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ABSTRACT

Strategies are investigated for planning large administrative sample
surveys of populations having known auxiliary variables related to the target
variable through a linear superpopulation model. Both model-based linear pre-
diction strategies and design-based generalized regression strategles are
imbedded within a class of strategies combining weighted least squares
regression estimators and varyipg probability sample designs. Strategies are
identified which provide asymptotically design unbiased (ADU) estimators
regardless of the validity of the assumed model. The model-based asymptotic
efficiency of these ADU strategies is related to the sample design. Practical
stratified sampling plans are proposed which utilize inclusion probabilities
related to a simple measure of the relevance of units. These plans generalize
equal aggregate size rules for constructing stratified sampling plans. This
methodology is illustrated in the context of utility load research and cost

accounting.
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1. iNTRODUCTION

Often in management a project is undertaken to collect data on a sampling
basis to augment an existing administrative datébase. For example, én account-
ant may need to estimate the current value of assets, a utility cost-of-service
study may require estimates of the usage of electricity by time-of-day, or a
marketing study may be undertaken to estimate the potential sales of a new
product to established customers. Typically, additional relevant data, e.g.
past sales of related products, are available within the administrative data-
base for each unit in the population. This auxiliary information can be ex-
ploited to produce more reliable sample estimates. One approach is to use the
sample data to estimate a regression model relating the target variable to the
relevant auxiliary information, and then use the estimated regression equation
to extend the target variable to the unsampled part of the population.

This use of auxiliary information can usually be anticipated when the
project is planned. Past experience often indicates the character of the re-
gression relationship to be expected. This expected regression relationship
can be utilized to choose the size of the sample and to develop an efficient
sampling procedure. In many cases, a single-stage sample can be selected
directly from the frame provided by the administrative database,.so that the
sampling plan is almost completely characterized by the probability of in-
cluding each unit in the sample. These inclusion probabilities can be effec-
tively chosen in accordance with the relevance of each unit as determined by
the ekpected regression model and the population characteristic to be
estimated.

Planning these administrative sampling projects is similar in many re-
spects Fo planning the establishment surveys of public agencies, e.g. the U.S.

Bureau of Labor Statistics' Current Employment Survey. The differences are a
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matter of degree-—most importantly the greafer reliance on the administrative
database both as a sampling frame and as a basis for estimation through
modeling. Moreover, while most of the public establishment surveys utilize
rotating sample designs, these more complex designs are fairly rare in
management applica;ions.

The management sampling appli;ations that are of interest, then, share
the following characteristics:

...A single-stage, stratified sampling plan is to be used to select a
sample s from a finite population comprised of N units labeled I =1,...,N.

...The purpose of the project is to estimate a finite population charac-

N
teristic of the form z aIyI with as known. This may be the population
N I=1
total Z p» a subclass total or mean, a difference between subclass totals
I=1

or means, or even a more complex characteristic such as a finite population
regression coefficient.
...Past experience suggests that the target variable g is closely related

k
to a vector XI = (x1 N xk)'s R~ of k auxiliary variables which are known

throughout the population. The relationship between the target variable y and
the auxiliary variables is thought to be well described by a regression model

g vy = XI'B + up with unknown B € Rk. Under £, the u, are assumed to be

. _ 2, _ 2 _
random variables satisfying EE(uI) =0, EE(uI ) = o > 0, and Eg(quJ) =0 if
I+J.

«++The oy can be regarded as known, at least up to a constant of propor-

tionality. In practice the o are often assumed to be proportional to some

known measure of size. More generally, past experience may suggest a particu-

lar functional relationship between o and multivariate auxiliary informa-

tion, (Harvey, 1976).



-3~

...A sampling strategy is to be developed which is to be efficient in the

sense that it can be expected to provide a highly reliable estimator of
% ary; if £ is accuraﬁe, but which is also robust in the sense that the
Z;iimator is not badly biased even if { is misspecified.

An example may be helpful. Under the Public Utility Regulatory Policies
Act of 1978 (PURPA), U.S. electric power companies are required to estimate
the total power usage of various classes of customers during certain peak
hours. These estimates are used in cost-of-service studies, to allocate
the cost of maintaining generation and transmission capacity to various cus-
tomer classes.

Because hourly usage is not normally metered, peak usage is estimated on
a sampling basis. Available sample data generally show a strong relationship
between peak usage and monthly consumption, which is usually metered for the
entire population. Other potentiai predictors of peak usage include annual
consumption, local weather characteristics, and perhaps the price of electri-
city. The latter is especially relevant in rate experiments. In addition
household income, composition, and appliance stock may be available on a
double sampling basis. Some references are Aigner (1979), Aigner and Housman
(1980), and Taylor (1977).

In these studies the mérginal cost of each sample unit is several hundred
dollars or more per year so there is ample motivation to make efficient use of
relevant and available auxiliary information. However, since these estiﬁates
have a substantial impact on electricity prices, they must have strong credi-
bility with the public. This credibility seems to be related to the robustness
of the sampling strategy.

In applications like these, the conventional approach is to use stratifi-

cation to bring auxiliary information into the estimator and possibly to
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introduce~varying incluéion probabilities in the sampling plan. A common
practice is to establish a stratification on one or more auxiliary variables
using the Dalenius and Hodges (1959) cumulative square root rule on each
variable, and then to use Neyman allocation basedvon within-strata variances
estimated from available sample data. Often, because of limited sample data,
allocation is based on the within-strata variance of an auxiliary variable
that is thought to be highly correlated with the target variable. Various
aspects of this procedure have been discussed by Anderson, Kish and Cornell
(1980), Cochran (1961), Rao (1977), and Singh (1971, 1975).

