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Introduction

In an enormous variety of business research prob-
lems one is naturally interested in analyzing relation-
ships between two or more variables. If data on such
variables are available, one has a multivariate data set,
and statistical analysis provides many tools for analyz-
ing such data. Perhaps the most important analytic tool
is multiple regression analysis, but it is often diffi-
cult to comprehend the full power of multiple regression
in a conventional discussion of the subject. One is
usually presented with a situation in which a regression
problem has already been formulated--the dependent and
explanatory variables having been selected--and one
merely uses the techniques that are introduced to perform
the necessary final calculations. Such simplifications
obscure the important fact that much of statistical
analysis is a multistage process of trial and error,
that a good deal of exploratory work must be done to
select appropriate variables for study and to determine
relationships between them, and that a variety of statis-
tical tests and other procedures must be performed and
sound judgments made before one arrives at a satisfactory

choice of dependent and explanatory variables.



In these notes we place much emphasis on using
multiple regression analysis in conjunction with gra-
phical techniques, on methods of selecting variables and
constructing new variables by means of transformations,
and on the use of statistical tests as a guide in model
building. And although each of these methods makes a
unique contribution to the analysis, the combination of
them, used in an interactive mode, provides a powerful
means of exploring, analyzing, and summarizing useful
relationships in the data.

Access to a computer is, of course, essential
for effective application of these concepts. If appro-
priate programs are readily available, the computer can
execute the necessary graphical and statistical analyses
quickly and inexpensively. With its storage devices
the computer can provide convenient access to the large
data sets often encountered in business research and can
also retain new variables constructed in the course of an
investigation. Moreover, the computer relieves the
researcher of the need to involve himself personally in
the internal algebraic complexities of the methods used,
so that he can concentrate on the applied aspects of his
investigation.

How can one learn to use these methods effec-

tively? As in the use of many other statistical



concepts, one develops an understanding of important
technical aspects of each method and one practices and
gains experience by applying these methods in realistic
and challenging situations, using data of the kind en-
countered on the job and, of course, using appropriate
computer programs.

Experience has shown that each of these methods
has some characteristics which the user must keep in
mind and a multitude of additional properties which,
although interesting to the statistician, may not be
particularly useful to the business researcher. 1In
studying these methods it will therefore be appropriate
for us to focus our attention on their especially useful
characteristics and, whenever possible,to minimize
discussion of mathematiqally interesting but inessential
details.

Several of the sections that follow describe the
basic methods of statistical data analysis that will be
especially useful to us: multiple regression, graphical
analysis of residuals or errors, methods of selecting
variables, transformation of variables, and testing of
hypotheses. Our discussion, although concise, compre-
hends many important features of these concepts and we
utilize throughout an illustrative example which is
typical of a variety of problems encountered in business

research.



Multiple Regression Analysis

Nearly everyone interested in business research
has seen an application of multiple regression analysis
and knows some of its properties. Nevertheless, a brief
review in the context of a problem may be useful. Sup-
pose we are interested in studying absenteeism among
employees of the ABX Company. The data in Table 1l(a)

provide three characteristics of a sample of 77 pro-
duction employees in the company. The first column shows
the number of occasions of absenteeism during 1975 for
each of these employees. We will regard the dependent

variable in this analysis to be absenteeism, as seems

natural, and denote it as Y. Job complexity, denoted as

as Xl, and employee seniority, denoted as X2, are
regarded as explanatory variables. Xl is an index
ranging from 0 to 100 and measures the complexity of the
activities making up the job; X, is the number of com-
plete years that the employee has been with the company
(see Table 1(b)).

The regression equation relating absenteeism of
employees to level of job complexity and seniority for

the data in Table 1l(a) is found by an appropriate compu-

ter program to be



Table 1(a). Absenteeism, Job Complexity, and
Seniority of 77 Employees
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1 0 45 3 26 3 89 18 51 0 8 3
2 1 76 10 27 3 21 2 52 1 45 2
3 0 56 9 28 0 34 4 53 3 43 5
4 2 76 7 29 2 12 6 54 6 23 1
5 0 70 14 30 3 70 2 55 3 1 7
6 1 69 9 31 1 69 11 56 2 82 1
7 1 56 3 32 4 13 1 57 2 1 1
8 1 56 1 33 2 30 13 58 4 1 1
9 2 43 9 34 1 43 1 59 3 70 4
10 1 76 1 35 3 8 2 60 0 76 6
11 3 30 1 36 2 69 2 61 0 82 7
12 2 50 9 37 4 30 1 62 1 50 9
13 1 10 1 38 4 23 1 63 1 70 8
14 3 69 4 39 4 16 1 64 1 81 5
15 2 67 3 40 3 11 1 65 2 170 9
16 0 69 4 41 2 16 1 66 3 1 2
17 4 70 8 42 6 50 2 67 2 8 1
18 7 13 1 43 3 50 2 68 2 23 2
19 3 16 3 44 1 69 4 69 2 21 12
20 2 52 5 45 2 10 2 70 2 82 7
21 2 52 16 46 1 43 26 71 1 67 28
22 4 3 2 47 1 12 1 72 0 81 18
23 2 6 4 48 3 76 5 73 1 43 6
24 0 67 6 49 2 56 2 74 4 6 3
25 3 10 1 50 0 6 8 75 3 13 8
76 2 52 7
77 3 52 1

SOURCE:

Computer simulation by one of the authors.



Table 1(b).

Description of Variables for Which
Data Are Shown in Table 1l (a)

Variable Name

Description

Absenteeism

Job Complexity

Seniority

The number of distinct occasions
that the worker was absent during
1975. Each occasion consists of
one or more consecutive days of
absence.

An index ranging from zero to one
hundred, measured according to
procedures developed by Turner
and Lawrence.*

Number of complete years with the
company on December 31, 1975.

*Arthur N. Turner and Paul R. Lawrence, Industrial
Jobs and the Worker (Boston: Harvard University

Press, 1965).



(1) Y = 3.07 - .OlSXl - .063X2.

