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1. Introduction
Regression models are often specified to include ratio vari-
ablés such as household consumption per member, rggional income per
capita, savings as a fraction of income, and profit of a firm per
unit of its assets or sales. In cross sectional studies, the moti-
vation for utilizing ratio variables is usually to eliminate the in-
fluence of size to better isolate non-size effects, (Kuh and Meyer,
1955). In the analysis of time series data, ratio variables arise
in adjusting for seasonality and inflation.
Ratio variables are also used to implement weighted least
squares estimation for heteroscedastic regression models,'(Johnston,
1972, pp. 214-221.) As Kuh and Meyer empasized, the Gauss-Markov
Theorem for heteroscedastic linear models provides a systematic and
rigorous basis for introducing ratio variables in certain circum-
stances. Various authors, including Fisher (1957), Glejser (1969),
Harvey (1976), Park (1966), Rutemiller and Bowers (1968), and Taylor
(1978), have discussed the estimation of heteroscedastic models, but
they have not been developed with sufficient generality to encompass
the common and useful practice of utilizing both deflated and unde-
flated independent variables in the same model.

In this paper we will examine a very broad family of nonlinear
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regression models which generalize Harvey's multiplicative model for
heteroscedasticity to allow deflation (or inflation) of independent
variables. Rao's scoring method (Rao, 1973, pp. 367-70) will be
used to develop a convenient procedure for calculating maximum like-
lihood estimators.

There has always seemed to have been confusion about the rela-
tionship of correlation to the use of ratio variables. Several
authors, including Pearson (1897), Kuh and Meyer (1955) and Madansky
(1964), have discussed the spurious correlation that may arise from
using a common variable to deflate both dependent and independent
variables. Other writers have warned against using multiple corre-
lation coefficients to compare the goodness of fit of models with
alternative transformations of the dependent variable. (On the
other hand Granger and Newbold [1976] find that maximizing R can
be an appropriate strategy for analyzing a family of transformations
of both dependent and independent variables.) We will develop here
a simple way of using the standard errors of the regressions to com-
pare the likelihood of alternative specifications involving hetero-
scedasticity or deflated dependent variables.

Our methods of model specification and estimation will be
illustrated by reanalyzing Mooz's (1978) capital cost data for nu-
clear power plants. Some of the issues of concern here were raised

in a rather similar setting by Griliches (1972).



2. Model and Notation

Throughout this paper we will examine the following nonlinear,
heteroscedastic regression model:
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(1a)
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Here {Zéi’ X Y.:1 £i<m 1241%<n} are observed data, and {aj,

ji’ i

Bj:l < j £ m} are parameters. In general we consider Zji and aj to be
vectors of size Pj x 1, and in and Bj to be of size qj x 1.

The following -assumptions are maintained:

(i) The disturbances {uizl £1i St are mutually independent

and normally distributed with mean zero and variance
2Z; .a
E(ui) = 02e 111 (1b)

with Z and ul as in the initial term of the

1i

summation in (la), and 02 > 0 an additional parameter.

(ii) The parameters {ajzl 352}, {Bj:l £3<nl, and 02
are to be estimated, while {uj:l + 1S53 Sn}are
prespecified.

(iii) The variables Z. are either nonstochastic or

ii and Xj

i

stochastic but distributed independently of the uy with a

2
distribution not involving the parameters aj’ Bj, and O ,
n A
(iv) Y. Zl'= 0. The importance of this assumption, which
i
i=1

imposes no real lack of generality, will become clear in
Section 3.
(v) The parameters to be estimated are identifiable.

Some additional notation will simplify subsequent analysis:
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X = e iy 1xji (1<3%m (2a)
% = (x*18,)Z 153 2b
2% = (88 (153559 (2b)
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.Y; = “li lYi (2¢)
-Z!.0
€, =e 1 lu. (2d)
i i
In addition we will use the following partitioned vectors and
matrices:
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B =lof iog eee o By cer B (3b)
' Ei e:f'l
e! _I ve € :_.._.. veg —— (3c)
- EL n;&&: 20

The dimension of X, B', and €are respectively (2n x r+s), (1 x r+s),
m
and (1 x 2n). Here r= L p,and s= 5L q . In section 3 we will

j=1 j=11]
often write €y € and X as ei(ﬁ), E(_B_,Oz), and 2(_(:5_,02) to emphasize
their functional dependence on the parameters.

