RESEARCH SUPPORT MARCH 1997
UNIVERSITY OF MICHIGAN BUSINESS SCHOOL

BAYESIAN NONPARAMETRIC INFERENCE FOR
RANDOM DISTRIBUTIONS AND RELATED FUNCTIONS
WORKING PAPER #9712-05
BY
STEPHEN WALKER
IMPERIAL COLLEGE, LONDON, UK
PAUL DAMIEN
UNIVERSITY OF MICHIGAN BUSINESS SCHOOL
PURUSHOTTAM W. LAUD
MEDICAL COLLEGE OF WISCONSIN
ADRIAN F. M. SMITH
IMPERIAL COLLEGE, LONDON, UK






. BAYESIAN NONPARAMETRIC INFERENCE FOR
RANDOM DISTRIBUTIONS AND RELATED FUNCTIONS

Stephen G. Walker
Department of Mathematics, Imperial College, London, UK.

Paul Damien

School of Business, University of Michigan, Ann Arbor, MI, USA.

Purushottam W. Laud
Medical College of Wisconsin, Milwaukee, WI, USA

Adrian F.M. Smith
Department of Mathematics, Imperial College, London, UK.

Abstract

In recent years, Bayesian nonparametric inference, both theoretical and
computational has witnessed considerable advances. However, these ad-
vances have not received a full critical and comparative analysis of their
scope, impact and limitations in statistical modelling; many aspects of the
theory and methods remain somewhat a mystery to practitioners and many
open questions remain. In this paper, we discuss and illustrate the rich
modelling and analytic possibilities available to the statistician within the
Bayesian nonparametric and/or semiparametric framework.
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1 Introduction

1.1 From Bayesian parametrics to nonparametrics

Why nonparametrics? Obviously the answer depends on the particular prob-
lem and procedures under consideration, but many, if not most, statisticians
appear to feel that it would be desirable in many contexts to make fewer
assumptions about the underlying populations from which the data are ob-
tained than are required for a parametric analysis.

Bayesian nonparametric models are constructed on ‘large’ spaces to pro-
vide support for more eventualities than are supported by a parametric
model. A Bayesian approach to acknowledging uncertainty about a sug-
gested parametric model is to provide a nonparametric model “centered”
on the parametric model in some way. For example, to acknowledge un-
certainty about the assumption of a normal parametric model, the corre-
sponding nonparametric approach would construct a model centered on the
normal assumption but including models in a neighbourhood of this normal
family, with the size of the neighbourhood controlled to reflect beliefs in the
normality assumption.

Technically, the off-putting aspect (to many) of the Bayesian nonpara-
metric framework is the mathematical apparatus required for specifying dis-
tributions on function spaces and for carrying through prior to posterior
calculations. A further pragmatic concern is how to incorporate real qualita-
tive prior knowlegde into this mathematical framework. A major emphasis
of this paper will be an attempt to clarify these issues and provide detailed
illustrative analyses: these will demonstrate both the modelling flexibility of
this framework and the ease through tailored simulation methodology with
which prior to posterior analvsis can be implemented.

The earliest priors for nonparametric problems seem to have been in-
troduced by Freedman (1963) who introduced tail free and Dirichlet ran-
dom measures. Subsequently. Dubins and Freedman (1965), Fabius (1964),
Freedman (1965), Ferguson (1973.1974) formalized and explored the notion
of a Dirichlet process. Early work was largely focussed on stylised summary
estimates and tests so that comparisons with the corresponding frequen-
tist procedures could be made. Since Ferguson (1973) the nonparametric



Bayesian literature has grown rapidly. The current focus of attention is on
full Bayesian analyses of nonparametric models using simulation techniques
(apparently first used in this context by Escobar, 1988). In this paper, we
shall focus on nonparametric inference for random distributions and related
functions. We shall not deal with Bayesian non/semi parametric density
estimation; for a recent survey of this field, see Hjort (1996).

1.2 Outline of the paper

The paper is organised as follows. In Section 2.1, the well-known Dirichlet
process prior for an unknown distribution function is reviewed and the lim-
itations of this prior are noted. Linear functional estimation is considered
in Section 2.2. We assume there is information concerning the functional
(specifically, the mean and variance) but that information about the un-
known distribution is unavailable and is modelled nonparametrically via the
Dirichlet process. We show how to construct the prior for the distribution to
incorporate the information on the functional. The extension to the mixture
of Dirichlet process (MDP) class of models (essentially a Bayesian nonpara-
metric approach to hierarchical models; see West et al., 1994, and references
therein) is discussed in Section 2.3. Other types of prior distributions will be
motivated in Section 2.4: detailed descriptions of these latter types of priors
will be the focus in Sections 3 (stochastic process priors), 4 (partition model
priors) and 5 (exchangeable model priors).

In particular, in the context of reliability and failure time data, interest
often centres on the hazard rate and/or survival curve of the process under in-
vestigation. In Section 3.4 we consider Bayesian nonparametric survival data
models, providing estimators which generalise the classical Kaplan and Meier
(1958) nonparametric estimator. Also in Section 4.4 we consider Bayesian
semiparametric approaches for the proportional hazards model (Cox, 1972),
the accelerated failure time model, and frailty models (Clayton and Cuzick
1985). In Section 5.4, we consider a three state disease process model.

b

2 General framework

We assume that Y;,Y5,---, defined on some space §, is a sequence of iid
observations from some unknown probability distribution F', assumed to be



random and assigned a prior distribution, Py. In a parametric framework, F'
is assumed to be characterised by a finite dimensional unknown parameter, ©.
The prior is then assigned to ©, and we write Py as Pg. If we eschew the finite
dimensional assumptions we enter the realms of Bayesian nonparametrics.
However, if we think of the nonparametric model, Py, as arising from a
wish to weaken a posited parametric assumption, Pg, we can construct a
Pq “centered”, in some sense, on Pg. An important seminal version of a
nonparametric prior is the Dirichlet process (Ferguson, 1973) which we now
review.

2.1 The Dirichlet process prior

One approach is to define the Dirichlet process via the Dirichlet distribution:

Definition 2.1: Let © be a space and B a o-field of subsets, and let o
be a finite non-null measure on (£,B). Then a stochastic process F' in-
dexed by elements A of B, is said to be a Dirichlet process on (,B) with
parameter «, if for any measurable partition (Aj,---,Ag) of Q, the ran-
dom vector (F'(A;),: -+, F(Ax)) has a Dirichlet distribution with parameter

(a(A1)1 T aa(Ak))'

We write ' ~ D(a) and a(.) = cFy(.) where ¢ > 0 and Fp, a probabil-
ity distribution on (), “centres” the process in the sense that E(F) = F,.
The scale parameter c is commonly interpreted as controlling the variability
of F' about Fy. Antoniak (1974) considers a larger class of priors based on
the Dirichlet process in which priors are assigned to ¢ and the parameters of
the parametric distribution Fj.

Perhaps the most unsatisfactory aspect of the Dirichlet process is the part
played by c. There is actually no clear interpretation for this parameter, due
to its dual role, controlling both the smoothness (or discreteness) of the
random distributions and the size of the neighbourhood (or variability) of F
about Fy. To illustrate this, we note that if F' ~ D(cFp) then

R(A)lL~ Fo(4)
c+1

For mazimum variability we would want ¢ — 0. However, Sethuraman and
Tiwari (1982) point out that as ¢ — 0, F converges in distribution to a single

varF'(A) =

4 .



atomic random measure. Also, note from the expression for the variance of
F(A) that it is not possible to specify varF' arbitrarily, and that the shape
is determined by Fjp.

A constructive definition of the Dirichlet process is presented in Sethura-
man and Tiwari (1982). If F' ~ D(cF,) then we can generate an F' via

F= ZVj(S&J’

i=1

where

Vi = Wl, ‘/J = Wj(l - Wj_l)(l - Wl), _] = 2,3, very

the Wi, Wy, ... are iid beta(1, ¢), and 64, 0,, ... are iid from Fp. This construc-
tion will be useful later. Note that F is discrete and this, combined with the
problem of interpreting (and hence specifying) ¢, make the Dirichlet process
somewhat unsatisfactory.

Bayesian inference via the Dirichlet process is attractively straightfor-
ward. Given the data (in the form of an iid sample of exact observations),
the posterior is once again a Dirichlet process, so that the latter is a con-
jugate prior on the space of distribution functions. The prior to posterior
parameter updates are ¢ — c¢+n and Fo — (cFo+nky,)/(c+n), where F,, is
the empirical distribution of the observations. The naive interpretation of ¢
as a prior sample size presumably derives from the forms of these posterior
parameters. But does a ¢ = 0 correspond to “no information”? If ¢ = 0,
note that the Bayes estimate for F, with respect to quadratic loss, is given
by F, which is what a nonparametric frequentist would typically use as an
estimate. Therefore ¢ = 0 fits in with one of the notions of a noninformative
prior discussed by Ghosh and Mukerjee (1992). Note, also, that a Dirichlet
posterior under a ¢ = 0 specification has the parameter nF, which is the
basis for Rubin’s Bayesian bootstrap (Rubin, 1981).

