' mode m' has

jm2

= +3, and c_, ~-5. Further assume that the current cash available

cj'm'l j'm'2 B

Ct in the time interval in which j and j' could potentially be assigned is only
1. Clearly neither j nor j' would pass the feasibility test in step 3 of
Figure 4: 3j would fail in its first time period since it requires 3 units of
cash whereas only 1 is available; j' would fail in its second period because it
requires 5 units of cash and only 4 would be available. So by seguenﬁiallx
testing job modes for feasibility, the proposed algorithm would incorrectly
conclude that a feasible partial solution doesn't exist for a job sequence 2

of either (eee,3,3"s0ee) Or (eee,3",j,eee), when in fact it does exist. The
only algorithm modifications required to deal with this case involve additional
tests in step 3 for identifying simultaneous feasibility conditions. These
tests have not been included in the programmed procedure. Rather, all problems
tested have c., . > 0. Under these conditions, the above pathological case

jmd

does not arise.

IV ALGORITHM MODIFICATIONS FOR THE OBJECTIVE OF MAXIMIZING PROJECT NET
PRESENT VALUE
When the minimum completion time scheduling objective (1) is replaced with
the maximum net present value objective (6), the problem generally becomes
much more difficult to solve. This is due in part to the increased complexity

of the cash flow interactions overtime, and in some cases to the absence of

-24-
strong cash bounds on the solution. If the discount rate is zero énd per-
period overhead costs are added to (6), then (2)-(6) becomes the maximize
profit, limited-resource, cost-time trade-off problem considered previously
[14] .+ This simplified form of the net present value problem can be solved by
the proposed procedure without any substantive algorithmic modification.
However, when the discount rate is greater than zero, then both the completion
time and the numerical sequence of jobs are required to completely define an
optimal solution. As indicated earlier, this is due to the fact that position-
ing of jobs within a given sequence may affect the value of the objective func-

tion. Specifically, when the total net cash flow for mode m is negative

D,
(ieee, ij c. + c* < 0), then its net present value increases as
a=1 jmd jmv

its completion time is delayed. So it is no longer always advantageous to

find the earliest finish time assignment for all jobs. Unfortunately, because
of cash and other resource trade-offs, neither is it simply a matter of finding
the early finish time solution for the project and then delaying those jobs
with negative cash flows (although this may yield good heuristic solutions).
What is needed is a device that will systematically make these resource trade-
offs. This is accomplished in the proposed algorithm by introducing a "right-
shift" mechanism.

This mechanism permits the evaluation of delayed mode completion times by
introducing modifications in step 6 of Figure 4. Prior to the removal of a
mode from solution, an attempt is made to find the next earliest feasible com-
pletion time for this mode. If the original schedule were depicted on a Gantt
chart, with time increasing from left to right on the horizontal axis, this
time delay would appear as a "right-shift" of the mode. If it is possible to

find a later completion time for the mode, the algorithm, rather than continu-

ing to step 7, would proceed to step 11. If it is impossible to find a later

-25=

completion time within the upper bound Lj, the algorithm would continue with
step 7. By right-shifting to every later feasible completion time in this
fashion, all potential optimal solutions can be identified. However, since
many more possible mode assignments must be considered for this objective
function, this procedure can significantly increase the computational time of
the algorithm.

Method for Reducing Right-Shifting
7

One way to reduce the computational impact of this approach is to apply
right-shifting only to modes with negative total net cash flows. The following
arqument justifies the omission of right-shifting for modes with zero or posi-
tive cash flow. 1In order for the right-shifting of a mode with zero or posi-
tive net cash flow to have a beneficial effect on the objective function, one
of three situations must occur: the right-shifting permits (a) the earlier
assignment of at least one as-yet unassigned mode with positive net cash flow,
or (b) the delay of at least one as-yet unassigned mode with negative cash flow
that would not otherwise be delayed, or (c) the selection and scheduling of a
different mode for at least one as-yet unscheduled job than was possible with-
out the right-shifting.

The proofs that situations a, b, or c cannot occur rely primarily on three
observations. First, right-shifting can only decrease the interval (t', Ljf
over which a search for a resource-feasible assignment is conducted for job i,
as is indicated by definition (8). Second, renewable resource requirements
rjmk are constant each period over the duration of a given mode. Thus, right-
shifting cannot improve (increasg) nonrenewable resource availability in the
search interval. Third, since right-shifting cannot improve the availability

of nonrenewable resources, its only potential benefit would be from the

-26-

increased availability of cash. However, it is assumed that positive cash
flows can occur only v periods after job completion in the form of a perform-
ance payment. ' Thus, delaying a job with positive cash flows can only delay the
benefit of these cash flows, not their magnitude.

