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ABSTRACT
This paper examines finite population estimation and sample design from
a robust, model-based viewpoint. The paper introduces a new class of multi-
variate regression estimators that integrates several model-based procedures
and clarifies the role of weighted least squares and analysis of residuals
in sampling. A new model-based procedure is suggested for designing an

efficiently stratified sampling plan.
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1. TINTRODUCTION

Various strategies have been proposed for combining sample data with
available auxiliary information. One approach is to adapt linear model pre-
diction theory to the finite population context, giving a highly efficient BLU
estimator if the model is correctly specified but one that can be seriously
biased if the assumed model is inaccurate [Brewer (1963), Hansen, Madow, and
Tepping (1978), Royall (1970), and Smith (1976)]. An alternative procedure is
the generalized regression estimators which feature greater robustness to
model misspecification while retaining much of the efficiency of the best
linear unbiased (BLU) estimator [Cassel, Sarndal and Wretman (1976). and
Sarndal (1980 a,b)]. Recently, Brewer (1979) suggested a robust estimator
that blends aspects of the BLU and generalized regression estimators but is
restricted to a single auxiliary variable. Isaki and Fuller (1982) gave a
closely related multivariate estimator.

This paper introduces a large class of robust estimators that utilize
multivariate auxiliary information in finite population sampling. This new
class includes both BLU and generalized regression estimators, as well as many
more conventional sampling estimators. New results are given that suggest the
pervasiveness of the generalized regression estimators within the class of ro-
bust estimators. A by-product of the analysis is added insight into the rela-
tionship between survey sampling and applied regression analysis, especially
concerning the widely encountered problems of weighting and analysis of
residuals.

The paper also examines model-based sample design, and a new procedure is
suggested for constructing efficiently stratified sampling plans that preserve
the robustness of the generalized regression estimators. This procedure is a

natural extension of Neyman allocation to the model-based case, and it
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provides an alternative to the balanced sampling approach of Royall and Herson
(1973 a,b), to nonrandom model-based designs, and to other stratified sampling
designs such as those of Andrews, Kish, and Cornell (1980), Dalenius and
Hodges (1959), Singh (1975), and Rao (1977).

The paper discusses model-based estimation in Section 2, first in the
ratio case involving a single auxiliary variable and then in the more general
multivariate situation. Sample design is discussed in Section 3, and to
simplify the presentation, the derivation of several key results is deferred

to Section 4.

2. MODEL-BASED ESTIMATION

2.1 The Ratio Case

The model-based approach blends elements of finite population sampling
and linear statistical models. Assume that a sample of n units is to be
randomly selected from a population of N units labeled I = 1,...,N. The
probability of obtaining each possible sample s is denoted by p(s), and the
probability that unit I is included in the selected sample is denoted Ty .
In general, the inclusion probabilities may vary from unit to unit but are
known from the sampling plan.

Consider a superpopulation model &, under which the target variable of

interest, say Yy is related to an auxiliary variable x_ following a simple

I

zero-intercept regression equation:

y1 = Bxy + ug. )
The usual assumption that each residual uy has zero expectation under £ is
employed; thus, Eg(ul) = 0., The auxiliary variable X7 in (1) is assumed

to be positive and known for each unit in the population.
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The model & is generally taken to be heteroscedastic, with varying
residual standard deviation o associated with each unit in the population.

Our analysis will assume that the oj are known, but in practice we have
used available data to estimate a functional relationship between oy and
suitable auxiliary variables, using a technique developed by Harvey (1976).
In addition, it is assumed that uj,...,uy are uncorrelated. Thus, under g,
2

, and EE(quJ =0 for I #J.