An alternative notion considered by Ghosh and Mukerjee is that of “in-
formation”. Under this notion, ¢ = 0 can definitely not be thought of as
~providing a “noninformative” prior. As mentioned earlier, as ¢ — 0, F' con-
verges to a single atomic measure, which is strong information about the
discreteness of F'.



2.2 Functional estimation

We have seen that it is not possible to express the mean and variance of
F' arbitrarily using the Dirichlet process, nor is it possible to interpret the
parameters satisfactorily if we seek directly to make inference about “the
unknown distribution function”. However, these difficulties do not arise if
interest focuses on inference for a linear functional of F. Let g be a mea-
surable function and, for illustration, consider estimation of ¢(F') = [ gdF,
with respect to a quadratic loss function. For example, with g(y) = ¢, ¢ is
the zth moment of F'.
The Bayes éstimate for ¢ is given (Ferguson, 1973) by

J _cfgdFy+n [gdF,

n
c+n

Now ¢o = E@(F) = [ gdFp and so ¢, can be written more concisely as

(; . C¢0+n¢n
" c+n

3

where ¢, = [gdF, = n~1Y; g(Y;). Assigning a value to ¢y is typically not
problematic since it is the prior guess for ¢.
In the case where prior information is available, the choice of ¢ can be

made by considering ¢(F') and A(F) where

AF) = [ gdF - ¢(F).

Note that A(F') > 0 for all . Also note that EA(F) + varg(F') = \(Fp), so
that if Fi has been assigned then a prior choice for A can be obtained via the
choice of prior variance for ¢.

We can use the constructive definition of the Dirichlet process to show
that EA(F)/var¢(F) = c, or, since EA(F') + var¢(F) = \(Fp), to show that
var¢(F) = MFp)/(c+1). Thus we obtain the following prior specifications
for ¢ in terms of the parameters of the Dirichlet prior:

A(Fo)
c+1°

Being noninformative about ¢, by allowing var¢ — oo, is not obtained by
allowing ¢ — 0 but rather by allowing A\(F) = var g(Y5) — co. The posterior

E¢ = ¢(Fy), varg =

6



first two moments are given by E(¢|data) = ¢, and

c 1 .
— Do + 6] + —— S g?(¥)) — 42 L,
sr(oate) = (o4 00+ ] + S0 -
where 02 = varg.
If we wish to be “noninformative” by taking o — co (with ¢ > 0) then
var(¢|data) — oo, which is not what we want. To obtain a finite posterior
variance under this specification (and to be coherent) we require ¢ = 0 and

co? = 0. Under these conditions we see that
var(¢|data) = s2 /(n + 1),
where s2 = n7' 5;[g(Yi) — #,)%. Note that M(F) = [[g — ¢(F)]*dF and so

s2 can be thought of as a sample estimate for . Therefore, the posterior
distribution for ¢, under this limiting form of prior, has mean ¢, and variance
2/(n+1).

As an example, let g(y) = y so that ¢(F) = [ydF represents the mean
of F. Under the above prior specifications we can obtain an approximate
posterior distribution for ¢ given by the normal distribution with mean Y

and variance n~! 33[V; — Y]?/(n + 1).

2.3 Mixture of Dirichlet process model

The Dirichlet process is one of the most “user-friendly” priors in Bayesian
nonparametric inference and has received substantial coverage in the litera-
ture. However, as mentioned earlier, one problem with the Dirichlet process
. is that it assigns probability one to the space of discrete probability mea-
sures. A class of priors that chooses a continuous F' with probability one is
the Mixture of Dirichlet Process (MDP) model, which we now briefly discuss.

Recently, mixture models have found widespread application: see, for ex-
ample, Escobar (1994); Escobar and West (1995); West et al. (1994); Mueller
et al. (1996); MacEarchen and Mueller (1994); Bush and MacEarchen (1996).
These are essentially Bayesian hierarchical models, one of the simplest ver-
sions taking the form:

Oy O F ~yy F

7



and
F~ D(CFO)

Instead of the 6;s being assumed to be iid from some parametric distribution
(as with standard Bayesian hierarchical models) greater flexibility is allowed
via the introduction of the Dirichlet prior centered on a parametric distribu-
tion. In the above referenced papers, priors are also assigned to ¢ and the
parameters of Fp.

MDP models have dominated the Bayesian nonparametric literature re-
cently as a consequence of the realisation that full posterior computation is
feasible using simulation methods (Escobar, 1994), although the latter can
be very computer intensive and involve non-trivial sampling algorithms (par-
ticularly when f(.|0) and Fo(8) form a nonconjugate pair).

The MDP model provides a continuous nonparametric prior for the dis-
tribution of the Y;s. Given F, we have

ViIF ~ Y Vif(105),

based on the constructive definition given in Section 2.1. This mixture model
has been successfully exploited by Escobar and West (1995). Note, however,
that centering 32, V; f(.|0;) will not be easy.

2.4 Beyond the Dirichlet process

As was noted in Section 2.1, there are limitations with the Dirichlet process
when it comes to prior specifications and their interpretation. In the rest
of the paper, we will focus on generalisations of the Dirichlet prior which
overcome these difficulties.

THEOREM 1 (Doksum. 1971: Dalal. 1978). Let (9, B) be a measurable

space and let a system of finite dimensional distributions
(F(Bia). s F(Bm,k))

be given for each finite class (B ;. ..., By ) of pairwise disjoint sets from B.
If
1. F(B) is a random variable on (0,1) for all A € B;



2. F(Q) =1 aus.
3.

(F(UiB1)s s F(UiBn)) =4 (3 F(Br), s 3 F(Bi))s

(here =4 denotes equality in distribution) then there exists a probability mea-
sure Pq on the space of probability measures on (£, B) yielding these finite
dimensional distributions.

There are a number of ways of constructing a nonparametric prior to meet
the requirements of Theorem 1:

1) Stochastic Processes. This approach is particularly appropriate for gen-
erating random cdfs on (0, 00) with application in survival data models. An
important and rich class of priors is the neutral to the right process (Doksum,
1974). Briefly we have F(t) = 1 — exp(—Z(t)) where Z is an independent
increments or Lévy process on (0, 00), with Z(0) = 0 and limy_,,Z () = oo.
We shall illustrate this approach with the analysis of the well known Kaplan
and Meier (1958) data set.

2) Partitioning. Here we construct a binary tree partition of £ denoted
by II = {(B¢)}, where ¢ is a binary sequence which ‘places’ B, in the tree.
At level 1 in the partitioning process, we have sets By and B, such that
BoN By =0 and BoU By = . Then, at level 2, By ‘splits’ into By and By,
and so on. A probability distribution is assigned to {F(B.)} such that, for
all €, F(Bg) 4+ F(Ba) = F(B:) > 0 and F(2) = 1. This is the idea behind
Polya trees (Ferguson, 1974; Lavine, 1992,1994; Mauldin et al., 1992). Such
priors seem particularly appropriate for error models, either at the first or
second stage in a hierarchical model. Applications considered later in this
paper include generalised linear mixed models, accelerated failure time and
frailty models

3) Ezchangeability. Rather than constructing F' directly, as in 1) and 2)
above, here we rely on the Representation Theorem (de Finetti, 1937) for a
sequence of ezchangeable random variables defined on 2. Such an approach
seems particularly appropriate when the problem is one of prediction; that
is, in providing the distribution of ¥4, given Y3,---,Y,. Applications con-
sidered in this paper include modelling a multiple state disease process.

Each of these approaches will now be considered separately in detail (al-
though they are by no means mutually exclusive: for example, the Dirichlet

9



process has a representation under all three approaches).

3 Stochastic processes

3.1 Neutral to the right process

We begin by discussing neutral to the right (henceforward, NTR) processes.
Many well-known processes, such as the gamma and simple homogeneous
processes (Ferguson and Phadia, 1979), and the Dirichlet process (Ferguson,
1973,1974) belong to this class. More recently, a NTR process called the
beta-Stacy was developed by Walker and Muliere (1997). Detailed back-
ground to the following discussion can be found in Lévy (1936), Ferguson
(1973, 1974), Doksum (1974), and Ferguson and Phadia (1979).

Definition 3.1: A non-decreasing almost surely (a.s.), right continuous a.s.,
process, Z(t), with independent increments, is called a NTR Lévy process if
it satisfies:

1) Z(0) = 0 a.s; and

2) limy,, Z(t) = o0 as.