The proof that condition (a) cannot arise follows directly from observa-
tions one, two, and threef Condition (b) cannot occur because of the same
three observations, plus the fact that all net negative cash flow modes will
be right-shifted by the algorithm. The proof that condition (c) cannot occur
also follows directly from the three observations. In fact, if any effect were
to occur, it would be the elimination of modes from consideration. Thus, given
the model assumptions, it is necessary to right-shift only modes with negative

net cash flows.

The Relaxation of Model Assumptions

Before looking at a numerical example of a project scheduling problem of
the sort discussed here, it is worthwhile to investigate briefly the impact
upon the proposed algorithm of various relaxations of the model assumptions.
As mentioned previously, it is possible to construct "pathological" problems
that can cause premature backtracking because of the failure of the algorithm
to detect "simultaneous" feasibility. This happens when the assumption that
positive cash flows can only occur v periods after job completion is relaxed.
If this assumption is relaxed for the maximize net present value problem, then
it would be necessary to incorporate logical checks for simultaneous
feasibility testing during the right-shift process as well.

If the assumption that renewable resource usage rjmk is constant over the
duration of a mode is relaxed, then right-shifting of all modes is required for

either problem. This is due to the fact that mode delays might differentially

-27-

affect renewable resource availabilities on a period-to-period basis. In
effect, delays might open renewable resource "windows" where a particular mode
might fit. These windows could be identified only by right-shifting.

The assumption that modes, once started, cannot be preempted would not
affect the logic of the algorithm if preemption were limited to integer dura-
tions, but it would probably substantially increase the overhead burden and
computational effort. If all job modes could be preempted to the unit duration
level, then the problem would be analogous to solving a problem identical to
the original except that each original mode would be replaced by Djm unit dura-
tion modes.

Resource-constrained project-scheduling research to date has assumed that
all jobs in a project must be accomplished before the project is completed.
However, the multimode job definition used here permits the modeling of "go,
no-go" situations as well by specifying that one mode for a job has zero
duration. That is, the assumption that Djm > 0 is relaxed. This would be
useful in capital allocation project selection problems where, because of the
magnitude and timing of cash flows, the sequencing of activities in a project
significantly affects the attractiveness of the project. Figure 5 illustrates
this point further.

In Figure 5 are depicted three projects linked by dummy start and finish
jobs. For example, project 1 is comprised of jobs 2-6. It is specified thét
each job can be accomplished in at least two ways (modes), including one mode
with zero duration which represents not doing the job at all. If a project is
selected, however, it is assumed that all jobs in that project must be com-
pleted. The managerial objective of interest may be to allocate funds to that

. combination of projects which has the highest net present value.

-28-

P20
~
Projéct 1

0y

Project 2 I

Project 3

Figure 5

Precedence Diagram of Three Hypothetical Projects

-29-

The proposed algorithm could solve this resource-constrained selection-
scheduling problem if one minor modification were added to its logic: either
all modes in a given project selected for scheduling have zero duration, or
all modes in a project selected have durations larger than zero. An answer
that selected modes with zero durations for jobs 7 through 12, for example,
would mean that net present value is maximized by funding only projects 1 and
3. Of course, in this situation the objective function may be designed to
recognize the opportunity cost of capital not spent on these projects. This
could be accomplished by "investing" unused capital at a hurdle rate of return.
Only that group of projects making more than this hurdle would be selected,

with unused funds invested in a bogus alternative.

V. NUMERICAL ILLUSTRATIONS

Minimum Completion Time Objective Function Example

The problem found in Elmaghraby [6, p. 179] has been modified to illus-
trate the formulations with minimum project completion time and maximum project
net present value objective functions. Figure 1 is the precedence diagram for
this problem, and Figure 3 is the entire solution precedence tree. Table 2
contains the duration and resource data for each job mode in this project. For
example, mode 2 of job 6 has a duration of four and requires the use of three
renewable resources: types 1, 3, and 4. One unit of type 1 and two units of
types 3 and 4 are required each period the mode is in process. One, two, six,
and eight units are available each period for renewable types 1, 2, 3, and 4,
respectively. Mode 2 of job 6 consumes three units of cash during each of its
four periods of operation, and generates no cash flow at its completion.
Associated with job 5 is a performance payment of 32 which is made one period
after its successful completion. Hence, c* . = 32, It is assumed that the

5ml

initial cash position Co is 200.