This equation can be interpreted as providing an esti-
mate of mean absenteeism for a given level of job com-
plexity and seniority. Moreover, if seniority is held
fixed, the equation shows that mean absenteeism tends to
fall by .015 for each unit increase in job complexity.
Also, if job complexity is held fixed, it shows thatmean
absenteeism tends to fall by 0.63 for each unit increase
in seniority. It is clear that such information pro-
vides a useful summary of the data.

How does the computer determine a regression
equation of the form (1)? First, let us consider a more

general equation of which (1) is a special case,

(2) Y = bO + blxl + b2X2.

th

The i of the n observations (n = 77 in the example)

can be denoted as Yi’ Xil’ X.2, i=1,...,n. The residual

i
e of the ith observation is defined as

(3a) e. =Y., - Y.

(3b) =Y., - (b, + b;X., + b, X,
1 1

i o T PyXiy + byXio).

Table 2 illustrates residuals determined by equation (1).



Table 2.

Construction of Selected Residuals from the

Regression Equation ¥ =3.07 - .015Xl - .063X2

Case Xq X, ¥ e
1 45 3 2.21 -2.21
2 76 10 1.30 -0.30
3 56 9 1.66 -1.66
4 76 7 1.49 0.51
5k 70 14 1.14 -1.14
6 69 9 1.47 -0.47
7 56 3 2.04 -1.04
8 56 1 2.17 -1.17
9 43 9 1.86 0.14
10 76 1 1.87 -0.87
76 52 7 1.85 0.15
77 52 i3 2.23 -1.23




The regression coefficients bo, bl’ and b2 are

chosen so as to minimize the sum of squares of these

residuals, denoted SSE,

The residuals (3a) and the sum of their squares
(4) are extremely important entities in regression
analysis. They are the basis for the well-known least
squares criterion and in this context they are considered
to be functions of the regression coefficients bO' bl’
and b,. When the values of these coefficients have been
determined from the data, both the residuals ei and SSE
become fixed numbers and can be used to supplement the
regression equation in summarizing the data. Various
steps will be introduced below to make both the residu-
als and their sums of squares more meaningful for this
purpose.

The sum of squared residuals is the basis of
two important statistical measures of the discrepancy
between the observed values of Y and the corresponding
values of ¥ determined by the fitted regression equation:
the standard error of the regression equation and the

multiple correlation coefficient.
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The standard error of the linear regression
equation, which we denote by s, is the square root of
the sum of squared residuals adjusted appropriately
(or divided) by the number of degrees of freedom. The
latter is calculated by subtracting the number of
regression coefficients in (1) from n, the total number

of observations. We thus write

2 A2
f "Xe. /Z(Y. - Y.)
_ SSE _ 1 _ i 1
(5) S _Vn—3 B n-3 n-3

and s equals 1.36 in the absenteeism example. Under

appropriate conditions, about 95 percent of the residuals
will be smaller than 2s in absolute value, which means
that for the corresponding observations Y will be

within 2s of Y.

The multiple correlation coefficient R can be
thought of as the square root of the "fraction of the
variation in Y (from its mean) explained by the linear
regression equation." It is obtained by comparing the
sum of squared residuals SSE to another quantity, the
total sum of squares, SST. The total sum of squares is

the sum of the squared deviations of Y about the mean Y,

n
(6) S8T =y (Y, - Y‘)z
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The multiple correlation coefficient can be defined by

the equation

. _ SST - SSE
(7) R— J_——S—S—T_m .

When there is only one explanatory variable in the
regression analysis, we call this simple regression and
the corresponding coirelation coefficient is called a
simple correlation. In this case the correlation coef-
ficient is given the sign of the regression coefficient
of the explanatory variable.

It is useful to observe that the multiple corre-
lation coefficient of Y with Xl and X2 is equal to the
simple correlation coefficient of Y with ¥.

These ideas can be extended easily to the more
general case of regression analysis involving p variables,
Xl’X2""’Xp—l’ and Y. The regression equation then has

the form

(8) ¥ =b.+ b.X. + ... + b

ot P1%y p-1%p-1°

The residuals are defined by (3a) and form the basis for
the least square criterion as well as for definitions of
the standard error of the regression equation and the

multiple correlation coefficient. The only modification
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required in equations (4) through (7) is appropriate
adjustment of the number of degrees of freedom in the
definition of s. Because there are p coefficients in

the linear regression equation (8), the number of degrees

of freedom is n - p so that
(9) s = ‘}_S_S_E_ .
n-p

Graphical Analysis of Residuals

Graphical examination of the data provides an
effective means of assuring that the regression equa-
tion and its standard error and correlation coefficient
summarize the data adequately. Without the use of
graphs one runs a risk of being seriously misled by a
linear regression analysis. Indeed, graphical examin-
ation of the relationship between the data and the
regression equation should be regarded as essential and
integral to regression analysis.

In the case of simple regression involving two
variables X and Y, the scatterplot is the central tool.
In addition to plotting the sample data points (X,Y), it
is helpful to graph the regression line Y = a + bX as
well as the error bands determined by the two lines
¥ = a + bX + 2s as is shown in Figure 1l(a), where the

linear regression seems appropriate for the data.
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Fig. 1(a) - 1(g). Various Illystrative Scatterplots
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Recall that in linear regression we assume that
for any given value of X, the observed errors are a
sample from a normally distributed (conditional) popu-
lation with mean or expected value 0 and with variance
02, which does not vary with the given value of X.
This implies that the error band ¥ + 2s should contain
approximately 95 percent of all the data points and that
for any given X approximately 95 percent of the corre-
sponding points are also within the band.

