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SUMMARY

We introduce a new method for sampling the so called mixture of Dirich-
let process ( MIDP) model which has recently received a great deal of attention
in the literature (Bush & MacEarchen. 1996; Mueller et al.. 1996). The solu-
tion is based on the introduction of strategic latent variables to facilitate the
implementation of a Gibbs sampler in which all full conditional distributions
are of known types and can be sampled directly.

Kevwords: Latent variables, Gibbs sampler, Dirichlet process.

1 Introduction

This paper is concerned with the following general hierarchical model involv-
ing the Dirichlet process which is commonly known as the MDP model:

zl0; ~ fla8), i=1Lon,
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The notation is taken from the paper of Mueller et al. (1996). Briefly the
probability model assumes z; given 8; (i = L.....n) is an observation {rom
the known distribution f(.: ;). Here D represents a Dirichlet process { Fergu-
son. 1973) and G is a discrete random distribution (taken from the Dirichlet
process) conditional on which the {6;} are independent and identically dis-
tributed (iid). The parameters of the Dirichlet process are the distribution
(io which centers the process in that £G = Gy and a > 0 which loosely
represents the strength of belief in Cio.

There is now a substantial amount of literature involving this model { Es-
cobar. 1994: Escobar & West, 1995: MacEarchen. 1994: West et al.. 1994:
MacEarchen & Mueller, 1994: Bush & MacEarchen. 1996: Mueller et al..
1996). Inference is performed using Markov chain Monte Carlo (MCMC)
methods {Tiernev. 1994) and in particular the Gibbs sampler (Smith and
Roberts. 1993). This requires sampling sequentially from the full conditional
dist: wmtions. For us (at least for the moment) there is no loss of generality
in assuming that both a and Gy are fixed.

The full conditional distribution for 6, poses the problem for the Gibbs
sampler (usually the others are of known types). This distribution is given.
up to a constant of proportionality, by

F7(8:) = f(:10:{aGo(8:) + 3 8,60 },
I

where &(.) is the measure putting mass | at #. Here we will always use a
* to represent a conditional distribution. [f g0 = o [ f(z:]0i)dGo(6;) is an-
alytically tractable then f*(.) can be sampled directly. That is. §; is taken
from the distribution proportional to f(z;|6;)Go(8:) with probability propor-
tional to g or is taken to be 8, {j # {) with probability proportional to
¢y = flyilb;).

The only difficulties with implementing a Gibbs sampler for the MDP
model are when the integral [ f(z.]0,)dGo(8;) is intractable and hence ¢, is
not available. According to MacEarchen & Mueller (1994):

Evaluation of the integral expression for ¢, is non-trivial unless
(Go(0) and f(.10) are a conjugate pair. Current implementations
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therefore either use a conjugate model or rely on approximate
computations. {)vercoming this computational hurdle is impor-
tant because of the wide range of current and potential applica-
tions of MDP models. and the need in most applications to leave
the conjugate framework.

An excellent review of these current approximate computations is found in
the MacEarchen & Mueller paper. They go on to say:

[f the base distribution y(f) and the likelihood f(.16) are chosen
as a conjugate pair. then all distributions can be efficiently gen-
erated from and no complications arise. [f. however, (7o(#) is not
conjugate with f(.|#) then resampling the configuration becomes
difficult. as the integral ¢,y may be computationally intensive.

The method of MacEarchen & Mueller to solving the nonconjugate model
relies on the introduction of a latent model and is described in Section 3 of
their paper. We omit the details of their algorithm.

In the next Section we introduce a latent model which runs on a Gibbs
sampler in which all the full conditional distributions are of known types
and can be sampled directly. Essentially we are introducing latent variables
‘which mean that the ¢os can be evaluated.