AATTTRTIRAY 90INOSDY
poTasg I9d

8 9 4 T
0 0 O 0 0 0 0 0 0 0 0] 0 0 T
0] %4 € 0 T T 4
0 Z Z 4 4 ¥ € T 0 14 T
0 € 13 € € Z Z 0 T 174 4
0 T T T T T T 4 4 T 0 9 T
[43 i74 14 4 174 14 € T 0 T g 4
(43 T T T T T T T € T T 0 L T
0 o 14 ¥ T 0 T € [
0 [4 Z 4 4 ¥ T T 0 14 T
0 ' ST - 4 T 0 T T 4
0 9) 9 (4 € T 0 € T
0 OT OT T Z 0 T [4 (4
0]] S T 4 T 0 € T
0 0 O 0 0 0 0 0 0 0 0 0 0 T
JuswiAed L 9 S v . € Z T i4 € z T uoTieINg IaqunN
yse)d pPoOTISd poTaeg Aq siuswaatnbsy yse)d m&hﬁ Aq sjusweaTnbay Spon

oTbuTts p=4&eTad

1o09lLoxg TeoTasyazodAg I04 eleRg

90INO0S9Y POTISg IOd

Z °TqeL

[4

T

Ioqun|

qoy

-31=

Figure 6 is a minimum completion time solution to the above problem. The
Gantt chart illustrates the modes selected and their scheduled times. The
resource profile shows the end cash position each period and the renewable
resources required each period of the project. Since the initial cash position
of 200 exceeded the total cash requirements for the project, cash was not a
limiting resource and had no effect on the schedule. Renewable resources were
constraining, however, and delayed the project one period beyond its critical-
path completion time of eight periods.

Figure 7 contains a solution illustrating the impact that éash flows can
have upon scheduling. For this solution, renewable-resource availabilities
were all changed to 10 units per period, the initial cash balance was changed
to 22, and the performance payments associated with job 5 were changed to 207
for mode 1 and zero for mode 2. Since 22 cash units were available initially,
the only feasible assignment before the arrival of more cash from mode 1 of
job 5 was the longer duration and less expensive mode of job 2. Jobs 3, 4, 6,
and 7 could not be scheduled prior to the completion of job 5 because of the

lack of cash.

Maximize Net Present Value Objective Function Example

Table 3 contains the terminal cash payment data used to solve the sample
problem with a net present value objective function. It indicates, for
example, that a cash payment of 30 will be made one period after the completion
of job 3. The precedence diagram given in Figure 1 and the resource réquire-
ments and period cash needs are the same as those given in Table 2.

Figure 8 is the solution to this problem as modeled by equations (2)-(7).
The per-period discount factor is 2%, T*=10, and renewable resources available

by type are 1, 2, 6, and 8. Without the latter resource restrictions, one

-32-

Gantt Chart

Job. Mode
Number Number

2 1 XXX

3 1 X XX

4 2 X XX

5 2 XXX XX

6 1 XXX XXX
7 2 X

1234567829

Time Period

Resource Profile

Time End Cash Resources Used by Type

Period Position 1 2 3
1 185 1 2 6 7
2 170 1 2 6 7
3 155 1 2 6 7
4 150 1 1 3 5
5 145 1 1 3 5
6 140 1 1 3 5
7 135 1 1 3 5
8 130 1 1 3 5
9 124 1 1 5 6

Figure 6

Solution to the Hypothetical Project with a
Completion Time Minimization Objective

33.

Gantt Chart

Job Mode .
Number Number
2 1 XXX
3 1 X X X
4 1 XX XX
5 1 XX XXXXX
6 2 XX XX
7 2 X
123456 7891011121314
Time Period
Resource Profile
Time End Cash Resources Used by Type
Period Position 1 2 3 4
1 17 0 1 2 1
2 12 0 1 2 1
3 7 0 1 2 1
4 6 0 1 1 3
5 5 0 1 1 3
6 4 0 1 1 3
7 3 0 1 1 3
8 2 0 1 1 3
9 1 0 1 1 3
10 0 0 1 1 3
11 196 1 2 6 8
12 185 1 2 6 8
13 174 1 2 6 8
14 164 2 1 6 10

Figure 7

Solution to Hypothetical Project with

Completion Time Minimization Objective

-34-

Table 3

Additional Data for the Net Present Value Objective Function Example

Delayed Single

Job Mode Period Cash
Number Number Payment
1 1 60
2 1 0
2 0
3 1 30
2 30
4 1 0
2 0 .
5 1 40
2 40
6 1 0
2 0
7 1 0
2 0
8 1 200