With this background in mind, it is easy to see
how the situations illustrated in Figures 1(b) - 1l(e),
which are of the kind commonly found in practice, ren-
der the linear regression equation or its standard
error misleading. Figure 1(b) sﬁows a situation in
which it appears that the variables X and Y have a non-
linear relationship. Moreover, the mean of the errors
does not appear to be zero for this sample; the mean (of
the conditional distribution) appears to be positive for
X values at the extremes of the data and the mean appears
to be negative in the middle of the data. Figure 1(c)
indicates the existence of outliers and these suggest
that the population is not normal for the corresponding
values of X. In Figure 1(d) the scatterplot suggests
that the distribution of errors is skewed, and Figure

l1(e), it seems reasonable to believe, shows that the
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variances of Y for larger values of X are not equal to
those for smaller values of X. Any of these situations
calls for caution in interpreting the regression anal-
ysis. In serious cases appropriate corrective steps
(some of which will be discussed below) should be taken.
In the case of multiple regression it is more
difficult to obtain effective graphical displays of the
data. When three or more variables are involved in the
analysis, several two-dimensional scatterplots are
required to depict adequately the relationship between
the data and the regression equation. One useful
scatterplot is obtained by plotting the predicted values
% and the actual values Y, i.e., the points (?,Y) as
in Figure 2.* One should include on the scatterplot
a graph of the line Y = Y and the error bands Y = ¥ + 2s.
Any point on the line corresponds to a situation in
which ¥ = Y; the vertical distance from the line to any
point represents an error e = Y - .

In addition to plots of Y against ¥, it is

important to examine scatterplots describing the

*On examination, Figure 2 indicates a possible problem
in using linear regression with the absenteeism data.
The errors are not a sample from a normal distribution.
This occurs because the dependent variable Y is con-
strained to be integer valued. This situation, not

uncommon in practice, causes little dlfflculty in the
present example.
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relationship between the residuals e and each of the
explanatory variables Xj as illustrated in Figure 3.
Here the points (Xj,e) are plotted as well as the line
e = 0 and the band e = + 2s.

Sometimes these scatterplots are difficult to
interpret and one can be assisted by a simple but infre-

quently used device called a component scatterplot.

For any explanatory variable Xj included in the multiple
regression equation, let §j denote ijj; then the

regression can be rewritten as

(10) =D +?l+...+§

0 p-1

and the actual values of the dependent variable can be
expressed with an error term as

(11) Y=>DL
The variables §l""’§p-l are called the systematic
components of the dependent variable Y. The component
scatterplot associated with an explanatory variable Xj
is then obtained by plotting the points (Xj,’?{j + e),
and it is also helpful to graph the line §j = ijj and
the error band §j = ijj + 2s. These are illustrated

in Figure 4 for the explanatory variable Xl'
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In a component scatterplot we are assuming that
by, = 0 and that ¥; = 0 for i # j in (11); this enables
us to examine the relationship between the dependent
variable Y = §j + e and Xj in temporary isolation. One
can then use these scatterplots to detect problems such
as those discussed in relation to Figure 1(b) through
l(e). For example, a component scatterplot which has an
appearance like that of Figure 1l(b) may indicate a non-
linear association between-the variable Y and the
explanatory variable Xj' and a component scatterplot
like that of Figure 1l(e) would suggest that the error
variances for various values of X. are not equal.

When the existence of such problems is detected,
it may be possible to correct for them by means of
appropriate transformations of variables, as discussed
below, or by using weighted regression. It is important
to remember ﬁhat none of the statistics provided by
the usual tabular regression output are indicators for
the presence of these kinds of problems and that graphi-

cal examination of the sort discussed above is essential.

Selecting Explanatory Variables

In developing a regression analysis of cross-

section data, the dependent variable is often not
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difficult to choose. In many cases it is identified
early in the study and usually remains fixed throughout
the analysis. Although in a complex investigation there
may be several dependent variables of interest, each is
usually analyzed separately and serves as the center of
attention in its own part of the project.

The problem of selecting explanatory variables
is more difficult and typically occupies the researcher
throughout most of his project. 1In the formulation
stage of the typical project, the researcher builds up
his personal understanding of the problem under study
by reviewing relevant literature, discussing the problem
with experienced people, extending his own direct
observation of it, and assimilating underlying theory.
Even at this early stage he is seeking factors that may
help explain important features of the problem. Out of
this work he chooses the dependent variable and a
set of candidates for explanatory variables. An import-
ant part of this process is the investigation and develop-
ment of appropriate measurement techniques. At the con-
clusion of this stage a sample of individual entities
is often selected and a measurement of the dependent
variable and each of the candidates for explanatory
variables is obtained for each individual in the sample.

These data are then transcribed and stored in the
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computer files which comprise the data base for the
study. Appendix A presents a small data base of this
type for the absenteeism study in which data on other
candidate explanatory variables besides job complexity
and seniority are contained.

Working with such data, the researcher uses
statistical methods, especially regression analysis, to
investigate relationships between the dependent variable
and the candidate explanatory variables. He may begin
by inspecting a table of simple correlation coefficients
which measure the association between each pair of the
variables (Table 3). He may then wish to obtain and
evaluate a large number of multiple regression equations
and scatterplots involving the dependent variable and
various subsets of the candidate explanatory variables.
In most cases it will be impractical to examine all
possible multiple regression equations, so his selection
must utilize his understanding of the problem at hand
in addition to various statistical aids.

Typically, one of the researcher's goals is to
select a regression equation which yields a high mul-
tiple correlation coefficient but which utilizes only a
few, carefully chosen, and well-understood explanatory
variables. He wants a high multiple correlation coef-
ficient, because this measures the association between

the dependent variable Y and the corresponding variable
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Table 3. Correlation Matrix for Absenteeism Study

a
: o 9D W n
- - © gy - o
0 X n ® O Y o
0 Q g © o) o o
i} 0~ ] 0N - o ko]
] IR 0} H w0 o & Qg
0 g © 0 A 0 . £ 0
0 0 23] [cIRRS) 0 5
Q O ® Z 0
P 0 o
Absenteeism 1.00 -.36 -.23 -.19 -.34 -.31 -.05
Job Complexity -.36 1.00 .50 -.25 .37 .28 -.08
Base Pay -.23 .50 1.00 -.02 .49 .33 .06
Foreman Satisfaction -.19 -.25 -,02 1.00 -.01 .20 .16
Seniority -.34 .37 .49 -.01 1l1l.00 .75 .15
Age -.31 .28 .33 .20 .75 1.00 .15
Number of Dependents -.05 -.08 .06 .16 .15 .15 1.00
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¥ determined by the regression (or between the dependent
variable and the explanatory variables jointly).