This procedure requires considerable care and judgment. In deciding on
the number of auxiliary variables fo be used in the stratification and the
number of cutpoints for each such variable, assumptions must be made about the
joint distribution of the target variable and the auxiliary variables. Within-
strata variances are usually difficult to estimate, and the use of an auxiliary’
variable as a proxy for the target variable conflicts with the use of the
same auxiliary variable as a stratification variable. Moreover, there is
scarce justification for using the Dalenius-Hodges rule for multivariate
stratification, but other alternatives are extremely cumbersome.

In the present paper, the auxiliary information is used in a multivariate
regression estimator. Multiple regression provides a familiar, easily used,
and extremely flexible tool for bringing auxiliary information into the
analysis. Dummy variables can be used in the model to represent categorical
information; this is analagous to analysis of variance models and generalizes
the technique of stratification in sampling. Other suitable variables can be
included in linear or perhaps quadratic form, as in analysis of covariance.
Interaction variables offer additional flexibility that generalizes the

distinction in the sampling literature between separate and combined estimators

in stratification.
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In part because of the greaf flexibility that is available, care must be
taken in developing a suitable regression model, (Konijn, 1973, p. 131). At-
tention must be given to variable selection, multicollinearity, and identifying
outliers. However, techniques for handling these problems are fairly well
developed and are familiar to many analysts, (e.g. Belsley, Kuh and Welsch,
1980 and Hocking, 1976).

An impediment to wide use of regression estimators in sampling applica-
tions has been the apparent contradictions between model-based procedures and
sampling considerations. To help reconcile several approaghes,‘Section 2
formulates a class of multivariate regression estimators which includes the
linear predictors of Royall (1970, 1971, 1976) and the generalized regression
estimators of Cassel, Sarndal and Wretman (1976, 1977). Sampling strategies
that integrate the choice of sampling plan and estimator are considered.

Emphasizing design-based considerations, Section 3 proposes that robust-
ness be achieved by restricting thg strategies to those that are asymptotically
design unbiased (ADU), regardless of the model's validity. The subclass of ADU
strategies is shown to be determined by an algebraic condition which is used
in subsequent analysis and facilitates comnstruction of specific ADU strategies.

In Section 4 the model is used to examine the asymptotic efficiency of
ADU strategies. When the available auxiliary information is used in an ADU
regression estimator, the main role of the sampling plan is to provide suitable
inclusion probabilities. The optimal inclusion probabilities are determined
by the heteroscedésticity in the model and the characteristic to be estimated,
and are in fact proportional to IaIIUI, called the relevance of I. A useful
basis for evaluating varying probability sampling plans is the efficiency of
an equal probability plan, e.g. a simple random or proportionately allocated

sampling plan.
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Section 5 shows that the 1deal inclusion probabilities can be well
approximated with a stratified sampling plan using a simple stratification
based on relevance. The choice of strata boundaries is shown to be much less
critical than in the conventional approach since only the residual variation
is of concern, not the within-strata variation of the auxiliary variables. A
simple rule is proposed for constructing administratively convenient strata,
which generalizes the equal aggregate size recommendation of Hansen, Hurwitz
and Madow (1953, pp. 215-219).

Section 6 provides two numerical illustrations drawn from utility rate

research and cost accounting.

2. SAMPLING STRATEGIES

As suggested in the previous section, the finite population characteristic
?1 aryr is to be estimated using ;bserved Yy I ¢ s, together with auxiliary
i;formation XI e RK known throughout the population. The basis for planning is
the superpopulation regression model §&: y; = XI'B + up with EE(uI) =
Eg(quJ) =0, I #J. Here B ¢ Rk is unknown but the 012 = EE(uIZ) are re-
garded as known. To estimate B, we use the class of weighted least squares
estimators with weights dy >0: B=( X qIXIXI')"1 2 quIyI'

Ies . Ies

While an obvious estimator for 1 is XI'B, additional useful informa-
tion may be extracted from the sample residuals. For all I, define GI to
be y1 ~ XI‘E. For I € s, GI is the observed sample residual which is usually
regarded as containing information about the accuracy of &. By defining
additional weights r > 0 associated with the GI we obtain the class of

N
i ~ ~ = 'A ~ . . .
estimators 121 ary; with 1 XI B + rIGIuI Here 61 identifies the samplé,

i.e. GI =1 if I ¢ s, 0 otherwise. We regard a sampling strategy to be

determined by a sampling plan characterized by thé inclusion probabilities
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o= Pr(I e s) together with an estimator determined by the choice of 4 and

rI, I=1,...,N.
Additional vector notation is useful. Define a = [a1 oo aN]',
= .o ' = LEC AR ] ' = L ' i N.
y [y1 . yN] , u [uI uN] , and e = [1 1]', all in R Let

X

[X1 cos XN]', the (Nxk) matrix of auxiliary information. Also define the
following (NxN) diagonal matrices: I = diag(oIZ),\H = diag(nI), Q= diag(qI),
R = diag(rI), and A = diag(GI). In‘this notation, the model £ is

y = XB + u, Eg(u) = 0, Eg(uu') = %, known. (2.1)

A sampling strategy is characterized by the triplet (I,Q,R). To estimate

the population characteristic a'y, we use the estimator a'y with

y = XB + RAQ, (2.2)
B = (x'Qa)"! x'Qay, and
u = y - Xﬁ.
N
It is assumed that the sample size n = 121 e is fixed, and that X'QAX is

nonsingular for all s with nonzero probability of occurrence.
Various subclasses of strategies (II,Q,R) have been considered pre-
viously. Strategies with R = I, the identity matrix, will be called linear

prediction strategies, (Royall, 1970, 1976; Scott and Smith, 1969; and Smith,

1976). The class of strategies with 1 > 0 and R = 1l will be called

generalized regression strategies following Cassel, Sarndal and Wretman (1976),

and Sarndal (1980). Strategies with R = 0 will be called simple projection

strategies. Strategies can be further classified by Q. Important cases are

the BLU strategies with Q = £l and the pLog (N-inverse) strategies with

I>0 and Q = I},
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As Holt and Smith (1979) note, preference for strategies depends upon a
tradeoff between considerations derived from the model (2.1) and considera-
tions derived from the sample design, II. Under £, a'y is regarded as a
random variable to be predicted by a'§. Conditional on the sample s,

the best linear unbiased predictor is

Z a_y. + 2 a_X 'é
Ies I Tfs I

a'hy + a'(I-4)XB

a'Xg + a'Ad.

as determined by the BLU linear prediction strategy (H,Z‘l,I), (Royall,

1976; Smith, 1976). Here the observed sample residuals are used for the sample
cases but provide no information about the unobserved residuals. The sample
design I plays no role in this estimator.