2 A New Latent MDP Model

Recall the problem is sampling from the distribution given by

£00) x 1(8){aGo(8:) + 3 &, (0}
JEI

where we have written f(z,]0,) as {(d,). Here we introduce the latent vari-
able u, and construct the joint density with 6, given. up to a constant of
proportionality. by

Frbew) x Tug <10,)) § aGo(8,) + 3 64,(6;)
J#i



where [(.) represents an indicator function. Clearly the marginal distribution
fur 4, is f7i.). Note that the full posterior distribution for (#. 1) is given by

fH8.u) x H {[(u.,- < 1(8;)) (aGg(f);) + Z&;;(O,‘)) } .

i<i

Therefore the Gibbs sampler now runs over the additional full conditionals
given by '

Fl)f) =0 0.0(8,).
where ["(«. b) is the uniform distribution on the interval («. ). and the full
conditional for #; is now in the more friendly form.

[ lilui) x aGol0) (1(6:) > wi)+ Y 64,(8:).

18,)>u,

The full conditional for u; is obviously trivial to sample. The second should
not pose any problem either. it is merely sampling from (g restricted to a
particular set.

Erample |
Here we consider a one-dimensional nonconjugate normal/uniform MDP
model. Then /(4,) = exp{=0.5(z, — 8,)*/c?*} and Gy = U'(yr. puy) and

Fri8:ih) x a{pg—pn) M (max{pg. a,} < 0; < min{py. by })+ Z bs,(0,).
18,)>u,

where a,; = 5; — oy/=2logu; and b,; = = + o/=2logu; (note that «; < 1).

Thus 4, is taken from the uniform distribution on the interval
(max{pr,ay} min{py. byi})
with probability proportional to
gio = a(py — pr) " (min{pg. by} — max{pr.aul}).

or is equal to #; : {(8;) > u; with probability proportional to 1. Note there-
fore that if {8, : 1(68,) > w,} = 0 then 6; is automatically taken from the
uniform distribution.



For the general nonconjugate model let A, = {#, : /(4,) > w:} so we can
write o . .
alin( A 0Gol0 L) + Tia 15, 05,10:)

aliplAy) + Zf(ﬂ,»u. L

where 7yf.. A0 is the normalised Gol:)116; € 1,,). Therefore we take 8,
from (it A, ) with probability

f.(():'iux.‘ =

()Gul'f{u:)
aGolAu) + is, 154, L

or take O, = 6, : 110, > w,} with probability 1/(aGyi ) + g, 54, 1)- Note
that the new’ ¢, = aGold,,).

Erample 2
Here we consider a binomial model with logit link. that is.

=P, ~ binomial(p;. n,) and logitp; = 4.,.
Therefore
exp(8;z:)
(1 +exp(6;))™

For this model we introduce the latent variables (u,.r,) so that the joint
posterior with #, 1s given by

fl=10,) x

f{0i ugovi]z) x {e'”':'_”""'""'f (u; > log{1 + 6_6'},1‘,‘ > log{l + 66'}) Cr’u(/)il} .

where Gy(8,) = N(8,|p. a?) is the prior. Clearly the marginal posterior for 8,
is as required. With the inclusion of the Dirichlet prior the full conditional
for #, becomes

Fr8iluivi) x I{aw < 8; < by) {GGO(GJ + 250,(91)} .
J#i

where a,; = —log(e" — 1) and b,; = log(e” — 1). Therefore we take
0, = 8 : ay; < 8; < by or from a truricated normal distribution accord-
ing to easily available probabilities noting that ¢, = f(am‘bu.) N(8,|u.o)db,.

Complications can arise when #, is p-dimensional (p > 1) since obtaining
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a p-dimensional A, may be difficult. A solution to this problem is to con-
sider #. = 1#,,.....0,,) where p is the dimension of each ;. The strategy is
to veplace the xampling from f*(#;11;) by sampling from (44,8 _ .. u, ). for
k=1....p. Here

G:u(—"O(gi- Am) + Zl(d”)ul 66,(9:)

f"fgl,._.'wt_g. o u,.-) = " .
=4 QulGU(()(—fr)w -‘{UL) + Zl(éj)you, [(9(—k)i = 9(—»’;“]

where a,, = alig(Ay) and Go(#ky,. Awi) = [ Go(b;. Ay )dby,.
Evample J
Here we consider a probit model for which
y.| 3, ~ binomial(®(Jp, + Fp,2).n). (=1....n.

where @(.) represents the standard normal distribution function. The full
conditional distribution for J; is given by

[(3) x {‘5(301 + )" (1= (30 + 31.':;))71'_%} {0G0(3i) + 253,(3,)} :
¥

and we assume Go(.J,) = .V(3;lg. T). We introduce the latent variables (1. v,
anch that their joint density with J; is given, up to a constant of proportion-
ality. by

fr(3uwe) x f{u; < O(Fgi + Jizi) v < {1 = (30 + J’u:i)}"'"y'}

X {QGO(J;) + Z&s,(i‘)} .