Roughly speaking, the higher the multiple regression
coefficient, the more useful is the regression equation.
On the other hand, the researcher needs to limit the
number of explanatory variables chosen from among the
candidates, because including too many variables in

the regression equation complicates interpretation -and
application of the regression equation, reduces its
statistical reliability, and, of course, increases the
cost of data collection and manipulation.

A useful guide in selecting explanatory variables
from the candidates is their partial correlation coef-
ficients with the dependent variable. To define this
statistic, suppose that the regression equation relating
Y to the explanatory variables Xl’XZ”"’Xp—l has a
multiple correlation coefficient Rl and that a second
regression equation relating Y to these same variables
together with the additional variable Xp has a multiple
correlation coefficient R2. The partial correlation
coefficient of Xp with Y, adjusted for the variables

Xl’XZ'f"'Xp-l is defined to be
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with the sign taken to be the same as the sign of bp in
the second regression equation. In selecting variables
the absolute value of the partial correlation coefficient
is used--the greater is the partial correlation coef-
ficient in absolute value, the greater is the increase

in the multiple correlation coefficient obtained by
appending Xp to the explanatory variables already
included in the regression equation.

Partial correlation coefficients can also provide
insights into the effect of removing one of the explana-
tory variables already in a multiple regression equation.
Most regression computer programs include as part of
their output the partial correlation coefficient of each
individual variable with the dependent variable, ad-
justed for all other explanatory variables included in
the regression equation. The variable whose removal
from the regression equation will cause the smallest
decrease in the multiple regression coefficient is the
one having the smallest (absolute) partial correlation
coefficient.

There are several computer programs for auto-
matically selecting explanatory variables from among
specified candidates using partial correlation coeffi-
cients calculated from the data base of the study.

Three that are commonly used are forward selection,
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stepwise regression, and backward elimination.

The forward selection program proceeds in an
iterative fashion by first selecting a single explana-
tory variable from those specified by the researcher,
then appending a second explanatory variable, and so on.
The first variable that is selected is the candidate
having the greatest (absolute) simple correlation
coefficient with the dependent variable. In each sub-
sequent step the forward selection program chooses for
inclusion the candidate variable having the greatest
(absolute) partial correlation coefficient with the
dependent variable, adjusted for the other explanatory
variables already selected. Selection continues as long
as a variable can be found having a sufficiently large
partial correlation coefficient.

Stepwise regression proceeds in a manner similar
to that of the forward selection procedure but with one
important difference. At each step beyond the first,
after the new variable is appended, the program re- .
examines all explanatory variables currently in the
regression equation to determine if any can be removed
without undply decreasing the value of the multiple
regression coefficient. This is accomplished by evalu-
ating the partial correlation coefficient of each in-

cluded explanatory variable with the dependent variable,
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adjusted for all other explanatory variables included

in the equation. The explanatory variable with the
smallest (absolute) partial correlation coefficient is
removed, provided its partial correlation coefficient is
sufficiently close to zero. Consequently, the final
result of stepwise regression is less dependent upon the
early steps of the process than is the case with the
forward selection program.

The other principal selection process is back-
ward elimination. This procedure begins with a multiple
regression equation which includes all of the candidate
explanatory variables and then removes explanatory
variables one at a time using the same criterion as that
applied in the deletion stage in stepwise regression.
Although there seems to be wide agreement that stepwise
regression is preferred over forward selection, there
is no general rule to determine whether stepwise
regression or backward elimination is preferable.

Many researchers often try both, compare the results,
and engage in further experimentation when the differ.

There is general agreement that no automatic
selection procedure should be used uncritically. None
of these procedures will always arrive at the best
selection from among candidate variables in terms of

the highest possible multiple correlation coefficient
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for a fixed number of candidate variables. More
importantly, they may fail to identify the regression
equation most consistent with the researcher's under-
standing of the problem. But, used with care, scepti-
cism, and willingness to experiment further, they can
be effective tools. 1In any case they are no replace-
ment for the graphical methods of examination described
in the preceeding section, which should be used in

conjunction with them.

Transforming Variables

One way of greatly extending the capabilities of
linear regression analysis is to make use of nonlinear
transformations of variables. A strategy for choosing
such transformations is evident from a simple example.
Consider the data in the scatterplot of Figure 5; no

straight line given by the equation
N
(Lr2) . Y = Db} + biX
can summarize these data adequately. The scatterplot

suggests that as X increases, Y tends to increase but at

a diminishing rate. Among the many equations which
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Fig, 5.

A Scatterplot of an Apparently
Nonlinear Relationship
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summarize data having this property, some of the simplest

are of the form

N~
(13) Y = by + by (1/%).

How can one choose b0 and bl in (13)? The
approach developed earlier for handling equation (12)
can be applied to (13) with very little modification.
It is natural to define the sum of squared errors of
(13) to be

_ _ _ 2
SSE = b, = by/X;)

i

(Y;

I 13

1

and to require that b0 and bl minimize SSE as before.
It might appear that a new computational procedure

is needed to find the values of b, and b but it turns

0 1’

out that this is not so. All that is necessary is to

proceed with a new variable X* given by
(14) X* = 1/X.

If SSE is rewritten in terms of X* as

n

2
= — - *
SSE izl (Y, = by - bX¥)”,

it is clear that the desired values of bO and bl can be
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found by obtaining the linear regression equation rela-

ting Y to X*,

A
Y = b, + b, X*,

One can therefore fit a nonlinear equation to the
data following the least squares criterion by first
transforming the variable X to the new variable X* using
(14) and then developing the ordinary linear regression
equation relating Y to X*. Operationally, the actual
values of X* can be either computed and stored as values
of a new variable in the data base or they can be tem-
porarily computed when needed by the regression program.
In the first case, the researcher utilizes a separate
program for computing the transformed variables required
and then uses a standard multiple regression program with
these new variables. In the second case, the researcher
uses a single program incorporating transformations and
regression analysis; he specifies the variables to be
included in the regression equation and any preliminary
transformation of these variables that is required. 1In
either mode of operation, many transformations in addition
to the reciprocal transformation (14) can be employed.

Three simple classes of transformations are

commonly used in business research:
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(a) reciprocals: X* = 1/X,

(b) powers: XI = X, X* = X", X* = X7, etc.