Fact 3.1 Z(t) has at most countably many fixed points of discontinuity.
Fact 3.2 Let t4, 15, - - correspond to these fixed points of discontinuity having
independent jumps Wy, W, - - -. The difference Z(t) = Z(t) - 32; Will; 00 (1),
where I(.) is the indicator function, is a non-decreasing, independent incre-
ments process without fixed points of discontinuity and is a pure Lévy process.
Hence, every NTR process can be written as the sum of a jump component
and a continuous component. This will be useful when we later address the
problem of generating random variates from a NTR process.

Fact 3.3 The Lévy formula for the log of the Laplace transform of Z.(t) has
a representation given by,

log B exp (~¢Z.{t)) = ~4b(t) + [ (™ = 1)dN,(v),

where NV, is a continuous Lévy measure. The “location” function b(.) is not
required for the following discussion: see Ferguson (1974) for details.
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Definition 3.2: A random distribution function F(t) on the real line is NTR
if it can be expressed as F(t) = 1 — exp(—Z(t)), where Z(t) is a NTR Lévy
process.

We will concentrate on the beta-Stacy process (Walker and Muliere, 1997).
Let a be a continuous measure and B a positive function. Then F is a
beta-Stacy process with parameters o and f if the Lévy measure is given by

dv

dNy(v) = m

¢
/0 exp ( - vﬂ(s))da(s).

It can be shown that F is a.s. a random probability measure under the con-
dition [ da(s)/pB(s) = +oo. The beta-Stacy process generalises the Dirichlet
process, which is obtained when « is a finite measure and A(s) = af(s, ).
The simple homogeneous process (Ferguson and Phadia, 1979) results when
B is constant. In Section 3.2, we discuss the choice of o and 3 to specify EF
and varF'.

In the rest of this section, the NTR process priors are discussed with ref-
erence to the beta-Stacy process, since many specific forms of interest are
special cases of this prior. It is also closely related to the beta process prior,
for modelling cumulative hazard functions, introduced by Hjort (1990).

3.2 Prior specifications

Ferguson and Phadia (1979) point out that for the NTR processes which
they considered, such as the gamma, simple homogeneous, and Dirichlet
processes, interpreting the prior parameters is quite difficult. Walker and
Damien (1996) provide a way of specifying the mean and variance of the
distribution function based on the beta-Stacy process. This method has the
merit that the practitioner can model the prior mean and variance via a
Bayesian parametric model. Let

p(t) = —log {ES(1)} = [ (1- e™)aNi(o)

and

\t) = ~log {EIS*(1)}} = [(1 - ™)ami(o),

11



where S(t) = 1—F(t). Recalling the Lévy measure for the beta-Stacy process
(we assume for simplicity that there are no fixed points of discontinuity in the
prior process), Walker and Damien show that there exist a(.) and §(.) which
provide an explicit solution satisifying the above two conditions for arbitrary
(1 and ) satisfying ¢ < A < 2p, which corresponds to [ES]* < E[S?] < ES.
Explicitly, we obtain da(t) = du(t)B(t) and dA(t)/du(t) = 2 — (1 + B(t))™".

Suppose, for example, we wish to centre, up to and including second mo-
ments, the nonparametric model on the parametric Bayesian model given
by S(t) = exp(—at) with @ ~ gamma(p, q). Then we would have p(t) =
plog(1+t/q) and A(t) = plog(1 + 2t/q) giving

B(t) = ¢/(21) and da(t) = pgd/[2t(g + 1))

This method of specifying the prior mean and variance of the distribution
function overcomes the difficulties in interpretation identified by Ferguson
and Phadia (1979). In the absence of alternative strong prior information,
this provides a flexible form of prior specification. We can specify a p and
q to reflect beliefs concerning the “likely” position of S; that is, a region of
high probability in which S is thought most likely to be. The unrestricted
nature of the prior will then allow S to “find” its correct shape within this
specified region, given sufficient data.

3.3 Posterior distributions

THEOREM 2 (Ferguson, 1974). If F'is NTR and Y3, - - -, Y;, is a sample from
F, including the possibility of right censored samples, then the posterior dis-
tribution of F' is NTR.

The prior distribution for Z(t) (the Lévy process) is characterised by

M = {ty,ta,---}, {fir, for -},

the set of fixed points of discontinuity with corresponding densities for the
jump components, and N;(.), the Lévy measure for the continuous component
of Z(t). We now give the characterisation of the posterior distribution for
a single observation Y. (The case for n observations can be obtained by

12



repeated application.) In the following, we assume the Lévy measure to be
of the type

dN;(v) = dv/ K(v,s)ds,

(0]

which includes the beta-Stacy process. The next theorem provides the com-
plete posterior characterisation for this class of NTR processes.

THEOREM 3 (Ferguson, 1974; Ferguson and Phadia, 1979). Let F be NTR
and let Y be a random sample from F.
i) Given Y > y the posterior parameters (which we denote by an asterisk)
are M* = M,
eiy_JEeTf(v) ift; <y
ft](U) - {ft,(”) if t; >y
and K*(v,s) = exp{—vI(y > s)} K(v,s), where I(.) is the indicator function,

and & denotes the normalising constant.
ii) Given Y =y € M the posterior parameters are M* = M,

ke fi,(v) ift; <y
fiw)=qrl-e?)fy,(v) iftj=y
I, () ift; >y
and, again, K*(v,s) = exp{—vI(y > s)} K (v, s).

iii) Given Y =y ¢ M the posterior parameters are M* = M U {y}, with
fy(v) = k(1= e™)K(v,y), |

ey R () it <y
ftj(v) = {fzj(‘v) ift; >y

and, again, K*(v,s) = exp{—v/(y > )} K(v, s).

Consequently, if F' is a beta-Stacy process with parameters o and 8 then,
given an iid sample from F'. with possible right censoring, the Bayes estimate
of F(t), under a quadratic loss function, is given by

B da(s) + dN(s)
Fo=1- -G

13



where N(t) = ¥, I(Y; < t), M(t) = X; I(Y: > t) and []p represents a
product integral (Gill and Johansen, 1990). The Kaplan-Meier estimate is ob-
tained as a,  — 0, which is also the basis for both the censored data Bayesian
bootstrap (Lo, 1993) and the finite population censored data Bayesian boot-
strap (Muliere and Walker, 1997b).

Fact 3.4. The Dirichlet process is not conjugate with respect to right
censored data. The beta-Stacy process is conjugate with respect to right
censored data. If the prior is a Dirichlet process, then the posterior, given
censored data, is a beta-Stacy process.

Fact 3.5. After a suitable transformation and selection of K, other processes
such as the extended gamma (Dykstra and Laud, 1981) and the beta pro-
cess (Hjort, 1990) can be obtained (for details, see Walker and Muliere, 1997).

The remaining key question is whether prior to posterior calculations for
these models are computationally feasible. Below we describe a general al-
gorithm which enables us to simulate the posterior beta-Stacy process and
thus to perform fully Bayesian nonparametric calculations.

Simulating a NTR Process

Recall that any NTR process Z(t) can be written as the sum of a jump
random variable, say W, and a continuous component Z.(t). From a sim-
ulation perspective, given the posterior process, it is sufficient to generate
random variates from these two components separately and independently.

Simulating the jump componen!

With respect to a beta-Stacy process, without jumps a priori, let W de-
note the posterior jump random variable with density fy(w). Then given
M* ={Y;:§; = 1}. where é, = | indicates that ¥; is an uncensored observa-
tion,

fy(w) o (1= exp(=w)) " exp( = w[Bly) + M(y) - Niy}),

where y € M*, N{y} = ¥y._, & and M(y) = S, I(Y; > y). Also, W =
—log(1 — B) where

B~ beta(N{y}. 3(y) + M(y) - N{y}).

14



If N{y} =1 then W has an exponential density with mean value 1/(8(y) +
M(y) - 1).

Simulating the continuous component of a NTR process.

It is well known (Ferguson, 1974; Damien et al., 1995) that the continuous
component will have a distribution that is infinitely divisible (id). Bondesson
(1982), Damien et al. (1995) and Walker and Damien (1996) have developed
algorithms to generate random variates from any id distribution. Here we
note that simulating the continuous component is straightforward regardless
of which algorithm one decides to implement. However, the particular choice
of the algorithm might depend on the posterior process under consideration.
Thus, Laud et al. (1996a) use the Bondesson algorithm to simulate the
extended gamma process; Damien et al.’s algorithm is exemplified for the
Dirichlet, gamma and the simple homogeneous processes; and Walker and
Damien (1996) provide a full Bayesian analysis for a large class of NTR
processes using a hybrid of algorithms. For the illustrative analyses that
involve NTR, processes, we will rely on the Walker and Damien method.