The heavy reliance of BLU strategies on £ bothers many samplers, (e.g.
Hansen, Madow and Tepping, 1978). They seem to prefer III strategies because
X'AT1X and X'AITly are design unbiased estimators of X'X and X'y, (e.g
Fuller, 1975; Jonrup and Rennermalm, 1976; Kish and Frankel, 1974; and Konijn,
1962).

Looking for another compromise, Brewer (1979) suggests a modified I
linear prediction strategy which uses q; = (nI‘l - 1)/xI and r = 1 for the
ratio model (2.1), with k = 1 and x; > O.

A more fundamentally sampling-based position is taken by Cassel, Sarndal
and Wretman (1976, 1977). They recommend the generalized regression estimator

N .
Y aInI“lyI +() ax'- 7 am '1XI')§

Ies I=1 I Ies I

a'ml Ay + a'(X-T1aX) B

a'Xf + a'mr 1.

Here the sample residuals are thoﬁght to be informative about the unobserved
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residuals. As in the Hurwitz-Thompson estimator, the sample residuals are ex-
tended to the population by using the sampling design. With this approach, the
choice of B seems to be less critical than with other estimators, and both

BLU and NI estimators have been suggested (Sarndal, 1980), as well as
generalized ratios (e.g. Raj, 1965).

There remains considerable confusion about effective regression strategies,
and this confusion has undoubtedly deterred their use. The choice of strategy
seems to be unavoidably dependent upon a subjective evaluation of the credibil-
ity of the model, the character of the application, and the nature of the avail-
able data. A universally optimal strategy cannot be prescribed, but perhaps
some of the issues can be clarified.

A substantial advantage of model-based analysis is the strong links that
are established with linear statistical inference, (e.g. Rao, 1973). With the

added definitions

x(x'QAx)'lx'Q, and (2.3)

O
]

A

= C+ R - RAC,

o= P

A

we have Xﬁ = éAy, § = TAy, CaX

X, and

I -TA

(I-RA)(I-Ch)

]

(I-4) + (I-T) A
The prediction error a'y - a'y = a'(I—fA)y reduces té a'(I-TA)u under £ since
(1-6MX = 0. This implies that a'§ is a &-unbiased predictor of a'y, with the
mean squared error

a'(I-TA) 2(I-T' A)a

= a'(I-8)5(I-8)a + a'(I-T) zA(I-T")a.
Under any linear prediction strategy, -1 = (I-4) ¢ so the mean squared error
simplifies to

a'(I-8)(z + ¢zal")(I-Na.
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As mentioned, this is minimized by ﬁsing a BLU linear prediction strategy,
(H,Z‘l,I). Of course this is conditional on the sample s.

If (2.1) is believed to be accurate, the choice of strategy seems to re-
duce to the choice of sampling plan II. For instance, working with the ratio
model, Royall (1970) has shown that rather weak conditions on I imply that
the mean squared error is minimized by systematically selecting the n largest
units in the population.

Despite the optimal properties of such a strategy, many survey samplers
find it unacceptable, (e.g. Hansen, Madow and Tepping, 1978). For example,
few consumer advocates would accept a utility cost-of-service study which
determines prices for electricity from the consumption patterns of the largest
users in various classes.

The problem with optimal model-based strategies does not seem to be the
use of (2.1). Godambe's work implies that suitable strategies can only be
identified by utilizing some sort of assumptions about the population (Smith,
1976, p. 187). One approach is to utilize information incorporated in a prior
distribution, (Ericson, 1969; Scott and Smith, 1969). A closely related ap-
proach that has practical appeal is to use the model & to providé this
information, (Anderson, Kish and Cornell, 1980; Brewer, 1963; and Rao, 1970).

The real problem with optimal model-based strategies seems to be their
potential bias if the assumed model is even moderately inaccurate. This con-
cern has stimulated interest in robust strategies that provide some degree of
protection against model misspecification. Royall and Herson (1973a,b) and
Scott, Brewer, and Ho (1978) provide unbiasedness under a specified class of
alternative models by imposing balance conditions on the sample s. Although
these writers restrict themselves to the strategies (H,Z‘l,I) for the

ratio model, it is easily seen that given any strategy (I,Q,R), a'§ is
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unbiased under the alternative model y = Zy + v with E(v) = 0 if and only if
s satisfies the balance conditions a‘(I—fA)Z = 0, or equivalently

a'(T-1)AZ = a'(I-4)Z.

For a linear prediction strategy, the balance condition simplifies to
a'(1-0)CAz = a'(I-M)zZ.

The balanced sampling approach raises three questions:

1. How to choose the relevant Z,
2. How to identify the set of samples that satisfy the balance
conditions for Z, and
3. How to isolate the most suitable sample within the set of
balanced samples.
The literature that addresses these issues shows an evolution toward a design-
based viewpoint, although the model-based strategies (H,Z'I,I) arez
generally retained.