J#
The full conditional for Jy; is given by

Fuldne e v) x T (e < Jo, < by) {a.\-'u.-lu.a) + 3 530,(30,.)} .

Jl):“jlt

and the full conditional for Jy; is given by

.l"UuI.iu:.u,.vi)xI(Ci<-3u<fh){a.\’(3lht,0)+ > 5.3\,(31;')},

oy =30,
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where v, = @717 = Jyz.0b, = (07N n) = Fo)/z. 0o = 7NN = 3,5, and
do= 00N\ = 375, with 7, = uh M and N, = | — a;,-m"’_""']. Only minor
modifications ave required if y, = 0.y, = n, or 7, = 0.

Provided we can implement the algorithm for the parametric model z,ifl, ~
f(. 8.0 with 6, ~iid (7o using the latent variable idea then we can also imple-
ment it for the corresponding MDP model. Damien and Walker (1996) show
that such an algorithm is applicable for a large class of nonconjugate models.
This is detailed in the following Theorem whose proof is omitted since it is
similar 1o the theorem appearing in Damien and Walker {1996} from which
further details and examples can be found.

THEOREM. [f
K
k=t

where the [,(8) are nonnegative invertible functions, that ts. if {.(8) > u then
{l is possible to obtain the set Apy = {0 : L(8) > u}. then it is possible to
implement a (/ibbs sampler for generating random variates from the MDP
model in which all the full conditionals are of knouwn types.

Note that the ‘new’ ¢, = aC/o(ﬂi\;1.4ku,)-

3 Numerical Example

We use the same example as that used by MacEarchen at al. (1996) who
demoustrate their "next generation™ sequential importance sampling tech-
nique in that paper. The data comes from Beckett and Diaconis (1994} and
consists of 320 binomial experiments where 320 thumbtacks were flicked nine
times each. The data for each experiment was the number of times the tack
landed point up. That is, for i = [.....320. y;|p; ~ binomial(p;.9). Theretore
taking Gio = (7(0.1) and introducing latent variables (u;.¢;) we have

Fripion.r) x I(UZ <plv, < (L —pl)9-9a) {01(0 <pi<1)+ ZépJ(Px)} .
JFe



Therefore

Hipiue) xalla, < p < b))+ Z &p,(p).

1, <py <k,

where )
iy
“z:{ u; ify. >0

0 otherwise.

and

h, _ 1 —- l_'l/(g—y.) if Ui < ()
: 1 otherwise.

Mso fr(w,) = C(0.p") and f~(v;) = {(0.(1=p,)* ). These full conditionals
are sampled straightforwardly. We implement the Gibbs sampler with o
fixed at four different values (0.1.L.3. 10). Within each iteration we generate
a sample from the distribution of p,4 |data to compare with the analysis
of MacEarchen at al. (1996). \We collect 3000 samples for each of the four
analvses which takes several seconds. The estimates for the predicitve density
of pnyi|data for the four values of @ are shown in Figure 1. These compare
very well with the results of MacEarchen at al. (1996. Figure 2).

4 Conclusions

The MDP model is very useful in a variety of applications. With the increas-
ing use of the Gibbs sampler in Bayesian analysis it is necessary to have easy
and fast ways of generating random variates from awkward conditional dis-
tributions, For the MDP model several researchers referred to in this paper
have pointed out a serious computational hurdle in implementing the Gibbs
sampler. In this paper, we have provided a general solution to the problem
which bypasses the computational difficulty.
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Figure 1: Estimates of the densities for p,4; given the data for four viaues
of a.
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