-35-

Gantt Chart

Job Mode
Number Number

2 2 X X
3 2 X
4 1 XX XX
5 1 XXXXXXX
6 1 XXXXXX
7 2 X
12345678910
Time Period
Resource Profile
. Time -: End Cash. Net Cash ~ Present - - Resources Used By Type
Period © Position - Flow Value 1 2 3 4
0 60 60 60.0 0 0 0 0
1 48 =12 -12.0 1 1 3 5
2 36 -12 -11.8 1 1 3 5
3 33 -3 -2.9 0 2 2 7
4 30 -3 -2.8 0 2 2 7
5 13 -17 -15.7 1 2 6 7
6 41 28 25.4 0 2 3 5
7 39 -2 -1.8 0 2 3 5
8 37 -2 -1.7 0 2 3 5
9 35 -2 -1.7 0 2 3 5
10 69 34 28.5 1 1 5 6
11 269 200 164.1 0 0 0 0

Total Net Present Value 227.6

Figure 8
Solution to the Hypothetical Project with a

Maximize Net Present Value Objective

-36~

would expect early start assignments for each job with positive net present
value (jobs 3, 5, and 8), and late finish assignments for jobs with negative
net present value (jobs 2, 4, 6, and 7). Given the resource restrictions,
however, job 4 is actually scheduled before job 3, although job 3 is scheduled
as early as possible within its remaining slack interval of periods 3 to 9.
This is indicative of the complex and often non-obvious trade-offs that result
with this model. It also highlights a potential use of the model: sensitivity
analysis. For example, a planner might like to measure the impact of various
resource allocations upon cash flows, completion times, or the net present

value of a project.

VI COMPUTATIONAL CONSIDERATIONS

The algorithm proposed in this paper is capable of optimally or heuris-
tically solving a larger class of nonpreemptive, resource-constrained project
scheduling problems than procedures such as [3], [8], [9], [13], and [15].
However, the generality of the algorithm carries with it an increased computa-
tional cost which could exceed the benefits derived from modeling these more
complex resource relationships. The potential user of such a procedure should
be reminded that solving combinatorial problems is still as much a craft as a
science, and that many factors, including model complexity, affect algorithmic
suitability and performance.

In the process of developing this procedure explicit recognition was given
to the fact that the benefit derived from knowing the optimal solution, versus
merely a heuristic solution, may simply not be worth the extra computational
cost involved in obtaining it. Thus the procedure was designed to generate
always-feasible, partial solutions so that premature termination of the

computer code would yield at least good heuristic solutions to the problem.

-37-

Heuristics also play several other roles in the use of such a tool. For
example, it is well known that the form in which a combinatorial problem is
posed may significantly affect computational time. Thus, the first stage of
the proposed algorithm includes a variety of restructuring heuristics that re-
order the jobs and modes of a problem before optimization is attempted, in an
effort to find such a good "form." Restructuring rules for jobs, based upon
modifications of priority dispatch scheduling rules [14], initially affect the
order in which jobs are considered for assignment. Mode-sorting rules, such
as smallest duration first, longest duration first, largest net cash flow
first, and so on, directly control the order in which job modes are evaluated
for assignment. If these rules are judiciously selected in a manner consistent
with the scheduling objective, then computation times may be concomitantly
reduced. Also, it is possible to start with a detailed schedule for all jobs
and let the algorithm attempt to improve upon it. Given the well-defined
search procedure based on the precedence tree, it is possible in effect to
start anywhere in the tree and continue seeking an improved solution without
regenerating solutions that would have been found prior to the heuristic start.

Many refinements other than those mentioned above could be incorporated
into the procedure by exploiting the structure of a particular class of pro-
blems. This would reduce the computational cost of the algorithm but would
also tend to limit its applicability. Improved upper and lower bounds, infea-
sibility tests, and backtracking methods are examples of some of these logical

refinements.

VII. SUMMARY AND CONCLUSIONS
This paper has presented a branch-and-bound backtracking algorithm capable

of optimally or heuristically solving a large class of nonpreemptive resource-

constrained project scheduling problems. Included in this class of problems

-38-

are those with per-period resource restrictions and per-project resource
constraints. Specifically included in the latter category are cash flow con-
straints where activities can consume and generate cash flows. Multimode job
definitions which permit the evaluation of a variety of resource-duration
interactions are modeled. The discussion focused on the solution of project
scheduling problems with one of two objectives: minimize project completion
time or maximize project net present value. It was also shown how the algor-
ithm could be modified to solve the multiproject selection problem when the
scheduling of the projects affects the attractiveness (in particular net
present value) of the project. This is the capital-rationing problem, but with
the addition of precedence and multiple-resource side constraints.