3.4 Example

We reanalyse the Kaplan-Meier (1958) data set, partly for its historical signif-
icance, but mainly because it has been studied extensively in recent Bayesian
literature and thus provides a basis for comparing different methods and mod-
els. The data consist of exact observed failures at 0.8, 3.1, 5.4, 9.2 months,
and censored observations at 1.0, 2.7, 7.0, 12.1 months. We address the prob-
lem of estimating the probability of failure before 1 month; that is F/(0,1).
Whereas Susarla and Van Ryzin (1976) and Ferguson and Phadia (1979) were
only able to obtain Bayesian point estimates, we are able to sample from the
full posterior distribution. Note, also, that we are able to sample from the
" posterior distribution of F'(0,t) for any ¢ and are therefore able to construct
a full picture of the posterior failure time distribution.

We follow Ferguson and Phadia (1979) and, within the beta-Stacy frame-
work, take B(s) = exp(—0.1s) and da(s) = 0.lexp(—0.1s)ds. The prior is
therefore a Dirichlet process but, with censored observations in the data set,
the posterior is not Dirichlet but a beta-Stacy process. We take M = §) a pri-
ori: i.e., there are no jumps in the prior process. The continuous component
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of the posterior process, Z*(t), has Lévy measure given by

-1

K*(z,8)ds = (1 - exp(—z)) exp (— z[B(s) + M(s)])da(s).

We consider sampling F'(0,1) from the posterior distribution. This involves
sampling Z¥(0,0.8) and Z¥[0.8,1), which is achieved using the algorithm
described in Walker and Damien (1996), and sampling Wy s from the density
f3s(.), which is the exponential density with mean [exp(—0.08) 4+ 7]7%. A
required sample from the posterior distribution of F(0,1) is then given by
1 — exp{—22(0,0.8) — Z*[0.8,1) — Wos)-

We collected 1000 samples from the posterior and the resulting histogram
representation with kernel density estimate is given in Figure 1. The mean
value is given by 0.12 which is the (exact) point estimate value obtained by
Ferguson and Phadia.

It can be argued that this prior seems somewhat informative. Can we
recapture the shape of Figure 1 using the flexible, less informative prior we
proposed in Section 3.27 To investigate this we reanalyse the data set using
the Bayesian parametric model described in Section 3.2 with p = ¢ =1, in
an attempt to be “relatively noninformative”. We obtain A(t) = 1/(2t) and
da(t) = dt/[2t(1 4+ t)]. Again, we collected 1000 samples from the poste-
rior and the resulting histogram representation with kernel density estimate
is given in Figure 2. Note that we have recovered the shape of Figure 1
extremely well.

It is also of interest to see how our nonparametric analysis compares with
a parametric analysis using the parametric model on which it is centered.
The posterior distribution from the parametric model is given by F*(0,1) =
1—exp(—a) with ¢ ~ gamma(1+44,1+41.3). 1000 samples from this posterior
were collected and the resulting histogram representation with kernel density
estimate is given in Figure 3. The distributions are fundamentally different.

5o what does all this add up to? With the parametric model, the first two
moments define the shape of the posterior distribution. In the nonparametric
model, the first two moments do not define the shape — there is still more
flexibility in the model. For a nonparametric/nonparametric comparison we
note that our less informative nonparametric prior leads to essentially the
same result as the informative nonparametric prior, which is very encouraging
— we do not need to select a fully specified distribution on which to centre
the prior.
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Figure 1: Histogram representation with kernel density estimate of posterior
density of F(0,1) using Dirichlet process prior.

00 02 04 06 08

Figure 2: Histogram representation with kernel density estimate of posterior
density of F(0,1) using beta-Stacy process prior.
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Figure 3: Histogram representation with kernel density estimate of posterior
density of F(0,1) using parametric prior.

What else can be done with the stochastic process approach? Kalbfleisch
(1978), Clayton (1991), Laud et al. (1996b) provide examples of the use of
stochastic processes in the context of Cox regression. It is also possible to use
such processes to model functions other than a distribution function. Hjort
(1990) developed the beta process to model a cumulative hazard function.
Simulation algorithms for carrying out prior to posterior analysis for the beta
process appear in Damien et al. (1996).

Dykstra and Laud (1981) consider modelling monotone hazard rates non-
parametrically by developing a class of processes called the extended gamma
process. The advantage of this process is that it indexes the class of ab-
solutely continuous functions with probability one. Also, as in the case of
cumulative hazard processes, context motivated information can be used to
specify the parameters of the hazard rate model, thus offering greater flexi-
bility. Laud et al. (1993,1996a) develop simulation methods for the extended
gamma process; Amman (1984) extended the hazard rate process to model
bath-tub hazard rates. Arjas and Gasbarra (1994) develop processes to model
the hazard rate piecewise.

However, in practice the stochastic process approach is only user-friendly
for relatively simple models of the kind we have illustrated. Inference for
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more complex models usually requires us to make some partitioning of the
sample space, subsequently working with a discrete version of the process.
But this suggests that we should construct the prior on a partitioned space
in the first place and motivates the approach considered in the next section.

4 Partitioning

4.1 Polya tree priors

Detailed background to the material of this section can be found in Ferguson
(1974), Lavine (1992,1994), Mauldin et al. (1992), and Muliere and Walker
(1997a). The Polya tree prior relies on a binary tree partitioning of the space
(). There are two aspects to a Polya tree: a binary tree partition of {2 and a
nonnegative parameter associated with each set in the binary partition. The.
binary tree partition is given by II = { B.} where ¢ is a binary sequence which
‘places’ the set B, in the tree. We denote the sets at level 1 by (B, By), a
measurable partition of Q; we denote by (Boo, Bo1) the ‘offspring’ of By, so
that Boo, Bo1, Bio, B11 denote the sets at level 2, and so on. The number of
partitions at the mth level is 2™. In general, B, splits into By and B,; where
BoN By =0 and By U B,y = B..

A helpful image is that of a particle cascading through these partitions.
It starts in © and moves into By with probability Co, or into B; with prob-
ability 1 — Co. In general, on entering B, the particle could either move into
B or into Bg. Let it move into the former with probability Ce and into
the latter with probability C; = 1 — Cq. For Polya trees, these probabilities
are random, beta variables, (Co, Ce1) ~ beta(ao, @) with non-negative o
and a. If we denote the collection of as by A = {a.}, a particular Polya
tree distribution is completely defined by II and A.

Definition 4.1 (Lavine, 1992) A random probability measure F' on § is said
to have a Polya tree distribution. or a Polya tree prior, with parameters
(I, A), written F' ~ PT(I1. A). il there exists non-negative numbers A =
(a0, 01, g0, - - +) and random variables C = (Cp, Cog, Cio, - - ) such that the
following hold:

1) all the random variables in C are independent;

i) for every €, Co ~ beta(ay. a); and-
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iii) for every m = 1,2,--- and every € = ¢; - - - €, define

FBuven) = ( TI Caverao)( II (1= Car),
J=15¢,=0 1=15¢,=1

where the first terms (i.e., for j = 1) are interpreted as Cy and 1 — Cy.

Fact 4.1. The Polya tree class indexes priors which assign probability 1
to the set of continuous distributions, unlike the Dirichlet process which has
sample distribution functions which are discrete with probability 1. For ex-
ample, the choice a, ='m?, whenever ¢ defines a set at level m, leads to an
F which is absolutely continuous (Ferguson, 1974).

Fact 4.2. It is easy to show that the discrete versions of the beta process
(Hjort, 1990), the beta-Stacy process, and hence the Dirichlet process can
all be characterised as Polya trees; see, for example, Muliere and Walker

(1997a).

4.2  Prior specifications and computational issues

Problems tackled in this paper involving Polya trees require simulating a
random probability measure F' ~ PT(II,.A). This is done by sampling C
using the constructive form given in Definition 4.1. Since C is an infinite
set an approximate probability measure from PT(II, A) is sampled by ter-
minating the process at a finite level M. Let this finite set be denoted by
Cum and denote by Fjyy the resulting random measure constructed to level M
(which Lavine, 1992. refers to as a “partially specified Polya tree’). From
the sampled variates of Cy; we define Fay by F(B,,..,,) for each € = €;...ep
according to (iii) under Definition 1.1. So, for example, if M = 8§, we have a
random distribution which assigns random mass to r = 28 sets.

It is possible to centre the Polva tree prior, on a particular probabil-
ity measure [y on ) by taking the partitions to coincide with percentiles
of Fy and then to take a,, = a,, for each e. This involves setting By =
(=00, Fg1(1/2)), By = [I7'(1/2). %) and, at level m, setting, for j =
1,..,2", B; = [F7'((j = 1)/2"). F3'(j/2™)), with Fy'(0) = —oco and
F5'(1) = 400, where (B, : j = 1.....2™) correspond, in order, to the 2™ par-
titions of level m. It is then xlmnghtforwa,rd to show that EF( ) = Fo(B,)
for all e.



