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Introduction

The purpose of this paper will be to discuss model parameter instability over
time, especially in the context of switching regressions, and to illustrate the
discussion with an application to a financial markets model. Topics discussed are
motivated by two interests developed during the research stage. The first invol-
ves a class of independent, linear, and unbiased residuals from which test statis-
tics may be derived. The second interest is in the application, which deals with
a simple regression for which we anticipated two regime switching( i.e. the model
parameters are stable but change value once at some point in time).

Section one of the paper will discuss techniques for testing for the presence
and location of coefficient instability. We present a discussion of recursive res-
iduals, which are factors common to, or strongly related to, each of the testing
procedures discussed. We then present several procedures useful for testing for
the presence( not point ) of switching or instability. We conclude with a proced-
ure to aid in detecting the point in time of a possible switch. 1In section two, we
introduce a market model and discuss specific mechanisms that might cause model
parameters to shift. We then proceed to apply‘some of the techniques of section

one to the model, and discuss some of the shortcomings relative to the application.



Recursive Residuals

We shall now examine recursive residuals, in an attempt to gain a perspective

about them. Based on the model Y=XP+U under classical assumptions,
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The w,. are obviously normal mean zero and with variance vz ( say ). The numerator
is the L.S, predictor with variance 62(l+xr(Xrthr_l)'lx; . Additionally we have
E(wrws) = 0 (a straight forward exercise in expanding terms) which suffices to est-
ablish independence in normally distributed (mean zero) random variables. These
residuals are easily computed since simple recursive formulae exist for updating
both bj and (ngj)—l. We can view the set of wr's as a transformation from a T-
dimensional space (of the T dependent variables yr) to a T-k dimensional space (of
the Wr)' Letting H denote the transformation, U the vector of ur's, and W the vec-
tor of wr'S, we have

HY = HXP~+ HU =W

E(W) = 0 , which implies that we can choose H so that HX = 0, and so

HY = HU = W , which shows that we can also express the w_as a linear trans-

formation on the u_. This formula (as presented in (1) ) is
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Let us now examine the matrix H with the simple model yr=<x+ur (where &% is a

constant). In this case we have (recalling K=1’Xr=l’xr-1 is an r-1 by 1 vector of

e % o . - O 0
e % o o - ° ©
or =l . —->(T—\)KT

This matrix is known as Helmert's transformation. Kendall and Stuart, (2) for ex-
ample, use it to prove the independence of the sample mean and variance in samples
from normal populations., The sums of squares of elements in any row is one, the

sum of cross products of elements in any two rows is zero, and it has Jacobian eq-
ual to unity. Thus, at least for this special case we have HH' = IT-l'
The transformation H has similar properties in the general setting too. Since

HU =W , and E(WW') ?GalT_K , we have

2
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An even more interesting property of H exhibits itself when we examine H'H. We
write
E(W'W)= (T-K)§2 = E(U'H'HU) = E(trUU'H'H) = trE(UU'H'H) =G “tr(H'H) or
tr(H'H)=T-K

Also (H'H)(H'H) = H'L = H'H so H'H is idempotent. One matrix with the same two

T-KH

properties as H'H which we have seen before, is the matrix M=IT - XT(X%XT)'IX% used
in the definition of least squares residuals. Theil(3) shows that for H, and in
fact for any transformation yielding Linear Unbiased residual vectors with Scalar
covariance matrix (LUS), we get H'H=M. We may therefore write three useful relation-
ships:

(i) MU = (H'H)U = H'(HU) = H'W = e

(ii) HY = HU = He =W

(iii) W'W = Y'H'HY = Y'MY = Y'M'MY = e'e
Theil produces a member of the LUS class which he refers to as BLUS, or Best LUS.
This is the LUS which produces the residual vector having minimum expected squared
length of the error vector. BLUS residuals are indépendent and yield statistics
with distributions equally tractable as those produced by recursive residuals,
What they apparently lack is a simple interpretation under parameter instability.
Another way to contrast BLUS and recursive residuals is to view BLUS as a hybrid of

LUS bred to minimize error, and recursive residuals as the hybrid bred to yield a

simple intuitive and visual interpretation (via plots) under parameter instability.