It has been shown elsewhere (for example, [13] and [15]) that procedures
capable of solving the resource-constrained project-scheduling problem can be
modified to solve resource-constrained job shop and assembly line balancing
problems. By generalizing the precedence tree logic, it is also possible to
extend this approach to the resource-constrained decision critical-path problem
which, in its unconstrained form (DCPM), has recently been solved by use of
dynamic programming [7]. A related problem, amenable to solution by a modified
version of the proposed algorithm, is the multimode (not multimodel) assembly
line balancing problem. For example, as in project scheduling, it may be
possible to accomplish an assembly task in a number of different ways (modes),
following generalized precedence relationships as in DCPM. Extensions to the

proposed algorithm are currently being investigated to solve these problems.

(1

[2]

(3]

(4]

[5]

{6l

(71

(8]

[9]

[10]

[11]

(12]

{131

-39~

REFERENCES

Davis, E.W. "An Exact Algorithm for the Multiple Constrained-Resource
Project Scheduling Problem." Ph.D dissertation, Yale University,
May 1968.

"Project Scheduling under Resource Constraints--Historical
Review and Categorization of Procedures.” AIIE Transactions 5,
no. 4 (December 1973): 297-312.

, and Heidorn, G.E. "An Algorithm for Optimal Scheduling under
Multiple Resource Constraints." Management Science 17, no. 12
(August 1971): B-803-816.

Davis, E.W., and Patterson, J.H. "A Comparison of Heuristic and Optimal
Solutions in Resource-Constrained Project Scheduling." Management
Science 21, no. 8 (April 1975): 944-955.

Doersch, R.H., and Patterson, J.H. "Scheduling a Project to Maximize Its
Present Value: 0-1 Programming." Management Science 23, no. 8
(April 1977): 882-889.

Elmaghraby, Salah E. Activity Networks: Project Planning and. Control
by Network Models. New York: John Wiley & Sons, 1977. ‘

Hindelang, T.J., and Muth, J.F. "A Dynamic Programming Algorithm for
Decision CPM Networks." Operations Research 27, no. 2 (March-April
1979): 225-241.

Patterson, J.H., and Huber, D. "A Horizon-Varying, Zero-One Approach to
Project Scheduling." Management Science 20, no. 6 (February 1974):
990-998.

, and Roth, G.W. "Scheduling a Project under Multiple

Resource Constraints: A Zero-One Programming Approach."” AIIE
Transactions 8, no. 4 (December 1976): 449-455,

Pritsker, A.B.; Watters, L.J.; and Wolfe, P.M. "Multiproject Scheduling
with Limited Resources: A Zero-One Programming Approach." Manage-
ment Science 16, no. 1 (September 1969): 93-108,

Slowinski, Roman. "Two Approaches to Problems of Resource Allocation
among Project Activities--A Comparative Study." Journal of the
Operational Research Society 31, no. 8 (August 1980): 711-723.

Slowinski, R. "Multiobjective Network Scheduling with Efficient Use of
Renewable and Non-renewable Resources." European Journal of
Operational Research, in press.

Stinson, J.B.; Davis, E.W.; and Khumawala, B.M. "Multiple Resource-
Constrained Scheduling Using Branch and Bound." AIIE Transactions
10, no. 3 (September 1978): 252-259,

[14]

[15]

[16]

[17]

-40-

Talbot, F.B. "Project Scheduling with Resource-Duration Interactions:
The Nonpreemptive Case." Working Paper No. 200, Graduate School
of Business Administration, The University of Michigan, January
1980.

, and Patterson, J.H. "An Efficient Integer Programming
Algorithm with Network Cuts for Solving Resource-Constrained
Scheduling Problems." Management Science 24, no. 11 (July 1978):
1163-1174.

Weglarz, J. "On Certain Models of Resource Allocation Problems."
Kybernetes, 9, no. 1 (January 1980): 61-66.

; Blazewicz, J.; Cellary, W.; and Slowinski, R. "An Automatic
Revised Simplex Method for Constrained Resource Network Scheduling."
ACM Transactions on Mathematical Software 3, no. 3 (September 1977):
295-300.