In practice, we may not wish to assign a separate a. for each €. It may
be convenient, therefore, to take a = ¢,, whenever ¢ defines a set at level m.
For the top levels (m small) it is not necessary for F(By) and F(Bg) to be
‘close’; on the contrary, a large amount of variability is desirable. However,
as we move down the levels (m large) we will increasingly wish. F'(B,) and
F(Bq) to be close, if we believe in the underlying continuity of F. This can
be achieved by allowing c,, to be small for small m and allowing ¢,, to increase
as m increases; choosing, for example, ¢,, = em?® for some ¢ > 0. According
to Ferguson (1974), ¢, = m? implies that F' is absolutely continuous with
probability 1 and therefore according to Lavine (1992) this “would often be
a sensible canonical choice”. In what follows, we shall choose cm? for the
as. Note that the Dirichlet process arises when ¢,, = ¢/2™, which means
that ¢, — 0 as m — oo (the wrong direction as far as the continuity of F is
concerned) and F is discrete with probability 1 (Blackwell, 1973). This model
can be extended by assigning a prior to ¢, but in the applications which follow
we shall confine ourselves to providing illustrative analyses corresponding to
a range of specified choices of c.
- An alternative idea is to understand and assign the c,,s in terms of the
variance of the probabilities associated with the sets on level m. These

variances are all equal to
1 ﬁ .+ 1 1
2m 2c, +1 2m

k=1~

which gives a procedure for assigning the ¢,,s based on uncertainty in the
centering of F'(B.). For example, if we want varF(B,) = vy, whenever e
defines a set at level m, then we need

cm +1 4my, + 1

2em+1  2(4m-ly,_; + 1)’

Note that this imposes a constraint on the v,,s given by v,_1/4 < v, <
Ume1/2 + 1/4™.

More generally, we could define the o to match Epr F(B,) and Epr[F*(B,)]
with those obtained from a parametric model. This procedure will be detailed
elsewhere.
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4.3 Posterior distributions

Consider a Polya tree prior PT(II,.A). Following Lavine (1992), given an
observation Y;, the posterior Polya tree distribution is easily obtained. Write

(FIVA) ~ PT(TL, AJY3) with (AJY3) given by
a.+1 ifY;, € B,

Q, otherwise.

ac!Yl :{

If Y] is observed exactly, then an « needs to be updated at each level, whereas
in the case of censored data (in one of the sets B.), only a finite number
require to be updated. For n observations, let Y = (Y3,---,Y,), with (A]))
given by (a.|)) = a. +n., where n, is the number of observations in B,. Let
ge = P(Ynt1 € Bc|Y), for some ¢, denote the posterior predictive distribution,
and let € = €; - - - €, then, in the absence of censoring,

q . aC] + nfl a6162 + lnel €2 afl"'cm + ncl e €m
€ “ee

0o+ ay + N 0o+ Qg1+ Ny Qepnen_10 T Qegeveng1 T Mg ey

For censored data,

g = Qe + Ny Oyt T Nyt
) .

= e I
aO + al + n acl...cm_lo + ael...em__ll -I_ ncl c€m—1 - Sel...em_l

where s, is the number of observations censored in B,.

4.4 Examples

We first re-analyse the Kaplan-Meier data (given in Section 3.4) using a Polya
tree prior, providing a comparison with the NTR approach. The second ex-
ample involves a linear regression model in the context of accelerated failure
time data. The third example involves a generalised hierarchical model in-
volving binomial data in a two-way factorial layout.

The Kaplan Meier data.

The NTR approach to the analysis of survival data is mathematically
involved. Polya trees can simplify this complexity a great deal. However,
what should the partitions be? Recall that with the NTR analysis in Section
3.4 the observations effectively partitioned the time axis with each partition
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having to be treated separately (and independently), all the different parts
subsequently being “put together”.

It seems obvious that the partitions of the Polya tree should coincide
with at least some of the observations. In fact the only way to make progress
is to have the censoring sets, e.g. [1.0,00), coinciding with partition sets.
Consider, therefore, the following partitions:

By = [0,1.0), By = [1.0, ),

BIO = [10,27), B11 = [27, OO),
B110 = [27, 7.0),B111 = [70, OO),

and

BlllO = [70, 12.1),31111 = [121,00)

The inclusion of these partitions is compulsory; the choice of the remainder
is somewhat arbitrary. A particular partition could therefore be selected in
the light of what specific questions needed to be answered; for example, for a
future observation, Y,,41, what is P(Y,4; > 6.0|data)? This can be answered
by partitioning By appropriately. Thus an estimate of the survival curve .
S(t) = 1 — F(t) can be found for any ¢ € (0,00) and its computation for a
range of s will be sufficient to provide a clear picture of S.

Susarla and Van Ryzin (1976) and Ferguson and Phadia (1979) assume a
Dirichlet process model with an exponential base distribution, with parame-
ter 0.12, that is, G(B) = [50.12exp(—0.122)dz and scale parameter equal to
8 (recall Section 2.1). For comparison with their results, we set o = ¢, G(B,)
whenever € defines a set on level m, and took ¢,, = em? for a number of ¢ > 0.

The estimates for various ¢ = P(Y,41 € B.|data) over a selection of
values for ¢, the Kaplan-Meier (KM) estimates, and the Susarla and Van
Ryzin (SV) estimates are reported in Table 1. The estimates obtained from
the Polya tree are exact and do not depend on a finite level of partitions.
This is because in the absence of observations from a particular sub-branch
of the tree there is no gain to be made by partitioning sets. For example,
suppose we wished to-estimate P(Y,4; > 6.0|data). We would partition the
interval [5.4,7.0) at 6.0 and because there are no observations in (5.4, 7.0), no
matter how we partitioned this interval (although at some level there would
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Polya tree | Polya tree posterior KM | SV

Interval prior c=10|c=1]|c=001{c—0
[0,0.8) 0.09 0.08 | 0.05 0 0 |0.05
[0.8,1.0) 0.02 0.03 | 0.06 0.11 0.12 |0.07
[1.0,2.7) 0.16 0.15 | 0.08 0 0 ]0.09
[2.7,3.1) 0.03 0.03 | 0.03 0 0 ]0.02
[3.1,5.4) 0.17 0.17 | 0.17 0.19 0.18 {0.17
[5.4,7.0) 0.09 0.09 | 0.13 0.18 0.18 |0.13
[7.0,9.2) 0.10 0.10 | 0.08 0 0 |0.07
[9.2,12.1) 0.10 0.11 | 0.16 0.26 0.26 |0.15
[12.1, 00) 0.24 0.24 | 0.24 0.26 0.26 |0.25

Table 1: Posterior predictive probabilities for death time (the second column
gives the prior predictives which are independent of c).

need to be a partition at 6.0) and to what levels we took these partitions, it
would make no difference to the estimate of P(Y,4; > 6.0|data).

Note from Table 1 that for ¢ = 10 the prior dominates the information
from the data and for ¢ = 0.01 the data dominates the prior. This can be
understood from the expressions for ¢, given in Section 4.3. A suitable choice
for ¢ would be somewhere in between these two extremes. For illustration
we have chosen ¢ = 1 and remark that the precise choice of ¢ is somewhat
problematic. For this reason we recommend the approach briefly outlined in
the last paragraph of Section 4.2, which avoids the problem of defining a ¢
altogether. Alternative approaches for dealing with ¢ are described in the
immediately following sections.

We can consider the uncertainty associated with estimates of ¢, by sam-
pling F(B,) from the posterior. So, if € = €...€,, we would sample C,, from
Pe,, |data(°) up to Cy,..e,, from pCel...emldata(') and set F'(B) = C¢,...Cey..cn-
It is also possible, again with the appropriate partitioning, to obtain samples
from F'(t)|data and hence for S(t)|data. In Figure 4 we show the marginal
posterior distribution of 5(6.0)|data. This was obtained via the sampling
strategy just described using a sample of size 5,000, and with ¢ = 1.

Using Polya trees for analysing survival data is more straightforward than
using NTR processes. Posterior distributions are more tractable and there
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Figure 4: Posterior distribution of S(6.0)|data

is little need for computer intensive simulations. An additional advantage is
that we can select Polya trees which are continuous, whereas NTR processes
are discrete.

Using Polya trees to model error distributions
We now consider the use of Polya trees for modelling error distributions.