(c) logarithms: X* = log(X).
Figure 6 shows some of the equations that can be fitted
by combining linear regression with these transforma-
tions. The reciprocal transformation has already been
discussed. A polynomial

Y=b +bX+bX +...4+ b_ x271

0 1 2 p-1

of any degree p-1 can be fitted by the use of power
transformations together with multiple regression, al-
though polynomials of degree two or three suffice in many
cases. The logarithm transformation is often useful in
dealing with a variable whose values are all greater than
zero.

These transformations can also be applied to
several different explanatory variables. For example,

one could compute a regression equation of the form

. oo 2
(15) Y = b0 + bl(l/X) + b2X2 + b3X2 .

The main difficulty is that graphs cannot be so
easily prepared in these multivariate cases. Despite

this difficulty, appropriate graphs are extremely _ .
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important in visualizing these multivariate, nonlinear
regression equations and their relationships to data.
Most of the techniques described earlier can be used with
appropriate modifications, and component scatterplots

are especially useful. For example, the component scat-
terplot associated with X2 in (15) can be obtained by

graphing the equation
¥.= b.X, + b.X>

as well as the points (X2,§2 + e) where, as usual, the
residual e is determined by Y - ¥.

Some of the equations shown in Figure 6 involve
transformations of the dependent variables as well as of

the explanatory variables. For example, the equation

can be reformulated by taking natural logarithms of both

sides of the equation to get

log(Y) = b0 f le,

where bj = 1og(aj) for j = 0,1. Thus b0 and bl can be

computed by finding the ordinary regression equation
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relating the transformed dependent variable log(Y) to X.
Then a, and ay in the original equation are found by

means of the antilogarithms of b0 and bl'

Care must be taken when a transformation of the
dependent variable is utilized. 1In interpreting such an
analysis it is best to return to the original equation
rather than using the one containing the transformed
dependent variable. In particular, the correlation coef-
ficient associated with the transformed equation can be
misleading, and it is better to compute directly the cor-
relation coefficient of Y with Y. It should also be
recognized that the least squares criterion itself is
altered by a nonlinear transformation of the dependent
variable. One should carefully inspect the residuals of
the transformed equation to determine the suitability of
the regression analysis, as discussed previously in con-
junction with Figure 1.

A particularly useful type of variable is an

indicator variable, sometimes called a dummy variable.

Any variable having exactly two values, zero and one, is
called an indicator variable. Such a variable is used to
record the presence or absence of a particular éharac—
teristic or condition of each observation. A simple
example is the use of an indicator variable in the answer

to a yes/no question, in which the integer one indicates
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yes and zero indicates no.

It is frequently useful in regression analysis
to create an indicator variable by means of a transfor-
mation of some variable already included in the data
base. For example, an indicator variable Sl can be
established from the variable Foreman Satisfaction,
denoted S and indicative of a worker's satisfaction with
his foreman, which is included in the absenteeism data
base shown in Appendix A. The Foreman Satisfaction
variable takes on values according to the following
coding:

1 = very dissatisfied,

2 = somewhat dissatisfied,

3 = neither satisfied nor dissatisfied,

4 = fairly well satisfied,

5 = very satisfied.

An indicator variable Sl can be developed which indicates
whether or not an employee is very dissatisfied with his

foreman. Sl is made to take on the value one whenever

S takes on the value one--the employee is very dissatis-

fied--and Sl is given the value zero for all other values
of S. Table 4 shows the variables S and Sl'

An indicator variable can, of course, be included

among the explanatory variables in a multiple regression
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Table 4. Illustration of Indicator Variables Based on
the Explanatory Variable S, Foreman Satis-

faction
Values of Value of Indicator Variables
Foreman s S S S
Case Satisfaction 1 2 3 4
1 4 0 0 0 1
2 4 0 0 0 1
3 1 1 0 0 0
4 3 0 0 1 0
5 3 0 0 1 0
6 3 0 0 1 0
7 4 0 0 0 1
8 4 0 0 0 1
9 1 1 0 0 0
10 3 0 0 1 0
76 1 1 0 0 0
77 3 0 0 1 0

SOURCE: Appendix A
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equation. Standard regression computer programs can
handle an indicator variable in the same manner as any
other kind of explanatory variable. For example, in
using the absenteeism data one can find the regression
equation relating absenteeism (A) to job complexity (C),

seniority (SE), and the indicator variable S, introduced

1
above, which indicates whether the employee is very dis-

satisfied with his foreman.

A= 3.06 - .015C - .064SE + .220S;.
Interpretation of the coefficient of the indicator
variable is simple to explain. If we recall that Sl takes

on the values zero and one, and note that the coefficient

of S, is .220, then whenever S, = 1, A from the equation

1 1

above is larger by .220 than it is when Sl = 0. Thus we
can say that employees having the same level of job
complexity and seniority and who are very dissatisfied
with their foreman have an absenteeism that is .220
higher, on the average, than workers who are not very
dissatisfied. It should be clear that in general the
regression coefficient of an indicator variable repre-
sents the increment to ¥ associated with the character-

istic or condition that the indicator variable represents.

It is often helpful to use several indicator
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variables to represent several mutually exclusive condi-

tions or characteristics. For example, the variable
foreman satisfaction, S, records the five mutually
exclusive conditions: very dissatisfied, somewhat dis-
satisfied, etc. The indicator variable 52 in Table 4
indicates whether or not an employee is somewhat dis-
satisfied; 52 takes on the value one if the employee
indicates that he is somewhat dissatisfied and the value
zero for any other cgndition. The variables S3, S4,
and 85 are defined analogously. Note that only four
indicator variables need be used, because the fifth
condition, very satisfied, is implied whenever the four
other indicator variables are each equal to zero.