Just as advocates of model-based strategies have been led to recognize
design considerations, survey samplers more comfortable with design-based
inference acknowledge the potential importance of model-based planning,
although they tend to stay with the design-based strategies
(n,rt,rly or (m,ml,0).

Brewer (1979) and Sarndal (1980) have begun a systematic reconciliation of
these approaches. This paper attempts to extend and unify their work by
studying the general class of strategies (H;Q,R) in a fashion that integrates
model-based and design-based considerations. The concept of asymptotic design
unbiasedness is used in the place of balance to provide robustness, while the
asymptotic model-based mean squared error is used to analyze efficiency. This
analysis is carried out in Sections 3 and 4 using the convenient context of
varying probability sampling, but Section 5 shows how these strategies can be

implemented using conventional stratified sampling.
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3. ASYMPTOTICALLY DESIGN-UNBIASED STRATEGiES

Samplers find great comfort, and appropriately so, in strategies that
yield estimators that are design-unbiased regardless of the population, e.g.';
calculated from a simple random sample. A bit more reluctantly, they have re-
cognized the usefulness of an estimator such as a ratio estimator that may be
biased but is asymptotiqally design unbiased (ADU). The concept of balance has
been introduced in an attempt to meet these concerns and still retain most of
the advantages of model-based planning and inference. A more direct approach
advanced by Brewer (1979) is tovexamine model-based strategies that give ADU
estimators regardless of the validity of the model. This seems to side-step
the proBlems with balanced sampling and to meet the needs of samplers.

In dealing with finite population sampling, care must be exercised in
defining the context of asymptotic analysis. For our purposes, it is
inadequate to simply let n increase to N. Instead we let the population size
and sampie size both increase with the sampling fraction fixed.

To preserve the character of the original finite population, the popula-
tion size is conceptually increased by considering an aggregate population of
nN units comprised of m copies of the original population. These m copies are
assumed to be identical with respect to the known auxiliary information X. For
model-based analysis, (2.1) is used to generate m independent realizations of
y, say yj, j=1,...,m. However to make this section's analysis independent of
the model, in this section the yj are considered to be identical copies of the
original y.

Under any strategy (I,Q,R), an aggregate sample of mn units is selected
from the aggregate population by selecting an independent sample s, from each

]

of the m copies of the population. For each s, we construct an (NxN) indicator

J
matrix Aj = diag[GI(sj)].
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An estimator of the aggregate population characteristic a'ym = m1 Z a'y,
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=1 d

is formulated by applying the chosen strategy to the aggregate sample. The

estimator is defined to be a'§m where

1 T s
y =unl ) y.,
m 31 j
y.=XB + RA, u
YJ ﬁm 5 Yy
m m
B =] xea®™ ] x'0a, y,, and
=1 | j=1 373
l]. = ")(A 0
i ;3 P
We also define
1m
I =wl) a,
m j""‘l J
A o 1o vy=lye
Cm X(X QHmX) X'Q, and
T =C +R-RiC,
m m mm
so that
Fa) 1 A m
y =m+T Z Ay..
m m 521 373

(3.1).

(3.2)

Using the assumption of this section that yj =y, the population charac-

teristic of interest is a'y and §m becones fmﬁhy. Moreover the assumption

that X'QAX is nonsingular for all samples with non-zero probability of occur-

rence implies that ém is bounded. Using this, the strong law of large

numbers, and the Helly-Bray Theorem (Rao, 1963, p. 117), we have

lim Ep(§m)'

m>o
= lm  Ep(Tpllpy)
m+

Tly

(3.3)



14—

with
C=lm Ey(Cp)
m+o
= X(X'QIX)~1x'q, and
T = lim Ep(fm)

m-+>o

C + R - RIC.

Here Ep represents expectation with respect to the sampling distributions
determined by I.

This motivates

Definition 1. The strategy (I,Q,R) is asymptotically design unbiased (ADU)

for the characteristic a if and only if a'(I-Tl)y = 0 for all y ¢ RN,

An immediate consequence of this definition is that for any strategy

(1,Q,R) that is ADU for a, m_ = 0 implies a_ = O. Any unit with both

I I

L 0 and a; = 0 is clearly irrelevant and can be eliminated from the popu-
lation. Because we are primarily interested in ADU §trategies, it is assumed
henceforth that I > 0.

An equivalent characterization of ADU strategies can be developed from the
identity I-TIl = (I-RI)(I-CIl). Suppose initially that Q > 0 so that QI
defines an inner product over RY. In‘this case CIl = X(X'QIX)~lX'Qm is
the orthogonal projector onto the linear manifold M(X) spanned by the column
vectors of X, and I-CIl is the projector onto the linear manifold orthogonal
to M(X) with respect to the inner product QI, (Rao, 1973, p. 47).

Since

a'(I-T)y = a'(I-RI)(QM)~lQu(I-cm)y,
(I,Q,R) is ADU for a if and only if (QN)"l(I-RN)a e M(X), or equiva-
lently, (I-RIl)a = Qlix for some x € M(X). The restriction Q > O can

easily be relaxed, giving
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Theorem 1. A strategy (I,Q,R) is ADU for a if and only if (I-Rl)a = Qix

for some X € M(X).

While a purely model-based vigwpoint leads to the BLU linear projection
strategies (H,Z‘l,I), the imposition of asymptotic design unbiasedness favors
generalized regression strategies (H,Q,H‘l). Since 0 € M(X), Theorem 1
implies that a generalized regression strategy is ADU for all a. In fact, any
strategy (I,Q,R) is ADU for a if and only if it is equivalent to the generalized
regression strategy (H,Q,H‘l) for a.