Cusum and Cusum Squares Test

One of the first tests to use recursive residuals in testing for non-stable
parameters wés the cusum test developed by Brown,Durbin, and Evans (BDE). Beside
providing a test in the statistical sense, this approach has the added appeal of
providing a visual aid to detecting model instability.

BDE (1) construct scaled, running sums of recursive residuals called CUSUMS;

r
Wr = é‘ 1: ‘”j , r=FK+l,...,T which are examined under the null hypothesis
kt

Ho of stable coefficients, and where & is an estimate of the common standard dev-
h,

iation of the wj. BDE originally used [ZJ w?/(T-Ki as their estimate of 3-, but in
the comments to (1), Harvey pointed out that the alternative 3'* = [Z(wj-Q)Z/(T-K-l)-]‘/Z
would improve the procedure, as the cusum will tend to be larger in aglolute value
under the alternative hypothesis. An added advantage of this new ej:is the fact
thatYﬁ?*;QT-K) has a t-distribution under Ho (see Harvey and Collier(4)). The
{ Wri form a sequence of asymptotically normal variables such that E(Wr)=0,V(Wr)=r-K
and Cov(Wr,WS)=min(r,s)-K , to a good approximation. By approximating Wr with a
continuous Gaussian process, BDE develop "confidence bands" around plots of Wr for
r=K+1,...T. Anderson’( 1) points out that cusums will yield a slightly conservative
test, due to the continuous approximation. We reject HO if the plot of cusums "str-
ays' outside the bands. The behavior of the plot may reveal information regarding
coefficient movement independent of the testing procedure. BDE emphasize that the
function of the "band lines" is to provide a yardstick against which to asses the
observed behavior of the plot.

When coefficient instability takes the form of a swifch from one stable regime
to another, it is easy to see how the systematic nature of change will cause the
cusums Wr to deviate away from zero (in one direction) until they cross a certain

confidence band, On the other hand, a haphazard departure from constancy may not



permit the cusums to "build" away from zero,but may simply cause fluctuations. To

cope with this problem, BDE suggest plotting and developing a test on CUSUM SQUARES;
r S
2, &2
s =.Zw. | L' = — r=K+1,...T

Under Ho» s, has a betadistribution with mean (r-K)/(T-K) =/4r. A plot of the
means [&r forms a line with slope 1/(T-K) , and BDE develop a technique for placing
parallel lines about this plot so that the probability of the sample path crossing
one or both lines is ® , a specified significance level.

Harvey's Sequential Chow Test

Harvey (5 ) develops a sequence of independent Chow tests to test for instab-
ility, using partial cusum squares. By using the recursive relationships (develop-

ed in BDE and elsewhere) ;

RSS, = RSS, +w2.
j-1 j

n
2
RSSn '2: Wj , where RSSi denotes the RSS obtained from runn-
) ket

1

ing a regression on the first i observations only, and w, is the recursive residual
]

as before, Harvey notes that the standard Chow test can be written

nem )
(RSS2 - RSSl)/m .g;|w,/m
* F = = #% ]2 , where RSSl applies to the first n
(RSS,) /n-K 2 w./(n-K)
Fku J

observations and RSS2 applies to ntm observations. Under the null hypothesis Ho
of stability developed before, which implies the wj are independent and share common
variance, it is obvious that the right hand side of * is the ratio of two independent
chi squares divided by their respective degrees of freedom. Working backward to the

left hand side of * provides an "alternative" proof that the Chow statistic has an

F distribution.



With * as a model, Harvey suggests breaking up a full set of T observations
available into p mutually exclusive groups with m, (> K) observations in each group.
Defining n, =m + m, + cer 4+ m, for i = 1,2,...,p and ny = K, recursive residuals

are used to define

:.Zw i=1,2,...p
‘\n_ﬂ

which are independent and distributed chi square. We can now form the p-1 statis-

tics
nt
Z/m izn‘yam
== % i=2,3,...p
’Zz/<n - B Wil(n,_; - K)
3=| ] fk\']

which may be regarded as a sequence of Chow tests., The Fis are mutually independent
under H0 (a lemma due to Hogg and Tanis is required) , and so a variety of tests
involving the probability that a particular number or combination of Fi rejects the
null hypothesis when it is true are available. Harvey also indicates a method for
computing the probability Ar that no run of r significant values occurs under the
null hypothesis.