Three special cases of this model are of special interest:

(i) If a1=0 and 2 = 1 so that all of the deflation coeffi-



cients ags %, ap are prespecified, we obtain a homosce-
dastic linear regression model involving ql independent

variables represented by the vector X i and prespecified

1
deflated independent variables given by X;i,-

the most common applications, pj =1, Z, is the logarithm

o, X*.. I
ml

of a measure of size, and aj =-1(2<3j<m). Alterna-
tively if dj = 1 we obtain an interaction variable.

(ii) 1If ul =0 and £ 2 2, we have a nonlinear, homoscedastic
regression model which generalizes an example discussed by
Draper and Smith (1966, pp. 266~284). In this case the

degree of deflation of X,, *++, X, is to be estimated from

L
the data.

(iii) If Xy4 = 0 and # = 1, we have the linear model with multi-
plicative heteroscedasticity. Harvey (1976) discusses es-
timation of a; and Bj (2 £ jSm) in this case. (Bl is
obviously unidentifiable and is taken to be zero.) Kmenta
(1971, pp. 256-264) also discusses this case but with the
added restriction that p; = l. |

Furthermore if o4 is known, it is easy to see that this case

can be reformulated as a homoscedastic linear model in the deflated
variables Y*, X;, IR X;. This is the familiar case of weighted

least squares.,
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3. Estimation
To study estimation, we reformulate the model (la-b) using the
the definitions (2a-d) as

m
y* = % x*'B, + ¢,
i _ 3173 i

.

J
Here the {61:1 < i < n} are mutually independent and normally dis-—
tributed with mean zero and variance 02.

The transformation from Yi to Y; involves parameters B to be
estimated. In such a cése the likelihood function of the sample can
be written as the pfoduct of the probébility density of the {Y;:l <
1 £ n} and the Jacobian J of the transforma;ion from Yl see Yn to Yl

(Box and Cox, 1964, p. 215). From (2c) and assumption (iv) it is

easy to see that

[
I
=

=1
This will provide a very convenient simplification to our analysis.

The likelihood functions L(ﬁ,oz) can be expressed as

L(g,oz) = (a7 o) e

* .



so that

2, _ _n n 2, 1 1° 2
log L(B,0°) = - E—log(Zn) - 5'108(0 ) -—5 I ai(ﬁ) (4)

202 i=1
where, using (la) and (2d) we write
-Z! o m Z..0,
eg) =e Hliy - pedtix p) (5)

From (4) it is clear that the maximum likelihood estimators of f and
02, say B and 82, have some of the properties of ordinary least

squares estimators:

n _
(1) § must minimize I Ei(B)2 (6a)
B o 1E
A n I 2
(11) %= L1 €,()*, and (6b)
n, i=
i=1
(iii) log L(E,Sz) = - %-log(Zﬂ) - %.1og (82) - %- (6¢)

Rather than attempting to directly solve the nonlinear normal
equations associated with (6a), we develop an iterative estimation
procedure utilizing Rao's method of scoring (Rao, 1973, pp. 367-70).
For this we consider a trial value §0 and let 02 be defined from

0
(6b):

2 _1
0 n i=1 —0

We define the efficient score S(@O) and the information I(ﬁo) to be:

S(g,) = a_ET log L(Eo,og), and (7a)
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2
I8y = El- 5557 Log L(B;00)] (7b)

Then the revised estimate §1 is calculated as

_ -1
By = By + 1(B) 5By . (7¢)
This procedure is continued until convergence of Og. The resulting
maximum likelihood estimator . ﬁ is asymptotically normal with mean B

and covariance matrix I(B) 102

Because of the special form of the model that we are considering,
the method of scoring is computationally quite convenient. From (5)

it is .easily seen that

9 o ok _ <
BaJ & (B) =2y jleizll 133240
] _ X < 2 £
3B E (ﬁ) = -in 1s2j5m
J
so that (4) implies
_9_ 2y 1,y g v 2 <<
883 log L(B,07) = Oz(izleizji + 6311212 23, (@535 2)
] 2 1 n 1
38T log L(B,07) = —E-Z EiX* 12j35m
j o%i=1 ' 31

Here 6j1 is defined to be one if j = 1 and zero for other values of j.