When the first four indicator variables are
included with job complexity and seniority as explanatory
variables for absenteeism, we obtain the regression

equation

(16) A= 3.048 - .017C - .042SE + . 1758

1 + 1.06382 - .181S - .46284

3

P . -

Assistance in interpreting this regression equation can

be provided by calculating the values of g associated with
the several foreman satisfaction conditions while job
complexity and seniority are held fixed. Table 5 shows

that the regression coefficients of the indicator
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and SE = 5

40

Values of A from Equation (16) with C = 40

Foreman Satisfaction, S

Conditional Mean
Absenteeism, A

Very Dissatisfied

Somewhat Dissatisfied

Neither Satisfied
nor Dissatisfied

Fairly Well Satisfied

Very Satisfied

2.333 = 2,158 +,175
3.221 = 2,158 +1.063
1.977 = 2.158 - . 181

1.696 = 2,158 -, 462

2,158
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variables Sl' 52’ S3, and S4 represent the increments to

ﬂ associated with the corresponding levels of foreman
satisfaction, relative to the value of i associated
with the fifth level of foreman satisfaction.

Some appreciation of the advantages of using
indicator variables can be gained by comparing the
regression equation (16) to one relating absenteeism
to job complexity, seniority, and foreman satisfaction,

S, itself,

(17) A = 4.435 - .019C - .055SE - .415S.

In (17) we see that A decreases by .415 whenever S
increases by one. This suggests that the average absen-
teeism of workers who are somewhat dissatisfied is .415
less than that of workers who are very dissatisfied, and
that a similar comparison of workers who are very satis-

fied with those who are fairly well satisfied leads to

the same difference in average absenteeism. Although this
situation may not be realistic, it is required by the
direct use of the variable S in the regression equation
(7). The use of indicator variables in equation (16),

on the other hand, allows a more flexible representation
of the changes in average absenteeism with increasing

foreman satisfaction.
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In selecting indicator variables for a multiple
regression equation, care must be taken to avoid a situ-
ation called singularity or unidentifiability. If one
attempts to find the regression equation which relates
absenteeism to the seven explanatory variables C, SE,
Sl’ S

S S4, and 85 by using a typical regression com-

2" 73!
puter program, then one will get none of the usual output
but only a cryptic comment such as "matrix singular" or
"equation unidentified." The problem is that no unique
regression equation is determined by the least squares
criterion and there are in fact infinitely many different
equations which fit the data equally well. This situ-
ation occurs whenever one of the explanatory variables ..
can be written as a linear function of the other explana-
tory variables, and it is the case in our example,
because we have

S. =1-8, -S, -8, -5,.
The difficulty can be eliminated by excluding the redun-
dant variable S5 from the equation. 1In general, whenever
a set of indicator variables is used to represent a set
of mutually exclusive conditions or circumstances like

degrees of foreman satisfaction, one of the logically ..

possible indicator variables should be excluded from
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the regression equation.

An indicator variable can also be used as a depen-
dent variable in a regression equation. Suppose it is
company policy to review the performance of any employee
having three or more occasions of absenteeism. Let A*
denote an indicator variable that is one if absenteeism
is three or larger and zero otherwise. The regression
equation relating A* to job complexity and seniority can

be found in the usual way,

A*= .645 - .041C - .019SE.

As usual, A* is interpreted as the '‘conditional mean of

the dependent variable A*, but in this context A* takes

on only the values 0 and 1, so its mean is equal to the
conditional probability that A* takes on the value 1.
Therefore A% is interpreted as the conditional probability
that an employee has three or more occasions of absen-
teeism, given his level of job complexity and seniority.
In general, when the dependent variable of a regression
equation is an indicator variable, then the regression
equation is regarded as giving the conditional probability
that the indicator variable is 1, given the levels of the

explanatory variables.

Special care must be exercised in using an
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indicator variable as a dependent variable. Because the
indicator variable takes oﬁ only the values zero and one,
the errors of the regression equation cannot be a sample
from a normal distribution. Moreover, it can be shown
that the variance of the errors is not constant. The
usual assumptions of linear regression analysis are
therefore not satisfied. However, if the sample size is
sufficiently large (greater than 30 for many applica-
tions), the nonnormality of the errors causes little dif-
ficulty. If, in addition, A* is within the interval .2
to .8 for most of the observations, then the variance
will be approximately constant and ordinary regression
analysis is usually satisfactory. If either of these two
conditions is violated, then the methods of logit or
probit analysis can be utilized.

One additional method of expanding the types of
equation that can be fitted to data using regression
analysis should be discussed, namely, the use of inter-
action variables. An interaction variable is simply the
product of two candidate explanatory variables. The role
of an interaction variable can be seen by comparing the

following two regression equations,

(18) A = 3.07- .015C - .063SE
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and

(19) A = 3.41 - .023C - .159SE + .002C*SE.

Equation (18) is said to be additive because & is ex-
pressed as the sum of two components, one depending on
job complexity and the other depending on seniority.
Equation (19) is said to be nonadditive because of the
interaction variable C*SE. Table 6 shows illustrative
values of A calculated from both the additive equation
(18) and the nonadditive equation (19). In the additive
equation the change in A as one moves from SE equal to
1l to SE equal to 5 is -.25, regardless of the value of C;
this is illustrated for three values of C in Table 6(a).
However, under the nonadditive equation the‘corresponding
changes in A vary with the level of C (Table 6(b)).
In general, the nonadditive equation defines a much more
complex relationship between the dependent variable and
the explanatory variables. Because of the complexity of
nonadditive equations, it is much more difficult to
obtain useful graphs of the data and its relationship to
the regression equation.

All of the methods discussed in this section en-
hance the flexibility of regression analysis and usually
require little added effort. It is very important to

keep all these techniques in mind when analyzing data.
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Table 6. Values of A for Given Values of C and SE
(a) As Determined by Equation (18)

9 2.20 1.90 1.60
SE 5 2.46 2.16 1.86
1 2.71 2.41 2.11
20 40 60
C

(b) As Determined by Equation (19)

9 1.88 1.78 1.68

SE 5 2.36 2.10 1.84
1 2.83 2.41 1.99

20 40 60
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However, if skillfully applied, ordinary multiple regres-
sion analysis using candidate variables directly will

often produce satisfactory results.

Hypothesis Testing in Data Analysis

i

We introduce the principal problem addressed in
this section by an example based on the absenteeism
data. Consider the following two regression equations,

previously shown as equations (16) and (1), respectively:

'
t

i

- 046284

(20) A= 3.048 - .017C - . 042SE + L1758 +1.063S, - . 1815,

and

(21) A = 3.07 - .015C - .063SE.