Varying Parameter Regression (VPR)

In this section we will discuss two tests based on linear time varying para-
meter models where the regression parameters follow a simple random walk.

Using the notation found in Sant( &) , suppose the scalar Y. is generated by
the model Y, = xtpt +-£t for t=1,2,...,T , and where X is a K-dimensional row

vector of exogenous variables at time t , and the K-dimensional column vector (Et

evolves according to the structure (%t = (Qt_l + u where it and u_ are unobser-

ved error terms with mean zero, and-the following relationships hold:



2
B(E €)= O, T

o 2
E(uiuj) = Sij d'u P

E( E,uj) =0 Sij = Kronecker delta, and P is assum-
i
A
ed known. Letting (3t(t') be an estimate of (3t using observations 1 through t',
and G'th(t') be the covariance matrix of rgt(t'), the Kalman filter is a sequential

A
algorithm for estimating (3t(t) given by

A A A
e = D+ xOy - x feD)

where

-1
= - ! - '+
Kt Rt(t l)xt (xth(t 1)xt 1)

Rt(t) = Rt(t-l) - Ktxth(t-l)

2 (t-1) = A 1
folen) = gD
R (t-1) = R_;(t-1) +P

A
If P =0 (i.e. stable coefficients) it can be shown that (3t(T) is equal to its

A
ordinary least squares analogue, and the scalar stochastic innovations et=yt-xtFt(t-l)

"driving" the filter are exactly the recursive residuals of BDE (modulo a scaling

A

factor). A recursive algorithim suggested in BDE to compute efficiently the Pt's

is also identical to the Kalman algorithm when P=0.

Garbade (f) develops a test which appears useful for the case of one explan-
atory variable. If the parameter vector (3t has dimension n=1, the likelihood stat-
istic

* N
-2L0G A = -2(L (Po) - L (P)) where;



*
L (+) - is the concentrated log likelihood function

3 is the maximum likelihood estimate of P

Po is an hypothesized value of P ?0
is asymptotically 'X-Z(l) under a true null hypothesis. When P=0 however, -21og}‘
will be more concentrated thanjﬁz(l). In simulations run on (i) a random walk
with zero drift model, (ii) a discrete jump(two stable regimes with a discrete shift),
and (iii) a stable Markov process, Garbade found that the VPR test was much more
powerful than cusum squares or cusums (with cusum squares out performing cusums) in
rejecting a false null hypothesis of stable coefficients.

LaMotte and McWhorter ( 8) have recently developed an exact test for the pres-
ence of instability. Their test involves the development of a statistic which appears
to be a generalized version of the one derived by Harvey above (actually the inverse
of Harvey's). Beginning with the VPR model, they introduce a transformation on
y=(y1,y2,...,yT)' resulting in residuals sharing all the proprties of the LUS res-

iduals, except for a possibly non-scalar covariance matrix. They form z=Hy, where

2 2
z ~ N(O, 6; I+ GL.HVH') , and where V is the variance-covariance matrix

of y, and such that

Hx=0 , HH'=I , H'H=M and they then show that

T-p

! — ! - =
z = y'My = SSE Lo

2 2. -
and (@, + Aio‘u) lhqi,\. X

where Q, = z'P.P.'z
i ii
2
r,
i

The J\

...,)\K are the distinct eigenvalues for H'VH with multiplicities TyseeesTy

l,
respectively, and the Pi are (T-p) by r, matrices whose columns are orthonormal

eigenvectors of H'VH. LaMotte and McWhorter (LM) prove that the Qi are mutually

independent,



We may now define
= = r.
Sg sl Qi ) ng 1 L

2
Underlaf ru = 0, it follows that

*ok Fg = (Sg/ng)/((SSE-Sg)/(T-p—ng))

is distributed Fn T-p-n We may rewrite **% to aid in comparing it to Harvey's
g’ g
work;
k
F =(.Lq.,/ .2:(2,)«T-p—n)/n ) which is a generalization of the inverse
g L ezan L g 8

of Harvey's Fi statistics. Now, whereas Harvey proceeds to look at tests based on
all the Fi’ IM proceed to produce guidelines for choosing that partition g which
yields a test Fg with the largest power.