2 —
we have Eg(ul) = 0, EE(uI ) = oy

There is considerable confusion about estimation when varying probabil-
ities of inclusion and varying residual standard deviations are involved. 1In
light of the heteroscedasticity of &, many analysts would employ a weighted
least squares (WLS) procedure with weights determined by o;. On the other
hand, most survey samplers would emphasize the sampling plan and recommend WLS

with weights determined by 7y and possibly x;. Table 1 shows five differ-

N
ent estimators of the population total Y = z YI that have been recommended

I=1
in the recent statistical literature.
(Table 1 about here)
A framework for examining these alternatives is produced by embedding

them within a class of estimators that is amenable to analysis. 1In fact, each

of the estimators shown in Table 1 can be written in the form

IBX + z rIﬁI, (2)

Yor
Ies

where B = Z arxyyr / Z quIZ

Ies Ies

and GI =9y1 - EXI
with qy > 0 and ry > 0.
Here éX is the naive regression-based estimator using the finite population

total X, and the second term is a correction based on the sample residuals.
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The qp are' weights used to calculate the regression coefficient é, and
r; is a weight used to extend the observed residual. Table 2 shows how qg
and ry can be chosen for each of the estimators shown in Table 1.
(Table 2 about here)

One reason why so many alternative ratio-type estimators have been pro-
posed is that there are two conflicting bases for statistical inference in
survey sampling. Under model-based inference, the sampling distribution of an
estimator ¥ is considered to be induced by the joint distribution of the
residuals uy of the model £. 1In terms of the expectation E¢ taken with

respect to &, QQR is an unbiased predictor of the random variable

N
Y = Z y
1=1 X
best linear unbiased (BLU) predictor of Y, denoted YBLU’ uses the model-based

I for any choice of qI and rI. However, Royall has shown that the

A

WLS estimator B

o LU given by choosing q1 = 01—2, and places unit weight

on the observed sample residuals. Although §BL completely ignores the sam—

U
pling plan, it would be preferred by many statisticians if they were certain of
the accuracy of the model & The major objection to QBLU is that it can be
seriously biased if £ is even moderately inaccurate.

To protect against such dependence on &—-i.e., to provide robustness—-—
survey samplers have traditionally emphasized design-based inference. Here
the yy are assumed to take unknown but fixed values throughout the popula-
tion, but the estimator Y is considered to have a sampling distribution
induced by the sampling plan. Estimators that are design—unbiased have a
desirable robustness since they are less dependent on the accuracy of a model
such as &.

Design unbiasedness can be provided by linking the choice of weights used

in the estimator to the inclusion probabilities of the sampling plan. Consider
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an estimator ¥, = Z r.y., and let E (f ) denote its design-based expected
R Ies I'I p R
value.
Ep(§R) =) p(s) ) TPI
s Ies
N
= ) r1y1 ) p(s), where Sy = {s|1esl,
I=1 S€SI
N
= X I'I'ﬂ'IyI-
I=1

This implies that §R is a design-unbiased estimator of Y if and only if for

all VARRERE sIN»

N
rimiyy = 2 15
, I=1

N
iy
or, equivalently, if and only if =y > 0 and ry = nI"l for all I. So
§R is a design-unbiased estimator of Y if and only if it is the Horvitz-
Thompson estimator §HT for a sampling plan having positive inclusion
probabilities for all units in the population.

Unfortunately, design-based analysis of the estimator QQR is complicated
by the nonlinearity in é. However, it is useful to examine approximate

design unbiasedness in large samples from even larger populations. An est-

imator Y is said to be an asymptotically design-unbiased (ADU) estimator of Y

if and only if for all yj,..«,¥yN

Lim Ep(ﬁ) =Y. (3)
(n,N)>e

The sense in which this limit is taken follows Brewer (1979) and Sarndal
(1980a) and is described in Section 4. Two rgsults are shown:

Result 1. §QR is ADU for Y if and only if there is some constant A
such that

1-r x;A for all I=l,...,N. (4)

"1 - 94"1
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Result 2. §QR is ADU for Y if and only if for all VATEREIN ¢

b orpup= L omlag. (5)
Ies TIes

Result 1 gives an algebraic condition on 7y, qy, and ry that guaran-

A

tees that YQR is ADU for Y. Using Table 2, Result 1 shows that YHTR’ YCR{
YGR’ and YRO are all ADU for Y, but YBLU is not. The generalized regression

estimator Y. was developed to retain the use of éBL

GR as in YBLU’ while

U

offering the ADU robustness provided by the more conventional design-based

. A ~ ' L) . .
estimators YHT and YCR' Brewer's YRO was apparently introduced in order to

R

retain the r; = 1 used in §BLU while offering conventional robustness. So

Result 1 helps to sort out features of these alternative estimators.