A question of obvious practical importance arises: Is
the first equation better, inlsome sense, than the second
equation?

One way to approach this question is to compare
the multiple correlation coefficients of the two regres-
sion equations, say R for (20) and R' for (21). If R is
much larger than R', then the first of the equations
would probably be preferred. 1In practice, however, it is
often difficult to decide whether the difference between

R and R' is sufficiently large to enable the researcher
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to choose between the equations. In this case, for
example, R = .5522 and R' = .4214 and it is not clear
whether the increase of R for (20) over R' for (21)
warrants the inclusion of the four additional variables.
Before continuing our discussion it will be
helpful to replace equations (20) and (21) with the

following more general equations:

(22) ¥ =Dby+b X, +...t A R

and

(23) ¥ = by + bIX, +...4 bly_1X i ;-

Here (22) is a regression equation involving p variables,
and (23) is a regression equation involving p' variables.
We call (22) the full equation and (23) the reduced ver-
sion of (22). It is assumed that p > p' and that all of
the explanatory variables of (23) are included in (22).
For convenience we also assume that the first p'-1l
explanatory variables included in (22) are the explanatory
variables of (23). Thus (22) includes all the explanatory
variables of (23) together with p - p' additional explana-
tory variables. Both of these regression equations are

assumed to have been computed from data comprised of n

observations of the variables. The multiple correlation
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coefficients corresponding to (22) and (23) will be
denoted as R and R' and the sum of the squared residuals
of these two equations as SSE and SSE', respectively.

In order to make further progress, it is necessary
to give a careful statement of the experimental situation
assumed to underlie the data. We assume that there is
some "true" relationship or model between all the vari-

ables in the full equation (22) of the form

(24) Y = BybByXyte et Ko 1 FBL Kyt B, X, g tE
The BO""’Bp—l are unknown numbers called parameters
and € is a random variable which is normally distributed
with mean zero and standard deviation o. This implies
that we view our data, which consist of n observations of
the variables, as having been generated by an underlying
process which advanced through the following steps:

(a) Either the researcher or a chance or deter-
ministic mechanism selected the n values of the explana-
tory variables and these values are observed by the
researcher.

(b) The chance mechanism selected a random sam-
Ple of n values of €, drawn independently from a normal
distribution having mean zero and standard deviation o.
The researcher does not observe this sample.

(c) Then n values of Y were determined from (24)

using true values of BO"“’Bp—l' These n values of Y
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are observed by the researcher but the true values of Bj
are unknown to him.

The regression equation (22), computed from the
data, is viewed as an estimate of the true relationship
or model (24). In other wofds, the computer regression

coefficients b ""’bp—l are estimates of the corre-

0

sponding parameters BO,...,B These computed regres-

p-1°
sion coefficients are determined by the underlying pro-
cess; they would vary from sample to sample and are
considered to be random variables having some probability
distribution. Similarly, the observed multiple corre-
lation coefficient R associated with (22) would vary from
sample to sample and is also viewed as a random variable.
Using this formulation, our problem of choosing
between the full equation (22) and the reduced version
(23) can be approached by means of a statistical hypothe-
sis test. If we can accept the hypothesié H0 that each
of the Bj corresponding to the explanatory variables in
(22) which are not in (23) is equal to zero, then clearly
(23) is the equation to be chosen. If we reject HO' then
(22) would be the preferred equation. Thus our null
hypothesis H, is that the true coefficients Bp”””sprl

are all equal to zero and the alternate hypothesis Hl is

that at least one of these coefficients is nonzero.
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The hypothesis H_, can be tested by calculating

0
the F-statistic using

RZ - (R')2
p - p'
F =
1-R
n - p

It can be shown that H0 implies that this statistic has
a known probability distribution called the F-distribu-
tion, with p - p' and n - p degrees of freedom. Tables
of this distribution are readily available. The hypothe-
sis HO is rejected in favor of Hl if the value of the
F-statistic for our data is larger than some value deter-
mined by the F-distribution and the chosen significance
level of the test. Thus, we would prefer (22) over (23)
if and only if the value of the F-statistic for the sample
is large enough to cause us to reject HO at the chosen
level of significance.

It can also be shown that the value of the F-

statistic may be calculated from the sum of the squared

residuals of the two regression equations, SSE and SSE!',

SSE' - SSE
p-p'
SSE
n-p
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We return to equations (20) and (21) to illus-
trate this procedure. Here R = .5522, R' = .4214,
p' =3, p=7, and n = 77. We see that the two explana-
tory variables in (21) are the first two explanatory

variables in (20). The hypothesis HO in this case is

and the alternate hypothesis H1 is that at least one of

the 83,...,66 is nonzero. Inspection of (20) indicates
that 63,...,86 are the parameters corresponding to the

four indicator variables S ..,S4. We choose the 5

1"

percent level of significance for this test and calculate

RZ - (R')? (.5522)2 - (.4214)2
— L
F= P22 - 4 . = 3.21.
1-R 1 - (.5522)
n-p 70

According to tables of the F distribution, the
value of F for p - p' = 4 and n - p = 70 degrees of free-
dom is 2.50. The F-statistic of 3.21 for the sample is
greater than this value, so we reject H0 and accept Hl'
Thus we conclude that the difference between R and R' is
statistically significant and that the full equation (20)
is preferred over the reduced version (21).

It can be seen, however, that H0 could be accepted

at the more stringent 1 percent level of significance;
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the difference between R and R' is not now statistically
significant and one would prefer (21) over the full
equation (20). As is often the case, the significance
level chosen for a test has great influence on the
decision that is subsequently made. A widely used level
of significance is the 5 percent level.

This hypothesis testing procedure, called an
F-test of the significance of additional explanatory
variables (or an F-test for choosing between two regres-
sion equations of the type (22) and (23)), is more general
that it first appears to be. A variety of other conven-
tional F-tests can be placed in the framework above and
treated as a problem involving a choice between two
regression equations. For example, in fitting a poly-
nomial to data, one can use our procedure to test the
significance of one or more higher order terms. We can

take the full equation and reduced version. to be respec-

tively
(25) ¢ =b. + b.X + b.X° + b.X
ot Py 2 3
and
T = nt 1
(26) ¥ = b + blx.