Quandt Procedure

Quandt (9 ) introduced a maximum likelihood procedure for finding an abrupt
shift from one stable parameter regime to another. Under the assumption of normal
errors in a regression model, the likelihood under dual regimes takes on a simple

, . . )\ o A A, . .
form, and the likelihood ratio § = L(w)/L(fl), where L(w) is the likelihood under
A
the assumption of one regime, and L({)) is the maximum likelihood achieved by part-
itioning the data timeewise as two regimes over the entire estimable range, reduces
nicely to
* *
AL AT-t AT
Ax = 0.1' G, /&
t *
Here T is the number of time units, t the time at which an optimal partition occurs,
A
A . . . .
ql the estimated standard error of regime i, and @ the estimated standard error

of the regression over all the data. While this procedure is feasible for spotting

the location of a possible shift (it can easily be implemented on a computer for



even large data sets), it does not offer a means for statistically corroborating
the existence of a shift. It was originally thought that functions of A (particul-
arly -2logA ) would provide known distributions (possibly asymptotic). Unfortun-
ately the uiscrete time frame we are working in lacks properties necessary to derive
feasible statistics. The Quandt proceedure survives primarily as a tool to aid in
spotting shift location, although plots of )t:nmy be used to "shed light" on the
stability of the regression, and to indicate whether changes have occurred as an

abrupt transition or gradually.
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Market Models

Since 1964 one of the foremost models produced to explain asset returns has
been the Capital Asset Pricing Model (CAPM) . The most commonly referred to version
is attributed primarily to Sharpe (i0) , and slightly later to Lintner (§1), and
Mossin (12).

As stated in an article by Bicksler (}3), the basic assumptions underlying the
model are:

1. All investors are risk averse and choose portfolios in a manner consistent

with maximizing expected utility of single-period terminal wealth

2. Portfolio investment opportunities can be described solely in terms of
means and variances (or standard dev1at10ns) of the ex-ante distribution
of onerperidd portfolio returnms.

3. Investors have homogeneous expectations regarding means, variances, and cov-
ariances of returns for all securities in the investment opportunity set and,
in addition, all investors have identical investment opportunity sets.

4, Capital markets are efficient in the sense that borrowing and lending rates
are equal. There are no restrictions to short sales, no taxes, no trans-
actions costs, and capital assets are perfectly divisible, et cetera.

5. The supply of all capital assets is given.

The fundamental result is:
L) = . - R

E(Rl) Rf + ﬁl(E(Rre f)
where E(Rm) is the expected return on the market portfolio (of all risky assets)

E(Ri) is the expected return on an indivdual security for the single
period being considered

Rf is the riskless rate of return (for both borrowing and lending)

63i = Cov(Ri, Rm)/ var(Rm) is the systematic risk of the ith security
Breen and Lerner (JY) first suggested that Beta values are not stable over long
periods (i.e. a firm's risk characteristic changes over time, probably due to stra-
tegic and operational management decisions) . Pettway carried out an empirical ex-
amination (l5) in which he concluded that in the period between 1971 and 1976, some

instability (for at least a year) did exist in the electric utility industry.

