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Summary

In this paper we present a full Bayesian nonparametric analysis of survival
time data, involving information from two types of treatment. The goal of
the analysis is to determine whether there is a difference between the two
treatments, according to some well defined criteria, which would justify the
use of one in preference to the other. In this paper we present an easy to
compute posterior distribution which provides direct insight into the differ-
ence of interest.
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1 Introduction

A common dataset which arises in a medical context consists of information
gathered on individuals, from one population, exposed to one of two possible
types of treatment, usually allocated at random: the goal — to determine
which is the ‘better’ treatment. The specific observables we will be concen-
trating on is when the responses are survival times; that is, X;,--+, X, are
iid from Fy and Y}, -+, Y,, are iid from F,, with both the F's having support
on (0,00), and the observations are subject to random right censoring.

Modelling differences

The key issue is how to model ‘differences’ between the two treatments;
equivalently, the difference between Fy and F;. A recent approach, Hsieh
(1996a), is to take F as a ‘baseline’ distribution and assume that F) is a
combination location-scale shift of Fi; that is,

- (152).

for some (p,0) which are to be estimated, and F; may then be regarded as
a nuisance parameter. Here & denotes the log-survival time.

A popular approach is to assume a proportional hazards model (Cox,
1972) in which differences are modelled through the hazard functions:

As(z) = Ay(z) exp p.

Here A; is often regarded as a nuisance parameter and interest focuses on
estimating . Recently, Hsieh (1996b) generalised the proportional hazards
model to

As(x) = (Ax(z))” exp p.
In this paper we eschew these scale and location shift models as explanations
of the difference between treatments. We look for a more robust procedure
in which the data itself determines the form of the difference. This is done

in a novel way in which we rely on the notions of exchangeability and partial
exchangeability.

Ezchangeability/partial exchangeability



Let us consider two extreme cases: firstly, under no treatment difference
we would regard the entire set of survival times as arising from a single.
but unknown, distribution function. In a Bayesian context this would be
equivalent to regarding all the individuals as being ezchangeable. Secondly,
at the other extreme, we would not expect information from one group to
help in the understanding of the other group, and vice versa. In a Bayesian
context, this would be equivalent to the assumption of partial ezchangeabilily;
that is, individuals are regarded as being exchangeable within groups, and
independent between groups. We refer to the exchangeable structure as S,
and the partial exchangeable structure as .

We assume that the truth lies somewhere in between these two extremes.
That is, the correct structure .S, is given by

Se =78+ (1 —7)5,;
for some 7 € [0,1]. Here 7 will be taken to be the posterior probability that
S, is the ‘true’ structure, given by
o mop(datalS,)
~ mop(data|S,) + (1 — mo)p(datalS,)’
where 7 is the prior choice for the probability that S, is the ‘true’ structure.

The above equations mean that to work with structure S, we would carry out
analyses S, and S, and then combine these according to the weight 7. For

example, suppose that interest is in estimating the parameter § and let f, be
the estimate obtained under the exchangeable model, 8, the corresponding
estimate under the partial exchangeable model; so

= wée + (1 -W)ép

is the required estimate.

For our proposed method of analysis we are required to assign a (non-
parametric) prior to the appropriate F's, leading to simple calculations of
p(data|S), and hence 7. Throughout the rest of the paper we assume that
Fi is the probability distribution of survival times for treatment A and F; the
corresponding distribution for treatment B. If interest is in obtaining a pos-
terior distribution for a parameter of interest, 8,4, associated with treatment

A, then
p(04]data) = wp(04lall data) + (1 — 7)p(84]data from A),
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where p(fa|data from A) is the posterior based solely on the information
provided by those observations from treatment A, and p(64[all data) is the
posterior under the exchangeable assumption which assumes treatment A
and B are identical and hence is based on all observations.

In Section 2 we discuss the nonparametric prior for the F's and in Section
3 we calculate 7. Section 4 discusses a selection criterion for the ‘better’
treatment, based on the ideas appearing in Spiegelhalter et al. (1994). Sec-
tion 5 contains two illustrative examples.