Multiple regression exzample. We start by considering the linear model
Yi=Xip+0;,0=1,---n,

where X; = (X;;,X;2, -, Xi,) is a vector of known covariates, § is a vector
of p unknown regression coefficients and ©; are error terms, assumed to be iid
from some unknown distribution F. The parameter J is assigned a multivari-
ate normal prior with mean y and covariance matrix £. A priori, F and f
will be taken to be independent. Since I is completely arbitrary the intercept
term of # will be confounded with the location of F. This is easily overcome
by fixing the median of I by defining F(By) = F(B;) = 1/2. Typically, we
will want the median to be located at 0 and this is achieved by taking the
partition at level 1 to be at 0. In such cases it may be convenient to take Fp
as the normal distribution with zero mean and variance 2. This defines a
median regression model instcad of the more popular mean regression model
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and parallels Ying et al.’s (1995) frequentist approach. If required, we could
also fix the scale of F' by defining, for example, F'(Bq), ..., F'(B11) each equal
to 1/4. This would be appropriate for the alternative model

=Xif+00;,1=1,---,n,

where Fy could be taken to be the standard normal distribution. Analysis is
based on a MCMC algorithm outlined in the Appendix and fulther details
can be found in Walker and Mallick (1997a).

We reanalyse the data set presented by Ying et al. (1995). This involves
121 patients suffering small cell lung cancer and each undertaking one of two
treatments; A with 62 patients, or B with 59 patients. The survival times
are given in days, with 98 patients providing exact survival times and the
remainder right censored survival times. The covariates are the treatment
type, 0 or 1, and the natural logarithm of the entry age of the patient. Ying
et al. were only able to estimate the median survival time in their analysis
and then test for the “better” treatment. We are not restricted in any way
as to the type of inference we can make.

In our analysis we took a normal prior, with mean zero and large vari-
ance term, for . The parameters for the Polya tree are Fy as the normal
distribution with zero mean and variance o2 = 10% and a. = em?, whenever
¢ defines a set at level m, with ¢ = 0.1. We found these parameters provided
a noninformative approach (see Sections 4.2 and 4.4). We took the number
of levels of the Polya tree to be fixed at 8. These parameters were obtained
after some preliminary analyses. Increasing o had no effect on the results
and yet we were not confident about reducing 2 below 100. Reducing ¢ to
0.01 gave more weight to the noninformativeness of the prior at the bottom
levels rather than the continuity. and increasing c to 1 removed the noninfoi-
mativeness of the prior at the top levels. Finally, we chose M = 8 to give us
satisfactory partitions. essentially neither too big nor too small. We therefore
had 254 partitions covering (approximately) the interval (—20,+420), giving
0.16 as the average partition length.

An alternative approach would be to treat ¢, M and o2 as unknown pa-
rameters and assign prior distributions (though perhaps this is not necessary
for M). This is a relatively straightforward idea to implement using the
Y: = Xif 4+ 00; model. but we shall present details elsewhere.

For illustration. predictive survival curves are presented; the first (Figure

5) for a new patient with treatment A, and the second (Figure 6) for a new
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Figure 6: Predictive survival curves for three new patients with treatment B
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patient with treatment B. The three curves selected for illustration are those
for patients whose covariate values coincide with the quartiles of the observed
values of the log entry age covariate.

Hierarchical model ezample. We now consider nonparametric modelling in
the second stage of a hierarchical model. For illustration, we remodel and
reanalyse the problem considered by Crowder (1978, Table 3), which involves
binomial data in a 2 x 2 factorial layout. The beta-binomial model of Crow-
der models variation of expected proportions within cell means, by assuming
that

Y;'jIZij ~ binomial(Z,-j,n,-j), 1= 1,...,4, ] = 1, ey 14,

with
Zij ~ beta,('y,-, 6{),

where 7; = v;/(vi + 6;) is the mean of Z;;. The analysis proceeds by finding
maximum likelihood estimates for 7 = (1, 7y, 73, 74).
We remodel this by considering a random effects logit model with second
stage given by
logitZ;; = X;6 + Oy,

where

61], ceny 64n4 IF Nlld F

Here, the independence assumption for the ©;; corresponds to the homogene-
ity of the variance term of the distribution of the Z;; in the beta-binomial
model given by v;+6; = constant. The logitZ;; are a linear combination of the
intercept term and the factorial effects, so that X; = (1,0,0), X, = (1,0,1),
X3 =(1,1,0) and X = (1,1.1). A MCMC analysis is detailed in the Ap-
pendix and further information can be found in Walker and Mallick (1997b).
The prior specifications for the Polya tree were taken to be the same as those
for the previous example.

Posterior distributions are summarised using the samples obtained from
the MCMC output. The ergodic mean estimates of 7; are evaluated as

7Al'1 = 041, 7%2 = 064, 7AI'3 = 037, 7AT4 = 051,
which compare with the values

iy = 041, 7y =0.65, #3=0.33, &4 =0.57,
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obtained by Crowder. The posterior mean of F' is shown in Figure 7. Es-
sentially the distribution in Figure 7 characterises the within cell mean vari-
ability, that is, the variability of the Z;; about ;. As can be seen, this is
a fairly tight distribution about zero, as one would probably expect. The
posterior distributions for f;, > and f3 are shown in Figure 8. Since the
density in Figure 7 does resemble a normal to some extent we reanalyse the
data replacing the Polya tree by a normal distribution, with mean zero and
variance o, assigning 0~ a noninformative gamma prior. The resulting pos-
terior distributions for § appear in Figure 9. Note then that these posteriors
have the same locations as those from the Polya tree analysis but with the
posterior spread from the parametric model reduced significantly.

polrel, 2)
004 006 008 010

002

00

Figure 7: Posterior expectation of F in the beta-binomial model

Walker and Mallick (1997a) also detail the use of Polya trees in a frailty
model (Clayton and Cuzick, 1985). Here, we omit details and simply draw
attention to the posterior estimate of the log-frailty distribution obtained
in that paper. In the analysis the frailties are (incorrectly) assumed to be
exchangeable and not dependent on a male/female covariate; Figure 10 ev-
idences the great flexibility of the nonparametric framework in recovering a
bimodal form for the distribution of the log-frailties arising from the mixed
male/female population.
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Figure 8: Histogram representations of the posterior distribution of # ob-
tained from nonparametric model

Figure 9: Histogram representations of the posterior distribution of 8 ob-
tained from parametric model
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Figure 10: Posterior expectation of log frailty distribution

5 Exchangeable modéls

Let Y3,Y3,-- be an ezchangeable sequence of random variables defined on
. By de Finetti’s representation theorem (de Finetti, 1937), there exists
a probability measure Pq defined on the space of probability measures on
§, such that the distribution of ¥7.15,--- can be obtained by first choosing
F'~ Pq and then taking Y1,Y5.- -+ |[F ~;;q F. That is,

n

P(Y, € By,---,Y, € B,) = / (I F(B:))dPa(F).

=1

Here Pq is referred to as the de Finetti or prior measure and, given the joint
distribution of Y;,Y3,---. this Py is unique (Hewitt and Savage, 1955). An
example is the general Polya-urn scheme (Blackwell and McQueen, 1973).
Let a(.) = cFy(.), where ¢ > 0 and Fj is a probability measure on . The

scheme for generating the exchangeable sequence (Y3, -+, Y;) from § is given
by
) | F07
- Fo + 6y,
Y513 ~ ot }1,
c+1
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cko + Z?;l by;

e Yo~ J
l/nIYia ) 1 c+n——l

Blackwell and McQueen show that

n~t Z 0y, — F with probability 1,
i=1
with F' from a Dirichlet process with parameter a. The de Finetti measure
for the Polya-urn scheme is therefore the Dirichlet process. As might be
anticipated from our earlier identification of the beta-Stacy process as a gen-
eralisation of the Dirichlet process, a generalised Polya-urn scheme can be
obtained, which has the discrete beta-Stacy process as the de Finetti measure
(Walker and Muliere, 1997. See also Section 5.1).

There are a number of reasons why it is often convenient to consider
the sequence Y3, Y5, - - directly, marginalising over F.. First, F' is an infinite
dimensional parameter so the advantages in removing this is that one ends up
working in a finite dimensional framework, making much of the mathematics
simpler. Secondly, interest is often in prediction and the distribution of Y,
given Yi,---,Y, is an immediate consequence. Thirdly, we are “closer” to
the data in the sense that we have the probability distribution for the data
explicitly. It should also be pointed out that the posterior parameters for
Pq can often be determined from the sequence of predictive distributions
(consider, for example, the Polya urn sequence).

5.1 Bernoulli trips

Here we introduce a simple concept and method for modelling multiple state
processes based on an exchangeable sampling scheme (Bernoulli trip). A
Bernoulli trip is a rcinforecd random walk (Coppersmith and Diaconis, 1987;
Pemantle, 1988) on a “tree™ which characterises the space for which a prior
is required. An observation in this space corresponds to an unique path or
branch of the tree. The path corresponding to this observation is reinforced;
that is, the probability of a future observation following this path is increased.
Thus, after n observations. a maximum of n paths have been reinforced.