For this purpose, two strategies, (H’Ql’Rl) and (H’QZ’RZ) are said to

be equivalent for a if and only if they produce identical estimates of a'y for

all y and all samples with positive probability of occurrence. Given identical
Q, two strategies are equivalent if and only if a'(Rl—Rz)Aﬁ = 0 for all

s and all y. But, as invthe proof'of Theorem 1, this is true if and only if
(Rl-Rz)a = Qx for some x € M(X). However Theorem 1 shows that a strategy
(I,Q,R) is ADU for a if and only if (H'l—R)a = Qx, x € M(X). This proves

Theorem 2. A strategy (II,Q,R) is ADU for a if and only if (I,Q,R) and

the generalized regression strategy (H,Q,H“l) are equivalent for a.

Several special cases may illustrate the utility of these results.

(a) The ratio model k = 1 with X > 0 is of great practical importance
and has been intensively studied. Theorem 1 shows that (II,Q,R) is ADU fqr a
if and only if

q; = Ompx)7H(l-r m)a . (3.4)
Here A > 0 is an arbitrary constant of proportionality. For a linear pre-
diction strategy (M,Q,I), (3.4) gives Brewer's (1979) relatiomship,
A > 0.

= o i B
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A simple projection strategy (I,Q,0) is ADU if and only if q = (AﬂIxI)"laI,
giving the estimator
1 N
1y = .
a'ly = (] JaIyI/E rtax) [ oax
Jes €S I=1

(b) (2.1) is said to include an intercept-if e = [1 ... 1]'e M(X). In

this case an ADU strategy for a can be constructed using Theorem 1 with x = e,
giving q = (An y~1(1- r, )a . An ADU linear prediction strategy is ob-
tained using q = X‘l(nl‘ —1)a1 while, for an ADU simple projection
strategy, use q; = (AnI)'laI.

In the previous cases Q involves both II and a, but sometimes III or BLU
strategies may be constructed that are ADU for a.

(¢) (2.1) is sald to be directed to a if a € M(X). In this case the

strategles (II,1,0) and (H,H”l—I,I) are ADU for a.

(d) A BLU strategy (I, 1,R) is ADU for a if and only if Tli(I-RMa € M(X).
In particular, a BLU linear predictioﬁ strategy (H,Z’l,I) is ADU for a if
and only if'Z(H‘l—I)a € M(X). This odd requirement seems to reflect the
dissatisfaction of many samplers with these strategies. A somewhat nicer

condition characterizes a BLU simple projection strategy, namely Tlia e M(X).

4. EFFICIENCY OF ADU STRATEGIES
Within the class of ADU strategies, a uéeful planning criterion is the
asymptotic variance of a'y, denoted v(a'y). Here v(a'y) is defined to be
the asymptotic expectation, with respect to both design and model, of the mean
square prediction error of a'y. The asymptotic construction is as developed
in Section 3 but with yj independently generated following (2.1). In this case,
there are m independent uj, with Eg(uj) = 0 and EE(ujUB) =%, Jj=1lyeee,m.

To examine the square error (a'ym-a'§m)2, use (3.2) to note that
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m m .
Z Y, - Y, = 2 (I-T_A.)u,., since
i= 3 J j=1 m] J

0 » A A

jzl (-2 8% = n(1-f L)X

m(I—RHm)(I-CmHm)X

0.

The &-independence of the uj implies

T 2
7 oa'(y.y.)l
i i3

—a'y )2 = 1
Egla'yymaly)® = m Bl

]

m
_1 ' -A -A'
o j=zl a' (1 TmAj) T (I TmAJ.)a

' —A ' -A A _A'
a'(1 Hm)Za + a' (1 Tm)HmZ(I Tm)a.

Now the asymptotic design-based expectation can be evaluated as in Section 3,
giving

lim EdEg(a'ym-a'§m)2 = a'(I-MIa + a'(I-T)II(I-T')a. (4.1)

m+o
Given that (I,Q,R) is ADU for a, a'Tlly = a'y for all y € RN so that (4.1)

simplifies to a'(H‘l—I)Ea. This justifies

Definition 2. If (I,Q,R) is ADU for a, then the asymptotic variance of

(m,Q,R) for a is

v(a'y) = a'(Ir"l-I)za (4.2)

% 2 1 2
a_“(n."t-1)o_%.
AR 1

v(a'y) becomes especially recognizable with an equal probability

sample plan, o= n/N. In this case,

o 2 n- N
v(a'y) = %— (NN—“)(-Il; 121 al.?- 012). (4.3)
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By defining the population variance of ay to be

2 1N 242 1N 2
o “=N 1Yy al2y2-@!l] a y),
ay I=1 I I I=1 I°1

and the coefficient of determination of (2.1) for ay to be

N .
2 = 2 _ 1 2 2 2
Ray (oay N~ 121 a ’ o )/oay ,
then
- N2 N-n 2 2
v(a'y) = — (-——-N )(I—Ray )an . (4.4)

There are three ways of increasing the asymptotic precision of an ADU re-
gression estimator:
(1) increase n,
(2) increase Rayz by utilizing more relevant auxiliary information, and
(3) choose a more efficient strategy (I,Q,R).
We now explore the latter possibility.
(4.2) shows that v(a'y) depends only on I for any ADU strategy (I,Q,R).
The Cauchy-Schwartz inequality implies that
Y i 1en2 <} aac ) a2 o2 pl
(Izllallol) < (121 TrI)(IZ:1 a? o wh)
with equality if and only if nll/z is proportional to |aI|oInI’1/2. Since
N

) m =, we have
I=1

Theorem 3. Within the class of strategies (m,Q,R) that are ADU for a and have

sample size n, the minimum aéymptotic variance is

N
v(a'y) = n71( §

N
la_lo)2 - J a 2 5.2,
=1 U o BT

The minimum asymptotic variance is achieved by an ADU strategy for a if and

only if
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N
mo= nlaIIOI / 2 IaJloJ.