Result 1 also shows how to construct a large family of robust, model-

based estimators, i.e., estimators that are model-based but still ADU. Spe-

is ADU for Y for any choice of qp as long as rI = nI—l.

cifically, YQR

Result 2 provides a converse to the previous statement; it states that

whenever Y__ is ADU for Y, any choice of r

QR

rp = “I—l. In other words, as long as two estimators in the class (2)

I is equivalent to choosing

are ADU in our sense and use identical s they are identical estimators;

there is nothing to be gained from any choice of r_ # nl'l except

I

computational simplicity.

These results are consistent with the sound practice that has developed in
applied regression analysis of examining the sample residuals for information
about model misspecification. In using regression analysis for finite popula-

tion inference, we find that robustness can be obtained by adding a Horvitz-

P . . =14 .
Thompson-like residual correction ) T,oup to the regression-based estimate
Ies

A

BX.
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To summarize so far, the choice of estimator in the ratio case reduces to
two questions: (1) Do we want the robustness provided by an ADU estimator or

can we place faith in the model & and use QBLﬁ? (2) If we want an ADU esti-

mator QQR? how should we choose the weight’qI to be used in the WLS regression?

The answer to the first question is highly dependent on the purpose and con-
text of the project and the credibility of the model. The second question

will be addressed subsequently by examining the asymptotic variance of Y.

Qr
2.2 Estimation with Multivariate Auxiliary Information

The preceding results extend easily to the multiple regression case.

For added generality assume that the population parameter of interest is

N
a'y = X a_y., where a
I=1 I'1
example, the a

I is known for each unit in the population. For

1 may indicate a subpopulation of interest. Under &, we now

assume that Y1 is related to a vector X ' = (xI,...ka) of k > 1 auxiliary

I

variables following a linear regression equation of the form
vy = lell + ... + BkXIk + ur, (6)

. a 2, 2 i _ .
with EE(uI) = 0, EE(uI ) = o » and Eg(quJ) = 0 for I # J. For any choice

- -1
of ry 2> 0 and any 41 2 0 such that ( 2 qIX XI') exists for any possible s,

Ies I

define a QR estimator as

N
a'yor = ) arX;'B + ) ryaguy, where (7)
I=1 Ies
B =l axX" ] ar¥pyy

Ies Ies
(a WLS estimator), and
GI = yI - Xl'é.
Royall (1976) has shown that under &, the BLU model-based predictor of

1 s 15 . . = -2 =
a'y is a'yp s given by choosing 9y = 01 and rr 1. Sarndal (1980
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a,b) has considered generalized regression estimators that use various 4y

and r; = ﬂI_l- Isaki and Fuller (1982) have studied the estimator given by

q; =Ty and r; = 0.

To examine the robustness of QR estimators, define a'§ to be ADU for a'y

QR
if and only if for all yqp,...,¥y

. 'y = At
(nz;;oéEp(a }’QR) a'y.
’

Then the two results given for the ratio case can be generalized as follows:
Result 3. a'§QR is ADU for a'y if and only if there is some vector A

= (A1 «++ Ag)' such that for all I =1,...,N
(1-rymylay = qrrXg'A (8)

Result 4. a'§QR is ADU for a'y if and only if for all yq,...,yy

J rrapur =} wplagdp (9
Ies Ies

Result 3 shows that a'§ is ADU for all population parameters a'y if

QR

_1, as in the generalized regresson estimators. The

and only if rp =g

BLU model-based predictor, using qp = 0y and ry = 1, is ADU only if

-1
(nI -1) a 2 is equal to a linear combination of the auxiliary variables

1°1
in XI throughout the population. The Isaki and Fuller estimator, using

q; = “1_2 and r; = 0, is ADU if and only if army is a linear combination

of XI throughout the population.
Result 4 shows that any ADU QR estimator (7) is identical to the general-
ized regression estimator that uses the same qr with r; = ﬂI"l. Proofs of

Results 3 and 4 are given in Section 4.
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3. ROBUST MODEL-BASED SAMPLE DESIGN

In sample design, as in estimation, the challenge is to develop an
approach that takes advantage of the model (6) but is not totally dependent on
the model's accuracy, i.e., a robust model-based approach to sample design.
Suppose for a moment that (6) is indeed considered -to be unquestionably
accurate. Then the sample plan ought to be designed to minimize the model-
based expected variance of a'§BLU' Royall has shown that this leads to non-
random sampling. In particular, under fairly common circumstances, the
optimal design under £ is to select the n units that have the largest
residual standard deviation (oy) in the population. This is unacceptable
in many applications because the slightest inaccuracy in & will produce
substantial but almost undetectable biases.