To construct a Bernoulli trip we discretise the relevant space. The walk
starts at €g and moves in one of a possible finite number of directions to reach
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€1, say. From here the walk moves, again in one of a possible finite number of
directions. In general, a walk reaches € and moves to one of a finite number
of “positions”, the collection of which we will denote by M,. For the first
walk

; afe,€)

P (e — € € Mc) Ze”EMe ale, 6,,),
where each « is nonnegative. There will be positions which, if reached, result
in the walk being terminated, and this eventually happens to all walks, what-
ever the path. After the first walk the parameters « are updated. If during
the course of the first walk a move was made from € to € then we simply
replace a(e, € ) by a(e, ¢) +1. The second walk “follows” these new probabil-
ities. After the second walk the new parameters are themselves updated in
the same way and the third walk “follows” these twice updated probabilities,
and so on. It is clear that the probablity of the second walk coinciding with
the first walk exactly has increased (reinforcement).

If we denote the path of the first walk by ¥; and the second walk by
Y; and so on, then we can write down without much difficulty the joint
probability for the first n walks following particular paths. From this it is
straightforward to show that (Y7,---,Y,) are exchangeable random variables
for all n. Explicitly, we have

P(Yl,...,Yn) =T

¢ {ZClEMe a(f, 6,)}[26'61\45 n(e,e )]

c'EMe Cl’(ﬁ, E,)[n(i,c )]

where n(e, €) is the number of walks which move from € to ¢, al?l = a(a +
1)...(a+z—1) and ol = 1.

A Bayesian bootstrap procedure would be to obtain the posterior param-
eters and then set the prior parameters to zero. Thus, a*(¢,€ ) = n(e,€). In
such cases the predictives only depend on the data.

To illustrate, consider a two state process with one absorbing state; that
is, a survival model. Each walk starts at (0,0) and on reaching say (k,0),
k=1,2,---, the walk can move either to (k+1,0) or (k+1,1). We assume k
indexes time points #1,1,,---. If it reaches (k, 1), for any k, then the walk is
terminated (obviously this corresponds to death at ;). The move (k — 1,0)
to (k,0) indicates survival from t;_; to ¢;. Explicitly, for k =1,2,---,

P((k=1,0) = (k0)) =

33



and

P((k—1,0) = (k1)) = —1

aro + Qg
Clearly each walk is characterised by the point & at which the move to (k, 1)
is made and let Y; represent this point for the ith walk. A priori we have
675 Ojo
Qo + Qg jok Qo+ g ’

Pt =b)=

and a posteriori after n observations we have
% *
QL %jo

* * £ * 7
Qo Tt Qy &5 Qo T O

P(Yn-I-l = kIK)"'71/1’L) =

Qo = ko + Nko, and aj; = gy + g1, where nyg is the number of walks that
move from (k—1,0) to (k,0) and ny is the number of walks that move from
(k—1,0) to (k,1).

We can easily deal with right censored observations within the Bernoulli
trip framework. A censored observation at k, that is Y > k, corresponds to a
walk being censored at k. The updating mechanism for such a walk is given
by ajo — ajo+1 for all j < k. Note that the walks remain exchangeable
provided the censoring mechanism is independent of the failure mechanism.

The Bernoulli trip just described can be shown to be a discrete time ver-
sion of the beta-Stacy process detailed in Section 3. Whereas it would be
difficult to extend the stochastic process approach to model multiple state
processes it is relatively easy within the Bernoulli trip framework. The only
drawback, if indeed it is one, is that the space needs to be discretised. Typ-
ically, however, data arising from multiple state processes do come in a dis-
crete form — as information obtained each day, week, or during some other
unit of time.

5.2 Prior trips

For illustration, we consider a three state (disease) process in which all pa-
tients start in state 1. From here it is possible to move directly to state 3 or
move to state 3 via state 2. Random right censoring can occur at any time.
We define the first walk via the transition probabilities

Q.
P((k=1,0 = (k0)) = =8,
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(8731

P((k - 130) - (kal)) = aro + oy + ak2a

and

Qp
P((k - 170) - (I"72)) = ko ‘|‘Q’}: + ak2,

for transition from state 1. For transtition from state 2 to state 3, we define

P((k=1,1) = (k1)) = F%:
P«h&ﬁyawﬂnzafﬁg.

The walk is completed at k whenever (k,2) is reached. We can obtain the
prior predictive for a particular event; for example

P(T=kS=j<k)=

(073 Qo ,Bk2 ﬂll
X Y
ajo+ i+ aje ot antan B+ B g Bt B

where T denotes the time to reach state 3 and S is the time to reach state 2
(if at all). If state 2 is not visited then

Qg2 Qo
Qo + k1 + g 1 0o+ Qg

P(T = k,state 2 not visited) =

Note that we need to define the parameters o and f so that the first walk will
end with probability 1. Note, also, that the model described here assumes
that the transition probabilities from state 2 to state 3 do not depend on
the time of transition from state 1 to state 2. This is the Markov model
and will be referred to as model M(,. The semi-Markov model, in which
the transition probabilities from state 2 to state 3 do depend on the time of
transition from state 1 to state 2, can be represented within the Bernoulli
trip framework without difficulty. We could have model M(,) given by

: Brj2 Bisn
PT=kS=7<k)= ,
( I§=3<k) Brit + Briz ;Zicy Biin + Bija
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to model a direct dependence on the time of transition from state 1 to state
2, or, model M) given by ‘

. Br—;j 2 Bi-in
P(T=klS=7<k)= ,
( l 7 ) ﬂk—j 1+ ﬂk—j 2 j<i<k ﬂl—j 1+ :Bl—j 2

where now the conditional probabilities depend solely on the time spent in
state 2. '

Here we seek an interpretation for the parameters oy, ar;; we assume
that g, = 0 for simplicity. Note that a priori

QLo _ P(S = k)
apt+an P(S=k)+P(S>k)

and

L1 _ P(S > k)
artayn  P(S=k)+P(S>k)
It can be seen that g is associated with P(S = k) and oy, is associated
with P(S > k). Therefore it is reasonable to take

Qo = ckP(S = k) and ap = ckP(S > k),

where each ¢ is a positive and P are prior guesses for the relevant prob-
abilities. Intepretations for the ¢;s can be found by considering the esti-
mates/predictives for the conditional hazards

i Qg + N
P (Snpr = k[Snpr 2 kY3, V) = ko + nkz + ak? +ng

It is seen that large c; reflects strong belief in the prior estimate/predictive
P(S = k|S > k), and a small ¢; reflects a corresponding weak belief in
P(S = k|S > k). Similar interpretations can be found for S and Bis.

5.3 Posterior trips

A complication with obtaining the posterior trips arises if some of the obser-
vations are interval censored. Suppose that one observation (¢ = n) is interval
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censored, that is, S, is known to be in the interval [y, ..., k] (kz < co and
T, > kr). The (random) updated parameters are given, for M), by

a;:.g = apo + Nko + Jak

and |
021 =ap + i+ I(k < kn) + jﬁk,

where ny = Y00 I(S; = k) and nyy = Y0 I(S; > k). Here Jor and Jp

are random and defined on {0, 1} where

I(Jar=1) = I(S0 = klky < S < kr, Sty o0y Sncy Ty ooy T

I( Tk =1) = I(Sa > klks < Su < k1, Sty ey Suct, Ty oy T

and

P 7. 1) = P(Sy = K|S, w1y Snety Thy ooy T
(jak = ) - P(lﬁ <S5, < kLISI,---,Sn—l,Tl,---,Tn_1)

which is given, up to a constant of proportionality, by

Tk}i:f(l—-ﬂ) X ﬁ (1——51),

I=ky I=k+1
where
Qo + Nko
T, =
Qro + Ngo + g1 + ngy
and

& = Bro+ i I(Ti =k, S; < k)
C7 Bt e+ D I(T3 2 kS < K)

for k € {ki,...,kz}. For morc than one interval censored observation we
can proceed by sampling the missing data, conditional on all the other ob-
servations, obtain the predictive estimate, or whatever is required, and then
take the average over a number of simulations. Without loss of generality, let
S15 s Sm (m < n) be interval censored, with S; € (E1()s s k)] (T > ki)
The approach is to sample iteratively, for j = 1, ...,m, from

P8Ik € 55 < kg, S(j),Tu))a
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where (S(;),1(;)) contains all the information in the data and from the sam-
pled variates except on individual j. Note that if

Sy N {kl(j)a ---ykL(j)} =0

then S; is taken uniformly from {ky;y, ..., kz(j)}. At iteration ¢ we have then
sampled

{Sj(t) = 1,...,m},

which, combined with the observed data, gives the estimator PO, The re-
quired estimator is then given by the average

71 iﬁ’(t)
t=1

for some large enough 7 to ensure convergence of the simulated Markov chain.
Such a procedure can be viewed as a stochastic version of the iterative al-
gorithm for obtaining the self consistent estimator in Frydman (1992). Es-
sentially the sampling from [Sj|...] replaces taking the expectation of [S;]...].
Note that it is also possible to consider the situation in which 7' and S
are both interval censored using a modified version of the algorithm just

described.