The null hypothesis is HO: 82 = 63 = 0 and the alternate
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hypothesis Hliis that at least one of the parameters 82
or 63 is nonzero.

The significance of the coefficients of the entire
set of explanatory variables included in a multiple

regression equation can also be tested by using

(27) Y = b0 + lel + b2X2 + b3X3
and

= t
(28) Y b0

as our pair of equations. The null hypothesis in this
case is HO: Bl = 82 = 83 = 0 and Hl is the alternate
hypothesis that at least one of these parameter values
is nonzero. In calculating the F-statistic in this
case, p' = 1 and R' = 0 and we have p -1 and n - p
degrees of freedom.

One can also test the significance of the coef-

ficient of one or more interaction:vvariables; for example,

suppose we have

(29) ¥ = by + byX; + b,X, + byX, *X,
and
(30 ¢ = b' + b'X, + b!X

0 11 2427

it is clear that we can test HO: 83 = 0 against Hl: 83#(L
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Finally, one can test the significance of the
coefficient of any single explanatory variable in a

regression equation as well. Suppose we have

(31) Y = b() + blxl + b2X2 + b3x3
and
(32) ¥ =b' + b'X. + b'X

0 11 3437

this enables us to test HO: Bz = 0 against Hl: 82 # 0.
In this instance we have p = 4, p' = 3 so that p - p'=1
and we use the F-distribution for 1 and n - p degrees of
freedom.

This F-test of a single coefficient is the same
as the t-test for the null hypothesis 82 = 0 against the
alternative hypothesis that 82 # 0 because the F-statistic
for 1 and n - p degrees of freedom is the square of the
t-statistic for n - p degrees of freedom. Some regression
computer programs give the value of the F-statistic and

others the value of a t-statistic. One can make use of

the relationship F = t2, perform either an F- or a t-

test, and obtain identical results.
The F-test of a single coefficient, or the equiv-
alent t-test, is used by most variable selection programs

such as stepwise regression. In the forward selection
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phase the explanatory variable having the greatest part-
ial correlation coefficient with the dependent variable
is appended only if its regression coefficient is sig-
nificantly different from zero, otherwise the procedure
stops. In the backward elimination phase, the explana-
ﬁory variable with the smallest partial correlation
coefficient is delected only if its regression coeffic-

ient is not significantly different from zero.
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APPENDIX A. ABSENTEEISM DATA BASE

y . 5 “y
: S R N T 8.8
g ec gd & Ed F 8 gl
Z, % B - 1 %. 0 g 4 %1 S g
& ) g S 3 2D @ Z 9

[0 ﬁ — [y

O O 9]
1 0 14 45 3.86 4 3 28 2
2 1 22 76 5.74 4 10 42 1
3 0 21 56 3.08 1 9 40 5
4 2 22 76 5.74 3 7 34 2
5 0 9 70 5.92 3 14 39 2
6 1 7 69 4.31 3 9 44 0
7 1 21 56 3.78 4 3 40 1
8 1 21 56 2.70 4 1 35 0
9 2 19 43 4.99 1 9 32 0
10 1 22 76 3.63 3 1 41 1
11 3 11 30 3.02 2 1 27 1
12 2 15 50 4.88 4 9 40 0
13 1 17 10 2.80 4 1 30 1
14 3 7 69 4.48 2 4 35 0
15 2 12 67 5.61 3 3 33 1
16 0 7 69 4.44 1 4 32 1
17 4 9 70 5.34 2 8 37 1
18 7 1 13 4.17 2 1 26 2
19 3 25 16 5.87 3 3 36 2
20 2 8 52 5.39 1 5 28 2
21 2 8 52 4.87 1 le6 40 1
22 4 24 3 4.04 2 2 26 0
23 2 18 6 3.38 3 4 38 2
24 0 12 67 6.42 3 6 33 1
25 3 17 10 2.66 3 1 26 0
26 3 6 89 7.51 3 18 48 0
27 3 23 21 2.83 2 2 34 1
28 0 28 34 4.27 3 4 26 1
29 2 4 12 6.47 4 6 40 2
30 3 9 70 4.71 2 2 34 2
31 1 7 69 4.39 3 11 49 2
32 4 1 13 3.77 2 1 35 1
33 2 11 30 4.28 4 13 51 5
34 1 19 43 3.19 2 1 25 1
35 3 5 8 4.40 2 2 29 0
36 2 3 69 5.03 2 2 34 2
37 4 11 30 2.84 4 1 36 2
38 4 16 23 2.81 2 1 31 2
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APPENDIX B. ABSENTEEISM DATA BASE DOCUMENTATION
Variable Name Symbol Descript}on
Case Number i (also called observation
number)
Absenteeism A The number of distinct

Job Classification

Job Complexity

Base Pay

Foreman
Satisfaction

Seniority

*Turner, Arthur N. and Lawrence, Paul R.
Jobs and the Worker (Boston:

SE

occasions that the worker
was absent during 1975.
Each occasion consists of
one or more consecutive
days of absence.

An integer identifying the
twenty-nine different jobs
included in the study:

1 = Foundry Molder, 2 =
Automatic Screw Machine
Operator, 3 = Aluminum
Extrusion Inspector, 4 =
Warehouse Order Picker,

5 = Heavy Hydraulic Press
Operator, etc.

An index ranging from zero
to one hundred, measured
according to procedures
developed by Turner and
Lawrence.*

Base hourly pay rate ($)

Determined by employee
response to the question:
"How satisfied are you with
your foreman?"

1 = Very dissatisfied

2 = Somewhat dissatisfied

3 = Neither satisfied or
dissatisfied

4 = Fairly well satisfied

5 = Very satisfied

Number of complete years with
the company on December 31, ‘
1975.

Industrial
Harvard University, 1965).
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Variable Name Symbol Description

Age AG Employee's age on
December 31, 1975

Number of D Determined by employee

Dependents response to the question:

"How many individuals
other than yourself depend
on you for most of their
financial support?"