J=1

It is perhaps appropriate to call a strategy best for a if it is ADU for a
and achieves the minimum asymptotic variance. If IalloI is called the relevance
of I, then a strategy is best if and only if LN is proportional to the
relevance of I.

The best strategy depends very strongly on the population characteristic
a. TFor any best strategy, o= 0 if and only if a; = 0, so units not rele-
vant to a are not sampled. A single strategy can only be best for fwo cﬁarac—
teristics a and a* if |a| and |a*| are proportional. For example a strategy
that is best for the population total, a = e, ié also best for all differences
between complementary subclass totals.

In the previous section, Theorem 1 was used to examine conditions allowing
the construction of certain/types of ADU strategies. The class of BLU simple
projection strategies (H,Z’l,O) seems especially appealing when the sample
size is not large, and the model (2.1) is credible. Theorem 3 shows that there
exists a best BLU simple projection strategy for a if and only if
sign(aI) o = xI'A, for some A ¢ RK. 1In particular, a best BLU simple projec-
tion strategy exists for the population total if and only if (01...0N)' € M(X).

Ordinarily it will not be possible to follow a strategy that is best for

all a of interest. So it is useful to define the asymptotic efficiency for a

of any strategy (I,Q,R) that is ADU for a. Let n be the sample size of (I,Q,R)
and let v(a'y) be its asymptotic variance. Suppose n* is the sample size of
another strategy that is best for a and has the same asymptotic variance v(a'§).
Then it is natural to regard n*/n as the efficiency pf (m,Q,R) for a. But

Theorem 3 implies that n*/n is equal to
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I

N N '
(] a2 012)—1(I§1|a1|ol)2. (4.5)

This quantity is defined to be the asymptotic efficiency of (I,Q,R) for a.

In certain cases, (4.5) 1s determined by the population coefficient of
variation of the relevance laIIGI, denoted Vo6 For instance, consider an ADU

strategy with inclusion probabilities proportional to a 2 012. The efficiency

I

of any such strategy is equal to

N N
(Y a2 62)71( ] lala)?
- I I N e

I
which is simply (1 + cvaoz)‘l. An example of this is any ADU strategy for
the population total with pps sampling, if 012 is proportional to size.

A second case, of greater interest, is any ADU strategy using an equal

probability sampling plan, m, = n/N. These strategies will usually be pre-

I
ferred in practice unless their efficiency is very poor. (4.5) shows that their
efficiency is (1 + cvaoz)'l. This means that an equal probability sampling

plan will be reasonably efficient if and only if all units are more or less
equally relevant. Such a plan will be reasonably efficient for the population
total if and only if (2.1) is reasonably homoscedastic. However, experience
suggests that in many applications the relevant coefficient of variation is

well in excess of unity, -so that an equal probability sampling plan often has
efficiency below 50% even for the population total. Such cases may call for a

sampling plan providing inclusion probabilities more in line with the relevance

of units.

5. STRONGLY STRATIFIED STRATEGIES
We now consider sample design in situations in which the efficiency of an
equal probability ADU strategy is poor enough to justify the use of unequal

e In these cases, stratification can provide nearly optimal inclusion
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probabilities giving strategies which are simple to execute and very compatible

with common practice. By using equal w_ within each stratum, these strati-

I
fied sampling strategies side-step most of the problems that are encountered
with general varying probability designs. Moreover there is no significant
loss in efficiency.

Suppose that {Sp:h=l,...,H} is any stratification of the population,

and let cv, be the coefficient of variation of IaIloI within the N, units of

h h
stratum h, so that
2 = 2 52 -2
L+ cv, N ) a s o %( Y IaI|cI) . (5.1 )
IeS IeS
h h

We are interested in stratifications satisfying

cv, < g h=1,...,H (5.2)

h

for some specified small € > 0. For any such stratification, we consider a
sampling plan having sample allocation proportional to the aggregate relevance
of units within each stratum, i.e. with mo= nh/n, for I ¢ Sh’ where ‘
N
n, = n( ] la_lo )/ 2

IeSh I=1

|aI|oI, h=1,...,H. (5.3)
Equivalently the sampling fractions nh/Nh are proportional to the average

relevance of units within each stratum.

Definition 3. A strategy (II,Q,R) is strongly stratified for a if

a) the stratification satisfies (5.2) for a specified small e,

b) the allocation follows (5.3), and

c¢) Q and R define an estimator a'§ which is ADU for a'y.

Theorem 3 provides a lower bound on the asymptotic va£iance of any ADU
strategy with sample size n. However, for any strongly stratified strategy a
tight upper bound is also easily derived from (4.2), (5.1) and (5.3):

H

v(a'y) = ] (N /n -1) ) aI2

h=1 IeSh

2
9%
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N B N
c ol T lale ) (en?) | lalo - ] a2 a2
n a_.|o CV. a._.{o
=1 L Iy B Ies, oy I
9yl \ 2 % 2 2
< (M+ef)n~i( ) la lo)? - a ¢ g “. (5.4)
LT T L

Equivalently, we have

Theorem 4. The asymptotic efficiency of a strongly stratified strategy is at

least (1+52)“1.

The allocation rule (5.3) is not actually optimal in terms of minimizing
v(a'y). The optimal allocation is to choose n proportional to (Nh X al.2 012)1/2,

' IeSh
giving

H N
v(a'y) = n~1[ J (1+ev, 2)1/2 la_lo. 12 - | o2,
e R 1 T =

h
However, as long as ¢ is small this cannot be much better than the simpler
gllocation (5.3).