5.4 Example

We analyse a data set presented by De Gruttola and Lagakos (1989) and
reanalysed by Frydman (1992. Table 1). 262 haemophiliacs, divided into
two groups, heavily and lightly treated, were followed up over a period of
time after receiving HIV infected blood. Observations are discretised into
6 months intervals. State 1 is infection free, state 2 corresponds to HIV
infection and state 3 is the onset of AIDS. According to current mainstream
theory, it is not possible to have AIDS without first being HIV and so it is
not possible to move directly from state 1 to state 3. Therefore

P((k=1.0) = (k,2)) =0,

and we can achieve this by delining ag, = 0 for all k. For the illustrative
results that follow. we take a Bavesian bootstrap approach; that is, we set
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the prior parameters to zero. De Gruttola and Lagakos (1989) and Frydman
(1992) both analysed the data nonparametrically via self consistent estima-
tors (Turnbull, 1976) but the former assumed the times in states 1 and 2 to
be independent.

Figure 11 is the estimated cumulative distributions of times to HIV in-
fections for the two groups. These are similar to the results obtained by
Frydman. Figures 12 and 13 are, respectively, the estimated marginal cu-
mulative distributions for the onset of AIDS under assumptions (c) and (a).
These highlight differences under the two quite valid assumptions.

10

o8

06

04

02

oo

Figure 11: Estimated cumulative distributions of times to HIV infection;
lightly treated—-, heavily treated- - -

If there is uncertainty in which assumption, or model, to choose then
-a possibility is to obtain an estimator which is comprised of a mixture of
estimators under the different assumptions. Explicitly this involves taking
the estimator P given by

P = P(a)m(]VI(a)|data) + p(b)ﬁ(ﬁ/f(b)lda.ta) + I%C)W(M(C)ldata),

where ]3(.) is the estimator under M and 7(M()|data) is the posterior weight
assigned to M), that is,

W(M(.)[data) x w(datalM(,)) X W(M(_)),
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Figure 12: Estimated (marginal) cumulative distributions of times to onset
of Aids, assumption (c); lightly treated—, heavily treated- - -
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Figure 13: Estimated (marginal) cumulative distributions of times to onset
of Aids, assumption (a); lightly treated—-, heavily treated- - -
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where m(M(,) is the prior weight assigned to model M. Therefore to obtain

the estimator P it only remains to evaluate w(data|M()). These are in fact
straightforward to calculate. It remains to decide on the values of the as and
Ps with which to determine the 7 (data|M,). First, for large as and fs the
prior specifications should swamp the data and the model. This is the case
and for a = 8 = 10°

logw(datalM(‘)) = —578.8 for all M,

(we have removed the

H a;::]ko] ag;kl]
k (ko + akl)[”k0+nk1]

from 7(data|M(,) which is common to all M()). To represent vague a priori
information we consider iz = A = 107¢, for A = 1, 10,100,

logr (data| M) = —390.3, ~337.3, —284.4,

logr (data| M) = —260.0, ~234.6, —209.3,

and

logm (data| M) = —249.2, —226.1, —203.1.
(c)

As far as Bayes factors are concerned therefore the data support M, the
Markov model.

6 Discussion

Following a description of the Dirichlet process in Section 2.1, we demon-
strated in Section 2.2 the use of the Dirichlet process with respect to func-
tional estimation. We showed how it is possible to incorporate prior informa-
tion on both the mean and variance on the unknown parameter. In Section
3.2 we briefly considered the MDP model.

In Section 3 stochastic process priors were described, in particular the
neutral to the right process. In particular, we showed how to specify and
interpret the mean and variance of an unknown survival curve, developed
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the full posterior distribution and, via illustrative analysis, implemented a
full Bayesian solution using simulation.

In Section 4 we described Polya tree priors for partition models. We
demonstrated the use of these priors in modelling errors in both hierarchical
and non-hierarchical frameworks. In particular we were able to capture both
‘well behaved’ and ‘badly behaved’ distributions.

In Section 5 priors constructed from exchangeable processes were detailed
and their use demonstrated in a three state disease process model.

A natural question that arises is how to choose the appropriate approach
for a given problem. Due to the difficulties involved in simulating a con-
tinuous time stochastic process, we recommend the use of such processes
only when interest is in the specific function being modelled as a process, for
example, the cumulative distribution/hazard function.

We have found Polya trees particularly appropriate for modelling error
distributions in a large class of models, including linear models, generalised
linear models and frailty models. In particular, it is straightforward to fix
the location (and scale) of a random probability measure chosen from such
a prior. g

Exchangeable processes are more suited to predictive inference and es-
pecially useful in extending the traditional alive/death survival models to
incorporate multiple states.

This paper is an exposé of the current state of the art of Bayesian nonpara-
metrics from our perspective. The work is ongoing and a number of problems
remain unresolved. In particular, more work is required in the following ar-
eas: a full Bayesian nonparametric analysis involving covariate information;
multivariate priors based on stochastic processes; multivariate error models
involving Polya trees; developing exchangeable processes to cover a larger
class of problems; and nonparametric sensitivity analysis (Lenk, 1996).

A further question that arises is the extent to which we currently under-
stand the potential mathematical consequences of the tool-kit we are devel-
oping. Diaconis and Freedman (1986) present a nonparametric model that
uses a symmetrized Dirichlet prior for the underlying distribution and an
independent prior for its median. They then demonstrate that seemingly
innocuous choices for the latter lead to an inconsistent Bayes estimate of
the median. For the same model, they show other reasonable priors for the
median that are consistent. The source of the problem, when it occurs, ap-
pears to be the infinite dimensionality of the nuisance parameter. In light of
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results such as in Hjort (1990) and Diaconis and Freedman (1993) that give
demonstrably consistent nonparametric Bayesian procedures, general theo-
retical advances that pinpoint the pitfalls would indeed prove valuable. In
the interim, we advocate the use of prudent albeit heuristic sensitivity anal-
yses and look forward to more formal developments in this direction that
would afford the practitioner a higher degree of assurance.
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Appendix

Here we give a brief outline the MCMC algorithms for the models described in
Section 4.4; for full details see the references cited in the main text. We will
concentrate on the hierarchical generalised linear model since this is the most
complex. Recall the first stage binomial model given by

Yijl(Zij = Zij) ~ binomia,l(z,-j,nij),

and that, given the {Z;;}, the {Y;} are mutually independent. The second stage
is given by

lOgit(Z,'j) = X,'jﬂ + @,‘]‘,
where

O1nys ey Onn, | F ~j5q F

Finally, the prior specifications are that
F~ PT(II, A)

and a normal prior with zero mean and large variance term is taken for .
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Samples from the relevant full conditional distributions, including
p(FlY, Z7ﬂ)7 p(ZijIY;'hF’ﬂ)a and p(ﬂIYa ZvF)a

are obtained using an MCMC algorithm and, in particular, a Metropolis/Hastings/
Gibbs method. The full conditional distribution for F is a Polya tree which has
been updated, to give the posterior Polya tree, obtained from the ), n; iid obser-
vations

Gij = logit(Z,-j) - 3(,']-,6.

A random Fj; is then taken as deseribed in Section 4.2.

Sampling from the full conditional of 3 proceeds as follows. Recall that F is
sampled to the level M giving Fy; as a sequence of weights, {W : k = 1,...,2M},
on the r = 2M sets at level M, say Aj,...,A,. The likelihood of 3, given Z and
F, M is

- l(ﬂIZ’FM) = HWk(ﬁ)l])a

where Wi(8,15) = Fy(Ax(,47)) and logit(Z;;) — Xi;8 € Ax(B,15). With this like-
lihood established, a Metropolis/Hastings step can be used, after some preliminary
work to establish a good proposal distribution, to sample the full conditional for S.
An identical approach can be used for sampling the full conditional distributions
of Zij-

An alternative method for sampling the full conditionals for § and 0;; (replac-
ing Z;;) uses latent variables. The joint distribution for 8 and ©;;, given F, is
given, up to a constant of proportionality, by =

y exp(¥;; Xi;8 + 4:;09i;)
f(ﬂ’ (')ulF) XX {1 + exp(‘, ijﬂ + Oij)}ﬂ.j

2(03;| F)p(B).

We can write this in another way by introducing the latent variables U;; and V;;
and defining the joint distribution

f(B,0i5,Usj, Vi | F)  p(B)x

exp (=i %ij — vij(nij — 4i5)) I (uij > log(1 + €7%49),v;; > log(1 + %)) p(©;;| F),

where now Z;; = X;;8 + 0;;. It is easy to see that the marginal distribution for
B and ©;; is as required. This eases the Gibbs sampler since the full conditionals
for B and ©;; are now of known types, albeit restricted to particular sets (Damien

and Walker, 1996).
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