2 Beta process: prior and posterior

In a Bayesian nonparametric framework we will be assigning a prior distribu-
tion on the space of probability distributions on (0, 00). We will be working
with a generalisation of the Dirichlet process (Ferguson, 1973), which we
need in order to adequately express prior opinion about the unknown dis-
tributions. We consider a discretisation of the continuous space (0, 00), say
{ds,2ds, - -} for some appropriate ds, and will therefore be assigning a non-
parametric prior on {1,2,---}: this is required to calculate p(data). Even if
we used a continuous prior (process) an approximate discrete version of the
process would be required to calculate p(data). Typically, data arising from
survival analyses, do so in a discrete form — as information obtained each
day, week, or during some other unit of time — and so no generality is lost in
developing the prior to posterior calculations in a discretized framework, at
the outset. Let Ay, for t = 1,2, -+, be independent and distributed according
to beta distributions with parameters (au, f;). Then a random survival dis-
tribution S(t) can be obtained from the discrete version of the beta process
(Hjort, 1990; Walker and Muliere, 1997) via

S(t): H(l'—’\s)'

s<t

If Xi,---, X, are iid from 5(¢), possibly with arbitrary right censoring, then
the posterior parameters are given by oy + n; and B; + my, where n; is the
number of deaths at time ¢ and m; is the number of survivors just before
time ¢. A Bayesian bootstrap procedure (Lo, 1993) would be to obtain the
posterior parameters and then set the prior parameters to zero; that is, the
posterior parameters are (n¢, m;).



Within this discrete framework we can calculate p(data) straightforwardly,

[ne] plme]
-\ a; By
p(Xl, . ‘,)ln) - I;[ { (at + ,Bt)[n'+m‘] } )

where a = a(a+1)--- (¢ +n—1) and o = 1. Whereas we could consider
the zero prior parameters to obtain the posterior distribution, we can not
do this to calculate r, which is clear from the above expression for p(data).
In the next section we suggest a way to obtain the prior parameters in a
meaningful way.

3 Calculating 7

We have seen that in order to calculate 7 we have to evaluate p(data|S,)
and p(data|S,). Let nf* and m be the death process and at-risk process,
respectively, for group A and n? and mP the corresponding processes for
group B. Also let n; = n# + nP and m; = m# + m8. Straightforwardly,
using the result for p(X,---, Xy), we obtain

[ﬂ:]ﬁ[mt]
p(datalS,) = Itl {W}

and

[n, ]ﬂ[mt [nt ]ﬂ[mt
p(dataISp) H (Olt-l-ﬂt)["‘ +mi (az+ﬁz)[n' +m?P

Hence an expression for 7 can now be constructed.

We could be noninformative in our approach, by taking a; = f; = 0 for
all ¢, in order to estimate p(X > t), for example, but this is not possible
when calculating p(data|S,) and p(data|S,). Assigning non zero values to oy
and [, would, of course, imply an informative prior. Here then we discuss a
way to select these prior parameters.

If we let S(¢) denote the random probability p(X > t), we obtain

Bs 2 Bs +1
E[S5(t) ” and E[S*(t)] = H
[ a<t '65 [ 5<ta3+ﬂ +1



Our aim now is to match these first two moments from the nonparameteric
model with those from a parametric model. We choose the geometric distri-
bution for its simplicity and ease of interpretation. Our (Bayes) parametric
model is given by

p(X =t = 1=\, 1=1,2,,

and A ~ beta(a, ). Therefore,

ple=1] ) pl2t=2]
E\S(t)] = CEDE and E)[S*(t)] = D
leading, after some algebra, to
1-46
b= M8 g o= 1e - 1),
b — &

where ¢ = E\[S(t)]/E\S(t — 1)] and & = & E\[S*(t)]/EA[S*(t - 1)]. A
nonmnformative approach, which would presumably take a = b = 1, simplifies
to

,Bg = ta’g = t/(2t2 - 1).

These are the values for a; and f; which will be used to calculate 7. Note,
then, that it is not possible for us to consider the Dirichlet process, since
this not only requires 3, &y < oo (which follows from above), but also §; =
> s>t &5, which does not follow from the development above.

4 Selecting treatments

Our strategy for comparing and selecting the ‘best’ treatment is based on
the work by Spiegelhalter et al. (1994, Section 2) and the reader is referred
to that paper for further insights. Here we briefly discuss the main aspects
of the decision making process.