For a robust model-based approach, consider any estimator a'§QR that is
ADU for the parameter of interest a'y. At the planning stage, it is reason-—
able to utilize both the model & and the proposed sample plan to evaluate
the anticipated performance of the estimator. ﬁonlinearity makes exact analy-

sis difficult, but for many purposes a large-sample approximation is satisfac-

tory. So we define the asymptotic variance of a'§QR to be

V(a'§QR) = fim EiEp(a'§QR - a'y)z.
(n,N)»>w

Result 5. If a'§QR is ADU for a'y, then
. N
V@a'yr) = ) ar?(ar7l - 1)or? (10)
I=1

Note that the asymptotic variance of a'§QR does not depend on the
choice of qg, provided that the estimator is ADU. Alternative choices of qp
give estimators that have similar sampling distributions in large samples.

This implies that if a sample design is based on Result 5, it will be
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applicable to the entire class of robust QR estimators based on the model E.
This class includes virtually all of the standard survey sampling procedures.
Result 5 can be written more attractively. Define the asymptotic stan-—

1/2

dard error, se, to be V(a'§QR) , and rescale the inclusion probabilities of

the sample plan as

wy = mp/mean(m) (11)

NﬂI/n,

where mean(m) denotes the finite population mean
N
N—l Z TI'I-
I=1

Then (10) becomes

se Ymean(a2d?/w) - (n/N)mean(aZ¢?). (12)

..
/n

Equation (12) also provides qualitative insights that are useful for
planning. As is usual in sampling, equation (12) shows that the standard
error increases in proportion to the total number (N) of population units, and
decreases in proportion to the square root of the sample size. The term
"(n/N)mean(azoz)" generalizes the conventional finite population correction
factor and is often negligible.

The remaining term in (12), "mean(azcz/w)," reflects the interaction of
the parameter of interest, the residual standard deviations assumed in the
model &, and the inclusion probabilities of the sample plan. As Brewer and
Sarndal have both noted, an efficient sampling plan can be developed by
choosing the 7_ to minimize this term. Indeed the Cauchy-Schwartz inequality

I
implies that
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N ) (}ﬂ

N
) ar®or?fur /X wy ) >0 1 (lag|op/ Vo) (Vo) ;
I=1 h=1 I=1

or equivalently, that
mean(azcz/w) Z_meanz(lalc).

Here the lower bound is achieved if and only if w_ is proportional to |aI|01,

I

or specifically if

wy = |ag|op/mean(|a]o), and (13)

m7 = n|ag|og/N mean(|a|o).
A sampling plan is said to be best for a'y under & if and only if it

satisfies (13). For a best sampling plan,

se = 72:/mean2(|a|o)—(n/N)mean(azoz). (14)
n

These results can be summarized in terms of the relevance of each unit in
the population to the parameter of interest, where the relevance of unit I
is defined to be the quantity |aI|GI. Then (13) implies that a best sam-
pling plan selects each unit with probability proportional to its relevance.
Moreover, (l4) shows how to calculate the standard error of a best sampling
plan from the distribution of relevance in the finite population.

There are sometimes good reasons to consider a sampling plan that is not
best. The efficiency (eff) of any such plan can be defined to be the ratio
nb/n, where n is the sample size required to achieve a certain standard error
using the plan under consideration, and ny is the sample size required to
achieve the same standard error with the best sampling plan. Suppose that wy
describes the plan under consideration. Then

eff = mean2(|a|o)/mean(azoz/w). (15)
In particular, the efficiency of a simple random sampling plan is (1 + CV2)—1;

where CV is the finite population coefficient of variation of Iallol.
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Equation (13) can be regarded as a generalization of Neyman allocation
for stratified sampling. Consider the special case in which the population
parameter of interest is the population total, so that all ayj = 1; and
suppose strata can be defined such that the oy are constant within strata.
Then (13) gives the Neyman allocation. Thus, stratification with Neyman
allocation is a best sampling plan in this special situation.