Other major criticisms of the model are that the borrowing and lending assum-



ptions are too restrictive (and do not reflect reality) , and that it is necessary

to use a proxy (such as the New York Stock Exchange index) for the market return Rm-
Ross (Ilb) has derived a market model which results in a '"generalized" CAPM in that
CAPM is a specific case of it. With little of the "excess baggage'" in the way of
CAPM assumptions, Ross reproduces the basic form of CAPM in a model which also allows
us to use a market index in a context where it is truly a determinant of a firm's
ex-ante expected return. We present the basic idea behind this model, known as the

Arbitrage Pricing Theory (APT), and reinterpret the modes' analogue to R We do

£
this primar113 as a means of justifying the estimation procedure we use, which inv-
olves using a composite index of market returns in place éf Rm-
As presented in the Ross paper, APT is based on the following arguments:
Suppose asset returns are generated by some stochastic relation
X, = Ei + {318 + Ei. ; i=1,2,...,n
where Ei is a constant term representing the ex-ante expected return
S is a mean zero common factor (we do not need to specify it, but if CAPM
were indeed true it would re?resent the deviations of the market return from its
trend)
£ =( El,..., En) is a mean zero noise vector
We now form an arbitrage portfolio 7 of the n assets. Here 41 is a 1 by n vector
of asset proportions with the property that ’2'e = 0, where e is the n by 1 vector
(1,1,...,1)'. 1In this portfolio, the wealth invested in long assets is exactly
balanced by the amount borrowed from short sales and, net, the portfolio uses no
wealth. The portfolio is also chosen in a well diversified manner to permit us to

use the law of large numbers to approximately eliminate the noise term 72'g , and

in such a fashion that it eliminates sysyematic risk as well ('Q'F =0).
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Thus the pdrtfolio return R is:
nix = (') + (PN + e
(9B + ()b

"L'E where E is the vector of ex-ante mean returns

R

n

The model is named Arbitrage because in place of the primary assumptions of CAPM,
it simply requires that arbitrage opportunities not exist, i.e. the ability to make
money from a zero wealth portfolio be disallowed. Since ”L is a zero wealth port-
folio we must have

R=7'E =0, or
72'(5 = "L'e =0 Q'E =0 , and this in turn implies that E must be a linear comb-
ination of e and (i So we can write

Ei = E0 + a Pi
By forming the market portfolio O(m on E we get

& E=E =E + a (having normalized & (S = 1)

m m 0 m
so a=E -E andE, =E + (E -E)(s, ,
m 0 i 0 m o’ {"i

which is the arbitrage equivalent of CAPM,

Assuming this could all be achieved among firms listed in the market return
index we use below, then Em can be interpreted as that index. Also Eo’ which is

analogous to R. in CAPM, can be interpreted as the return which any zero beta port-

f

folio 0(p(i.e. Np(i = 0) will yield. If an R_ does exist, then Ross shows that

f



Empirical Results

We examine below the stability of the parameters of the model RCe =a+ me

where RCe = Daily returns (adjusted for dividends) of Consolidated Edison of New
York

Rm = Daily market returns (based on volume weighted index)
Data was obtained from CRSP tapes (Center for Research on Security Prices-Univer-
sity of Chicago), for the interval between January 9, 1974 and October 24, 1974.
During this interval ,treasury bill rates (and rates of other relatively riskless
notes) were in a period of sharp ascent. We do not account for this in our model,
but treat this as something to "look for" in our stability tests. We expect these
rajes to affect the stability of the intercept. We emphasize that the spirit of
this investigation was primarily in the interest of observing the behavior of the
test procedurés, and not with an eye toward estimation. Also during this period,
Consolidated Edison announced for the first time in ninety four years it would not
pay out a quaterly dividend (April 18) . We felt that this may have signalled in-
formation to the market concerning the riskiness of the firm, and that this may
affect the level of b, which is a measure of firm risk (under CAFPM or APT)

Three of the tests described in Part I were readily available through the
Troll soféware package. These were CUSUM, CUSUMSQUARE, and the QUANDT LIKELIHOOD
RATIOS (plots of 1og10‘lt, which yield time of optimal partition of the data at the
minimum plot value). We present below a brief description and analysis of each of
four sequences of plots of these tests, in the order mentioned above. The four
sequences correspond to

(i) Tests run on the full set of data

(ii) Tests run on full data set minus thirty observations beginning at and
several weeks after the April 18 dividend announcement (to permit a stabilization

period) - Cases 1-70 and 100-202



(iii) Tests run on cases 1-70

(iv) Tests run on cases 100-202
Labeled plots will be found in the stated order at the end of the paper. The sig-
nificance bands in the cusum and cusumsq plots correspond to tests at the 57 level
of significance.