As long as ¢ is small, all strongly stratified strategies are almost
equivalent in terms of asymptotic efficiency, so the actual choice of stratifi-
cation is almost inconsequential. The complexities of optimal stratification
(discussed in Anderson, Kish and Cornell, 1980; Rao, 1977; and Singh, 1971,
1975) can be avoided simply by utilizing a regression estimator, so that the
efficiency of the design depends only on the residual variation and not on the
within-strata variation of the auxiliary variables. Any convenient construc-
tion of strata can be used, as long as the ¢ is small, including the
Dalenius-Hodges procedure. In practice it may be advantageous to use a design
with'equal n . Following (5.3) this is achieved by constructing strata to
equalize the aggregate within-strata relevance of units, i.e. by equalizing

2 IaIIoI. This is a generalization of the equal aggregate size recom-
LeSy

mendation of Hanson, Hurwitz and Madow (1953, p. 219). Cochran (1961) seems

to discredit this simple rule, but his findings are due to his failure to use
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the available auxiliary information not only in the sampling plan but also in

the estimator, i.e. in both components of the sampling strategy.

6. APPLICATIONS

The methodslof sample design proposed in this paper are relevant whenever
‘a key target variable is to be measured on a sampling basis from a frame which
provides one or more relevant predictor variables. Although this situation is
encountered in a variety of contexts, the two examples to be discussed involve
accounting for energy usage.

In electric utility load research, the target variable y is often customer
consumption (i.e. "demand”) of electricity during certain peak hours, and the
characteristic of interest is the population total of y. The auxiliary infor-
mation in the simplest case is the monthly usage of electricity (x) that is
metered for billing each customer. Analysis can usually be based on a simple
heteroskedastic ratio model relating peak period demand to monthly usage. The
analysis illustrated by this example is applicable in most sampling situations
in which the univariate ratio estimator would ordinarily be used.

In the second example the population is comprised of 205 buildings oper-
ated by a major university, and the target.variable y is the heating cost of
each building, which is related to several measures of the size and usage of
the building. The characteristic of interest a'y is the shafe of total
heating costs that can be allocated to sponsored research. The vector a is
considered to be known from space usage reports for each building, but y is
only available on a sampling basis. This example will illustrate the use of
multivariate auxiliary information and a nontrivial characteristic of

interest. This example also illustrates sample design with 100% inclusion of

the most relevant units.



6.1 A Load Research Example

This example is based on a dataset that Brandenburg and Higgins (1974)
have previously used to illustrate sample design for load research. The data-
set provides peak demand Y1 (in kw) and monthly usage (in mwh) for each of
n = 210 commercial and industrial customers. We will use these data, called
the analysis sample, to plan a new sample of a population of N = 840 customers

with known x but unknown y. The purpose of the new sample is to estimate (or
N

predict) ) AL
I=1
To,plan the new sample, the analysis sample will be used to estimate the

parameters of a superpopulation model (2.1) that is assumed to underlie both:
the analysis sample and the target population. It sometimes may be useful to
pool thé data from several available past studies and possibly to take into
account treﬁds or other changes in superpopulation'paramegers, but these com;
plexities will not be introduced here. However planning will!také full accouné
of‘the known distribution of x in the target‘population.

| Figure 6.1 shows a scatterplot of the analysis sample. Exploratory analy-
sis and‘experience with several other load résearch datasets suggest the simple

heteroskedastic ratio model:

, with ‘ (6.1)

yp = Bxp tuy
_ Y
. O'O XI o

1
It is further assumed that uy is normally distributed, althbugh theré are
two of observations that seem'to straiﬁ this assumption.

The assumed normality can be used to calculate model-based maximum likeli-

hood estimates f, y and Sb using an iterative algorithm (Harvey , 1976).
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Figure 6.1 Scatterplot of Load Research Data
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To describe the algorithm, consider the more general model y; = XI'B + uy

with o, = OOZIY’ 2 > 0. Conditional on an initial estimate ?0, weighted

I

least squares gives

B = ( X 2y XIXI ) z zy XIyI’ (6.2)
Ies : Ies

g 2 . n—1 ) v 2, where
0 I
Ies

R - .IY‘O o
= - ' R
vp =zp (p%E'H)

A revised estimate Qi = Qb + A? is obtained by calculating the ordinary least

squares regression coefficient

AY = ( Z wIZ)n1 z Wil where (6.3)
Ies Ies
A2 A2

wp = vy /200 , and

-1
c; = log(zI) -n z 1og(zI).

Ies

This is repeated until convergence.

With the analysis dataset, this algorithm gives the estimated relationships

A

Y1

1]

2.737xI and

.9832

]

oy .9223xI

Although the distribution of x in the target population was not published,

the following target population statistics are consistent with the analysis

sample:
N = 840
_1NA
N ) yp = 4353.9 kv,
I=1
_1N,\
N ) o =1278.9 kv, and
1=1
N
Ny ‘12)1/2 = 2322.6 k.
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~ 62
These statistics, together with the partial sums of ¢ and ¢ with
cases in order of increasing 3, are all that are needed to develop an
efficient sampling plan.

The first step of analysis is to calculate the sample size that would be
N
required to estimate a'y = Z y wusing an ADU estimator with an equal prob-
1=1 I
ability sampling plan. PURPA specifies + 10%Z or less relative error with 90%

robability. Using this criterion, the asymptotic variance v(a'y), given by
p g

(4.3), should satisfy

1.645‘Qv(a'y)/a'y = .10,

or equivalently,
1.645 1 J-l\f—rl cv_ = .10.
V—I-l‘ n au
The statistic eVou? called the residual coefficient of variation of relevance,
is
N 1 N

-1 2 2.1/2,, -
(N 121 a "o ) /(N. A aIyI) (6.4)

]

cv
au

P I
oL ) Oiz)l/zl(N 1 ) 5
I=1 I=1

.5335.
When the sampling fraction n/N is negligible, the sample size required with

equal probability sampling is

]

2
n (1.645 cvau/.IO)

0

77 customers.