More generally, stratification is a very useful technique for developing
convenient sampling plans that are highly efficient, i.e., nearly best for any
population parameter and any model £. In general, relevance, |a1l01,
can vary almost continuously through the population. However, strata can be
constructed so that the units within each stratum are nearly equally relevant.
In such a case, a stratified sampling plan based on the mean within-strata
relevance is highly efficient. This principle provides a direct model-based
method of constructing strata.

To see this precisely, consider any specific stratification of the
population into H strata with Ny units in stratum h. Let CVy be the
coefficient of variation of |aI|01 within stratum h, so that

1+ Cth = meanh(azoz)/meanhz(la|o). (16)
Here mean, denotes the population mean within stratum h. A stratification is

said to be strong if € = max (CVy) is small. For a strong stratification,
1<h<H

the sample size np allocated to each stratum h should be

ny, = nNy, meany (|a]0)/N mean(|a] o). (17)
In other words, with a strong stratification, the sampling fractions nh/Nh
should be proportional to the mean relevance of the units within each stratum;
or equivalently, the total sample size should be allocated to each stratum in-

proportion to the total relevance of the units within each stratum.
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Any strong stratification with allocation following (17) will be highly
efficient. 1In fact, (17) implies that for any unit I in stratum h,
wy = meany(|a|o)/mean(|a| 0); (18)

then (15) and (16) give

eff = H mean (IalG) (19)
N1 2 Nh(1+CVh2)meanh(|a|o)
h=1
>+ 82)_1.

It is often convenient to construct strata with an equal number of sample
units in all strata. With the allocation in (17), the nj will be equal as
long as the total relevance of units is constant from stratum to stratum. So
a suitable stratification can be constructed by sorting the population in
order of relevance, and then dividiﬁg the population into H strata containing
H™l of the total relevance. For example, to form ten strata, each stratum
should contain 10 percent of the total relevance. The efficiency of the
design can be made as high as desired by increasing H, but as few as ten

strata are often adequate.

4. DERIVATION OF KEY RESULTS

4,1 Notation

The purpose of this section is to provide a derivation of Results 1-5.
The analysis builds on Brewer (1979) and Sarndal (1980a).

Additional vector notation is useful. Define a = [a} ... ay]',
y =[y1 «++ yyl's and u = [u; ... uy]'. Let X = [Xy...Xy]", the (Nxk)
matrix of auxiliary information. Also, define the following (NxN) diagonal
matrices: L = diag(cIZ); I= diag(ﬂl); Q = diag(qI); R = diag(rI); and
A = diag(al), where GI =1 if Tes and GI = 0 if Ifs. 1In this notation

model & is
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y =X + u, EE(u) = 0, Eg(uu') = }%, assumed known. (20)

A sampling strategy is characterized by the triplet (I,Q,R). To estimate

the population characteristic a'y, we use the estimator a'§QR with
yqr = X8 + RAv, (21)
B = (x'Qax)"L x'qay, and
G =y - Xé.
N
It is assumed that the sample size n = Z mp is fixed, and that X'QAX
I=1

is nonsingular for all s with nonzero probability of occurrence.
A substantial advantage of model-bhased analysis lies in the strong links

that are established with linear statistical inference. With the added

definitions
C = X(X'Qax)~1X'Q, and (22)
T =0C +R - RAC,

we have Xé = éAy, §QR = TAy, ¢AX X, and

I - TA = (I-RA)(I-CA)

(I-A) + (I-T)A.

The prediction error a'y - a'§QR a'(I—fA)y reduces to a'(I-fA)u under
€, since (I—ﬁA)X = 0. This implies that a'§QR is a &-unbiased predictor
of a'y, with the mean squared error
a' (I-TA)Z(I-T'A)a (23)
= a'(I-A)Z(I-A)a + a'(I-T)ZA(I-T")a.