From (3a-c) we find that
S(By) = X(B,00) '€ (By:00) (8w

In a similar fashion one can confirm that

32 1 ' n
L % ok
E[- vy aak log L(B,0 )] 2( Z Z¥,7%, + 6 6

.)
i=1 JiTki 1 i=1 li 1

(1 ¢istk 29
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which implies that

1By = K(Bp0h)' KBy0p) (8b)

Thus the revised estimate_gl is given by

By - By =[X(Bg0) 'X(Bo02) 1 K(B,00) '£(BaTp)

and the correction for §O takes the form of an ordinary least
squares esﬁimator with € as the dependent variable and X as the data
matrix. Moreover the ordinary standard errors of the final correc-
tion serve as standard errors of the final estimate_ﬁ.

In the particular case that le = 0, X'X is block diagonal so
that the scoring correction takes the form of one ordinary least
squares estimator associated with 0y and a second ordinary least

squares estimator for aZ’ Tety Oy 82, Ty, Bm‘ The first of these

two estimations is equivalent to Harvey's scoring procedure.

4. An Application
Policy decisions about alternative sources of energy require
projections of future capital costs based on a thorough understand-

ing of past experience. Recently W.E. Mooz (1978) published a de-
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tailed statistical analysis of the capital cost of nuclear power
plants constructed in the U.S. We will use data collected and
published by Mooz to illustrate the methods of analysis developed in
Section 3.

In the preparation of his data, Mooz first carries out a rather
complex interpolation to adjust annually reported capital costs for
the inflation of construction costs to obtain an estimafe of the
total capital cost of each plant measured in millioné of 1973 dol~-
lars. We label this variable as COST. Mooz also records the SIZE
of each plant, measured in installed megawatts of capacity. The de-
pendent variable selected by Mooz is the ratio 1000 COST/SIZE, which
measures costs in 1973 dollars per kilowatt of installed capacity.

| The following independent variables are included in Mooz's
final model [p. 32]:

SIZE - 1installed capacity in megawatts.

CPIS - date of issuance of the construction permit,

represented as a decimal equivalent of year and month,

e.g. 67.17 for February, 1967.

LOCl - a dummy variable indicating the FPC Region I, the
Northeastern U.S.

EXP - the natural logarithm of the cummulative number of
plants built by the architect-engineer.

TOWER - a dummy variable indicating the inclusion of a cooling
tower in the plant.

The data used by Mooz and also here is for 37 nuclear power
plants having cost data available and considered by Mooz to be

reliable. These plants were started between 1967 and 1972 and range
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in capacity from 457 megawatts to 1130‘megawatts. Their costs range
from 208 to 881 million 1973 dollars.

In our re—examination of these data we will investigate the use
of capacity to deflate both COST and the~ipdependent variables. For
our purpose we introduce the variable S=SIZE/GM(SIZE). Here
GM(SIZE) is the geometric mean of SIZE within the 39 plant database,
813.788 megawatts.

We consider models of the form

o a
3, 4

COST 64 LOCI S

o
(B, + B, SIZE)S 24 B, CPIS S
o o
+35EXPSS+B6TOWERS6+U (9)

2 _ 224
0 and E(y°) = 0°S and sometimes with the constraint

with E(u)
al = az.' (For our computations we have also scaled COST by a factor
1/379.745))

It is easy to verify that this specification is within the
family of ratio models (la), with Zj defined to be log(S). The
table summarizes our numerical analysis, first considering (9) .to be
unconstrained (full), and then under various constraints. In each
case the table éhows the maximum likelihood estimates of the coeffi-
, cients &j and gj and their respective standard errors. The table
also gives several measures of the goodness of fit of each specifi-

cation, (k=I,...V), namely the standard error q determined by (6b),

k

the likelihood ratio of each constrained model
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n
A /\2 A
L o o
Lﬁ = ____( Bk’ _k') = -(§-:I-:-
L(Br,08) L'k
and the chi-square statistic for testing the null hypothesis associ-

ated with the constrained model,

X2 = -2 log Li.
Under the null hypothesis that the constrained model is a correct
épecification, XZ asymptotically has the chi-square distribution
with degrees of freedom (df) equal to the number of constraints, so
that a critical value (e.g. X?OS) can be easily selected for
testing the constrained model against the full model.