Before we proceed to describe the results, let us recall the model we are using.
Under CAPM interpretation we have

E(Rce) = Rg + {3E(Rm - Rf) which we estimate with 0.L.S. from R, =at+ me
where a = Rf(l-b). Thus, in a period ef rising‘}, "a" may not exhibit extreme behav-
ior because of offsetting effects ( we suspect r% of rising within the range of
from a level of 0.3 to as much as 0.9). Therefore instability of treasury bill rates
and other notes related to R, will exhibit themselves best in periods when (3 is rel-

f

atively constant. These effects should be about the same under APT interpretation

of "a", We also note that there was no serial correlation present in any of the
time periods we examined (using DW at 1%)

SEQUENCE-I
Cusums deviate from zero but return by the end. Inconclusive test at 5%, but in-
stability suspected.
Cusumsq yields significant test for instability, and the plot travels past both
confidence bands. It is unclear to us what the significance of this might be.
The Quandt plot reveals a monotonically decreasing sequence of values until t=56 or
so. Varible values between -55 and ~68 appear until t=75 (Con Ed made their announ-
cement at t=70). After t=75 we note a sharp discontinuous change denoted by # signs
which indicates an abrupt shift in the likelihood function when the data is partit-
ioned after t=75 (a plot of actual returns revealed a large outlier at t=73).

We conclude that parameter shifting of some nature has occurred, and that "b"
is responsible for at least some of the evidence, due to its suspected link with the

April 18 dividend decision.

le



SEQUENCE-II
Because the data is daily, any shifting process due to an abrupt change in the env-
ironment (the dividend decision) will probably require some time to work itself out.
Present theories about the market point toward very efficient (time-wise) mechan-
isms at work. We felt that by eliminating time cases 71-99 (corresponding to April
19 to May 30) we should greatly decrease any problems that might arise in this area.
We will see in the plots that t=58 to t=99 may have been a better choice. By not
accounting for the possibility of erratic behavior before April 18, we ignore the
possibility of an information leak to selective portions of the market before the
actual public announcement.

The cusum plot follows the same pattern as before but does not deviate as far.

Cusumsq indicates significant departure from stability as before, however the
elimination of the thirty data points has caused the plot to stray outside of just
one band-not both.

The Quandt plot shows a well defined minimum with no "local competition' at
about t=56. It is again quite apparent that a shift has occurred. What is at ques-
tion still is parameter characteristics in each regime. What we suspect,of course,
is a rising intercept and a relatively constant slope of different value in éach
regime,

SEQUENCE-III (cases 1-70)

As mentioned above, we felt that this period should be stable relative to the slope,
but not the intercept. However, we did not consider the possible effects on the
slope before April 18 (case 70), and this seems to have caused the following plot
behavior;

Cusums decrease gradually but not past a critical point. We were unable to infer
anything from this behavior.

Cusumsq indicates the possibility of a switch and rejects Ho.



The Quandt plot shows an extreme value (boxed in) at .the bottom left hand corner
indicating a best partition would be to aésume one regime. However, with a bias
toward forming twb regimes brought about by the cusumsq test, we see that another
good choice is at t=57 or so. This reinforces our belief that the mechanism at
work shifting the slope requires the interval t=58 to t=99 to "iron itself out" .
SEQUENCE-IV  (cases 100-202)
Cusums just manage to pass the critical band on the positive side.
While cusumsq begin to deviate from zero, they easily stay within the critical bands
(for once!) and indicate no shift.
The Quandt plot indicates a cluster of low values at and near the beginning (bottom
left)-indicating no shift-with an erratic but uptrending pattern afterwards.
Our conclusions for this portion of the data are that it is a relatively stable
period for the slope, but not the intercept. This is felt because cusumsq and Quandt
indicate constancy, but cusum rejects it with positive deviation-which could be acc-
ounted for by a rising intercept (and constant slope) , as mentioned above.
Further analysis would now take the form of repartitioning the data as sugg-

ested above, and examining the model with tests aimed at detecting shifts in just

the slope or just the intercept (see Farley and Hinich (|7) for an example).
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