As Royall and others have shown, this is minimized by using a BLU prediction

strategy, (H,Z'l,I), which is, of course, conditional on the sample s.
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4.2 ADU Estimators

In dealing with finite population sampling, care must be exercised in
defining the context of asymptotic analysis. Various approaches can be util-
ized for letting the sizes of the sample and population both increase while
the sampling fraction remains more or less fixed. We will follow a formila-
tion introduced by Brewer (1979) and used by Sarndal (1980a).

For  the asymptotic analysis, the population of interest is assumed to
consist of N* = mN units composed of m blocks of N units. Fach of these m
blocks is assumed to have an identical matrix X of auxiliary information. For
model-based analyéis, (20) is used to generate m independent realizations
of the vector y, say Y3 j=1,...,m. However, to make the definition of
ADU independent of the model, in this subsection the yj are assumed to be
identical copies of some y.

The vector a is assumed to be identical across blocks so that the population
parameter of interest, say a'y*, can be written as % a'yj, or simply ma'y
in this subsection. Similarly it is assumed that taglstrategy (I,Q,R) is
identical across blocks, and in particular that a sample of size n* = mn is
selected with first-order inclusion probabilities following II within each
block. The matrix Aj indicates the units in the sample from block j, and
the estimator a'§* is formed following (21) as

‘A

a'§., where (24)
i J

N ~8

1

B% . U
XB* + RAj uj,

<
[N
]

oo
*
|

m m
= ( .Z X'Qa;x)7L ’Z X'Q4j y4, and
j=1 =1
. = .—A*
uy = Yj Xp*.
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We also define

m
it =l )4y, (25)
j=1
c* = x(x'Qii*x)"1x'q, and
T# = C* + R - RIl*C¥,
so that
~ m A ~ A
a'y = § a'T*Ajyj = ma'T*II*y if the yj are identical.
i=1

With this formulation, the strategy (I,Q,R) is said to bé ADU for the
characteristic a if and only if for all y, Ep(a'§*/m) converges to a'y as m
increases to infinity. As m increases, fi% converges almost surely to I.

The assumption that X'QAX is nonsingular for all samples that can occur under
I implies that C* is bounded and converges almost surely to C = X(X'QHX)—lx'Q.
So T* converges almost surely to T = C + R — RIIC and Ed(a'f*/m) converges to
a'Tlly. Thus,

Lemma. The strategy (I,Q,R) is asymptotically design unbiased (ADU)
for the characteristic a if and only if a'(I-Tl)y = O for all y e RV,

It is helpful to note that in its derivation, this lemma describes each
block of the population, but once the derivation is complete, the lemma can be
considered to describe the entire population of interest.

An immediate consequence of the lemma is that for any strategy (I,Q,R)
that is ADU for a, my = O implies ay = 0. Any unit with both ny = 0
and a; = 0 is clearly irrelevant and can be eliminated from the population.
Because we are primarily interested in ADU strategies, it is assumed
henceforth that I > 0.

An algebraic characterization of ADU strategies can be developed from
the identity I-TIl = (I-RI)(I-CH). Suppose initially that Q > 0, so that

QIl defines an inner product over RN. In this case CIl = X(X'QHX)_lx'QH
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is the orthogonal projector onto the linear manifold M(X) spanned by the
column vectors of X, and I-CIl is the projector onto the linear manifold
orthogonal to M(X) with respect to the inner product QI.

Since

a'(I-Th)y = a'(I-RI)(QD)~lQI(I-CN)y,

(1,Q,R) is ADU for a if and only if (QU)~l(I-RI)a e M(X), or
equivalently, (I-RIl)a = Qlix for some x € M(X). The restriction Q > O
can easily be relaxed, giving

Theorem 1. A strategy (I[,Q,R) is ADU for the characteristic a if and
only if (I-RIl)a = Qlix for some x & M(X).

This gives Results 1 and 3 of Section 2.

Two strategies, (I,Qq,Rp) and (I,Q9,Ry), are said to be equivalent
for a if and only if they produce identical estimates of a'y for all y and all
samples with positive probability of occurrence. Using (21) and (22), two

strategies that employ identical Q are equivalent if and only if

1 -— ~ ] — — A
a (R1 R2)Au a (R1 RZ)A(I CA)y

0 for all s and all y.