A careful examination of the table provides a number of helpful
insights although our findings must be considered as rather tenta-
tive due to the relatively small sample available. In the full

model, o, = .6 which suggests some heteroscedasticity in the rela-

1
tionship determining COST, with the standard deviation of the dis-
turbance approximately 'in proportion to the square root of plant
size. The high valugs of‘az,"' ,&5 suggest a rather strong rela-
tionship between COST and SIZE, resembling a quadratic function of
SIZE with strong interaction between SIZE and LOCl and EXP. The
indication is that some deflation of COST is called for to adjust
for heteroscedasticity but the independent variables should not be

deflated as in weighted least squares but actually inflated for

SIZE.
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The second analysis (II:a1 = qz) is representative of several
attempts to simplify the full model without undue loss of goodness
of fit. The success of the simplification should be subjectively
evaluated in terms of the plausibility of the specification and of
the corresponding estimates, and the sacrifice of fit as measured by
G, x2, or (perhaps most suitably) by L*. Under the constraint that

A

o the standard deviation of the disturbance is estimated to be

1 &2’
almost directly -proportional to SIZE, and the first two terms of the
predictive equation are almost quadratic in SIZE with the remaining
terms similar to the full model. The likelihood ratio of this
specification compared to the full model is about 7 to 10 and cer-
tainly "accéptable" in the technical sense of the asymptotic X2
test.

We might interject a note about the computation of the esti-
mates. The scoring procedure was used with the initial values of

the deflation coefficients o "y O taken to be one and the

1
Bl, oo, 66 conditionally determined from ordinary least squares
using the deflated variables X*, Y*, Then a second data set was set
up corresponding to X, € and the corrections to the deflation coef-
ficients were determined from a second'ordinarf least squares re-
gression. This procedure was iterated until convergence of 8, the

(unadjusted) standard error of the conditional regression. In our

experience, satisfactory convergence occurred in two to six cycles
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although convergence was not uniformly good fop all deflation coef-
ficients. In fact &6 usually oscillated rather widely, indicating
poor identifiability of this parameter.

In analysés III-V of the table, the linear coefficients Bl’ trry
36 are estimated conditional on specified values of the deflation
coefficients. Specification III in its deflated form is equivalent
to the final model reported by Mooz. (Mooz uses 1060 COST/SIZE
rather than COST/S. Moreover our COST is multiplicatively rescaled
as already noted. Mooz's estimates can be obtained by multiplying
all statistics of III except L* and XZ by the factor 466.64.) Speci-
fication III achieves a considerable simplification at a rather high
but not conventionally significant  cost in goodness of fit. A
comparison of III with II sugges£s that Mooz might find it desirable
to add interaction terms of SIZE with both LOCl and EXP.

Analyses 1V and V explore other plausible, simple specifica-
tions. In IV, COST is linearly related to undeflated independent
variables, but with the standard deviation of the disturbances pro-
portional to SIZE, as in the heteroscedastic specification. V is a
homoscedastic specification relating SIZE to the undeflated indepen-
dent variables. The likelihood ratios of IV and V relative to III
are about .54 and .07 respectively so III seems to be clearly super-

ior among these three simple conditional models.
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5. Concluding Comments

Evaluating the adequancy of alternative model specifications is
an essential aspect of most data analysis. The coefficient of
determiﬁation R?has seemingly become the statistic of choice for
such comparisons when the dependent variable is invariant. Of
course the standard error of the regression (unadjusted or adjusted)
could serve equally well in this case.

When the comparisons involve transformations of the dependent
variable, it is widely recognized that the coefficient of determina-
tion is generally misleading because of changes in the total sum of
squares. Fortunately Box and Cox (1964) have given us a simple
method of comparing models involving power and logarithmic
transformations of the dependent variable. In the Box—-Cox case, the
dependent variable is multiplicatively standardized to have unitary
geometric mean, and the standard error of the regression or the
associated likelihood ratio is used fof comparisons. We have shown
in this paper that an analogous standardization of the deflation
variables yields a similar approach to the comparison of
specifications involving ratio transformations or
heteroscedasticity. In fact a wide family of specifications
involving both Box—Cox transformations and our deflations can be
easily investigated provided that the dependent variable and the

deflation variables are suitably standardized.
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