We assume that the selection of the preferred treatment will be based
on the parameter § = 64 — 6, where each 6 corresponds to a parameter of
interest for each of the treatments; for example, 6 = p(X > 1;) for some time
point to. We think of treatment B as being the current choice of treatment
and A a new treatment under investigation. Then according to the arguments
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put forward by Spiegelhalter et al. (1994) we would select treatment A in
preference to treatment B if § > s, indicating clinical superiority of the new
treatment. The full significance of 85 and its selection criteria is discussed
by Spiegelhalter et al. (1994), and references cited therein.

Of course the s, and hence §, are unknown. Spiegelhalter et al. (1994,
Sections 3 and 4) develop parametric posterior distributions for §. In our
Bayesian nonparametric framework we will use the posterior beta processes
to construct the posterior distribution for 84 and g, and hence for . The
use of the beta process is equivalent to using the censored data Bayesian
bootstrap (Lo, 1993); in the limiting case a;, 8 — 0. We will use this
bootstrap method to generate samples from the posterior distribution of 8.
Here we briefly detail the method.

For s = 1,---,19, we generate A4 from B(n#, m#) (independently) and
set 04 = [T, (1= A4), with probability 1 — 7, or generate ), from B(ng, ms)
(independently) and set 04 = [Ts<t, (1 — As), with probability 7. We do a
similar procedure for fp, based on (nZ,m?), and define 85 accordingly, and
set 6 = 04 — Op. If this is 6;, we repeat this simulation N times, and use
(61, ++,6n) to construct the posterior for 6.

Although there are a number of choices for § we will consider the case
when 6 = p(X > t;) for some t,. A more general case is to define § =
Tl up(X > t), where T, u; = 1, and the u; are chosen to reflect the
relative importance of surviving beyond time t; i.e., we would take u; < wyy;
for all 1.

5 Numerical examples

Ezample 1. Our first example involves leukemia remission times (in wecks)
and the two treatments are an active drug and placebo. The data was dis-
cussed and analysed by Cox (1972), Kalbfleisch (1978) and more recently by
Laud et al. (1996). The times for the active drug are

6,6,6,6%,7,9%,10,10%,11,13,16,17*,19%, 20*, 22, 23, 25", 32*, 32*, 34* 35",
where a * denotes a censored observation; the times for the placebo are

1,1,2,2,3,4,4,5,5,8,8,8,11,11,12,12,15,17, 22, 23.



Taking mo = 1/2 we compute 7 to be 2 x 10~%. We take this to mean that
the data from the two groups should be analysed separately.

For illustration purposes, we construct the posterior distribution for é
based on 6 = p(X > 10), using the censored data bootstrap method. The
posterior is presented in Figure 1, and clearly demonstrates the superiority,
in survival beyond ten weeks, for treatment A; this is quite similar to the
result obtained, using a Cox regression, by Laud et al. (1996).

FEzample 2. Our second example is taken from Lawless (1982, Example 7.2.1)
and also involves remission times, in weeks. Each treatment, A and B, has
20 patients: the observations from treatment A are

1,3,3,6,7,7,10,12, 14,15, 18, 19, 22, 26, 28", 29, 34, 40, 48", 49"
and from treatment B are
1,1,2,2,3,4,5,8,8,9,11,12,14,16,18,21,27*, 31, 38", 44.

Again, taking 7o to be 1/2, we compute the posterior probability 7 to be 0.77,
providing support for the exchangeable structure and no difference in the
treatments. For these data, based on a number of (frequentist) tests, Lawless
also concludes that there is “no evidence of a difference in distribution.”

As in Example 1, we construct the posterior distribution for § based on
6 = p(X > 10), using the censored data bootstrap method. The posterior is
presented in Figure 2, and this time clearly demonstrates equality of treat-
ments, in terms of survival beyond ten weeks.

Discussion

In this paper we develop a simple method, via a nonparametric prior
distribution, to selecting the “better” treatment. The novelty of our ap-
proach is four-fold: firstly, it offers the practitioner to use contextual prior
information in a natural way to model the uncertainty in the underlying
survival functions corresponding to the two treatments; secondly, treatment
differences are identified based on whether or not the data is exchangeable
or partially exchangeable; thirdly, the calculation of a formal decision rule
enables the selection of the preferred treatment; and fourthly, our solution
does not require Markov chain Monte Carlo simulations. A very easy-to-
implement bootstrap is the only simulation aspect to the solution, the rest
being closed form analytical expressions.
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Figure 1: Posterior distribution for § based on 6 = p(X > 10), Example 1
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Figure 2: Posterior distribution for é based on 6 = p(X > 10), Example 2
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