Using an argument similar to the proof of Theorem 1, this is true if and only
if (Rj-Rg)a = Qx for some x € M(X). However, Theorem 1 shows that a
strategy (II,Q,R) is ADU for a if and only if (H‘l—R)a = Qx, x € M(X).
This proves

Theorem 2. A strategy (II,Q,R) is ADU for a if and only if (I,Q,R) and
the generalized regression strategy (H,Q,H"l) are equivalent for a.

This gives Results 2 and 4 of Section 2.
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4.3 Efficiency of ADU Strategies

Within the class of ADU strategies, a useful planning criterion is the
asymptotic variance of a‘§QR’ denoted V(a'§QR). Here V(a'§QR) is defined
to be the asymptotic expectation, with respect to both design and model, of
the mean square prediction error of a'§QR. To develop the asymptotic analysis
we must return to the assumption that the population comprises m blocks, as
in the previous subsection, but with yi independently generated within each
block following (20). 1In this case, there are m independent uj with

Eg(uj) = 0 and Eg(ujuj‘) =% j=1,...,m. To examine the square error

a2
(a'y*-a'y*)", use (25) to note that

m ~ m ~
Loyy-yy= 1 (T-T*ag)uy, since
j=1 j=1

m A A A

I (1-T*aX = m(I-T*fi*)x

i=1

m(I-Ri*) (I-C* %)X

= 0'

A derivation similar to that of (23) implies

m
m'lEg(a'y*—a'y*)2 =m 1 Eel ) a'(Yj'Yj)]2
j=1

m
m*ljgl a' (I-T*43) I (I-T*'Ap)a

a'(I-T%)Ia + a' (I-T*)I*L(I-T*")a.

Now the asymptotic design-based expectation can be evaluated as in the

previous subsection, giving

_1 A
lim m EdEE(a'y*—a'y*)2 = a'(I-M)Za + a'(I-T)NEZ(I-T')a. (26)

m>e
Given that (II,Q,R) is ADU for a, a'Tlly = a'y for all y € RN; so (26)

simplifies to a'(H"l—I)Za.
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Note that this expression represents a summation over a single block, so
that the corresponding summation over the entire population is m times larger.
Thus, in terms of the entire population we have

Theorem 3. If (I[,Q,R) is ADU for the characteristic a, then the asymp-

totic variance of (I,Q,R) for a is

]

V(a'y) = a'(I"1-I)za (27)

N ;
L ap2(n7l - 1)oy2.
1=1

This gives Result 5 of Section 3.

Theorem 3 has been proven previously for a_. = 1 with specific choices

I
of qq and roe Brewer (1979) considered the case k =1, 4y = ("IXI)-l(l - ﬂI),

and r_ =1, as discussed in Section 2.1. Sarndal (198la) obtained the result

I
for d; = nl-l, 01_2, and nI—loI—z. Isaki and Fuller (1982) obtained

(27) for q; = nI_z when T follows (13), using a somewhat different asymp-

totic argument.
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Table 1. Various Estimators Proposed for the Ratio Model

a. Horvitz-Thompson Ratio (Hajek, 1971)

Yyrr = Bgr X, where Byp = Ypp/Xyr,
) N

with Yyp = Z ﬂI'lyI and X = z X
Ies I=1

b. Combined Regression through the Origin

Yor = Ygr + Ber (X - Xgr),

with ECR = Z TTI_]'XIYI / Z 'ITI_]'XIZo

Ies Ies

c. Best Linear Unbiased (Royall, 1970)

Ypry = L vr+ Byl x1,
Ies Ifs

with éBLU = z 01_2 X1Y1 / Z GI_Q'XIZ.
Ies Ies

d. Generalized Regression (Cassel, Sarndal, and Wretman, 1976)

Yer = Yy * Bpry (X — Xyp)-

e. Another Robust Estimator (Brewer, 1979)

Yo = L v+ Bro ) 1
Ies Ifs

where fpg = ) apxxpr / L %12,
Tes Les

with q = ('ITIXI)—]'(]."TTI).
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Table 2. Choice of dy and ry for the Estimators in Table 1

- Estimator qr ry
a. §HTR (ﬂIXI)'l 0
b. §CR nI‘l HI—l
c. §BLU 01_2 1
d. QGR 01'2 nl“l

€. §RO ('ITIXI)_]'(]_—'JTI) 1