Correcting for the finite population, the sample size required with equal

probability sampling is

n, = nO/(1+nO/N)

70.53 customers.

The second step of analysis is to examine the reduction in n, resulting

1
from the best varying probability sampling plan. Using results of Section 4,
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the asymptotic efficiency of an equal probability sampling plan relative to the

best varying probability sampling plan is

2.-1
eff = (1+cvao )
N N
-1 2 -1 2 2
= (N} IaIIOI) /(N ) a;"o.")
I=1 I=1
N N :
. -1 A 2 -1 ~2
= (N ) or) /(8 ) or )
I=1 I=1
= .3032.

This means that the best varying probability sampling plan will require a

sample size of

1

eff'n

oy 1

21.38 customers.

In practice, n might be increased to thirty customers to increase confidence in

the accuracy of the asymptotic approximations.

The best varying probability sampling plan uses inclusion probabilities

A

proportional to Si or xIY. Since ? is so close to one, an alterna-
tive design would be to use inclusion probabilities proportional to X5 i.e.

to use a pps sampling plan. Using (4.5) and the additional target population

statistic

N
-1 R
N~ ) «
1=1 !

2/xI = 1029.7,

the asymptotic efficiency of the pps plan is about

N N N
1Y a2, - -1y a
I SIS il SRR il S KT
I=1 I=1 I=1 ’
= .9996.

Another alternative is to use a strongly stratified sampling plan along
the lines of Section 5. For any strong stratification, the sample is allocated

among strata in proportion to the within-strata totals of ai. These
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strata can be defined In any convenient fashion provided only that the coeffi-

clent of variation of GI is small within all strata. 1In particular, a

balanced design can be obtained by dividing the aggregate target population

total of Gi about equally among strata. This is easily done by examining

the cumulative sum of the ai in increasing order.

Table 6.1 showed a stratified sampling design using six strata with five

observations per strata, designed to equalize Z o, as much as possible. The

I
IeSh

last column shows that the efficiency of this design is at least .92. 1In fact,

this is somewhat conservative, since (4.5) gives the asymptotic efficiency as

'95 L
Table 6.1 Strongly Stratified Design for Load Research Example
Upper Sampling . .
Boundary Fraction X OI 2 012
Str;tum S;ze X nh/Nh Les, IeSh (Ler 2)_1
h mwh % 104kw 108kw? h
1 440 728 1.1 17.83 7764 .93
2 204 1,554 2.5 17.76 1.638 .94
3 100 3,042 5.0 17.82 3.329 .95
4 56 7,955 8.9 19.05 7.032 .92
5 24 11,596 20.8 17.12 12.40 .99
6 16 16,000 31.3 17.84 20.14 .99

This simple stratified sampling plan sidesteps the controversy involved in
estimating the achieved precision of the pps plan. With the ratio model and
stratified sampling, the simple projection strategy discussed in Section 3
gives the combined ratio estimator. In this case, the expressions for the ex-

pected asymptotic variance are closély related to the traditional design-based
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measure of precision for the combined ratio estimator. So,. while planning is
necessarily model-based, post-sampling analysis can be conventional if desired.

Table 6.2 summarizes this sort of anélysis for twelve different load-study
populations. 1In the first five of these examples, an equal probability sampl-
ing plan can be teamed with the ordinary ratio estimator to provide a rather
efficient strategy. In fact each of these 1s a population of residential
customers. The remaining populations, in which varying probability designs
will be more advantageous, are all groups of commercial, industrial or munici-
pal customers which are characterized by high variation in x and strong hetero-
skedasticity in the relationship between y and x.

The wide variation of ?, eff, and n, in these examples dramatizes the

2
need to tailor a sampling strategy to the characteristics of each pOpula;ion.
0f course some variation in these statistics is due to their sampling distri-
butions, but simulation experiments indicate that these statistics are rather
reliable. Simulation can also be used to explore the validity of the asymptot-
ic approximations to the mean and variance of a'§. These results, to be

reported in a later paper, are favorable although very small samples, say less

than thirty, are not generally recommended.

6.2 A Cost Accounting Example

One purpose of utility load research is to allocate the indirect cost of
maintaining system capacity in proportion to the peak demands of various sub-
classes of customérs} The second example involves a related problem of cost
allocation. In this example, the administration of a large univeréity wants to
allocate some of its heating costs to sponsored research. For each of its

N = 205 buildings, the administration knows the proportion a, » 0 of the

I

building assignable to sponsored research. However, the cost of heating
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N
each building (y,) is unknown, although the total cost ) y; is known. The
N I=1
characteristic of interest is a'y = X ary;
I=1

Table 6.2 Statistics of Other Rate Research Populations

Equal ‘ Standard
Probability . Error Best Analysis
Example ny Y of ¥ Efficiency n, Sample Size
1 134 .51 .29 .92 123 185
2 12 .62 .23 .88 10 29
3 38 1.08 41 .81 31 30
4 17 .86 .18 77 13 51
5 166 .91 .14 .75 125 185
6 44 .89 .14 57 25 32
7 40 .84 .12 .57 23 32
8 92 77 .06 A4 41 73
9 32 J4 .07 .38 12 83
10 684 1.05 .09 .29 198 90
11 983 1.38 .11 .21 205 63
12 5,621 1.28 .08 .16 876 30

A simple ratio model might be used to relate Y to the total size of each

building X (measured in square feet):

yy = Bep ¥oup
In this model, the expected heating cost per square foot is identical for all

buildings and is the coefficient 8. With this assumption, sampling is

unnecessary since B can be estimated as
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A

and a'y can be estimated as a'y where §I = BXI' However this assumption
is unrealistic. For example, heavy use of fume hoods in chemical laboratories
significantly increases heating costs since replacement air must be heated.
A more realistic model relates heating costs to several categories of
' k
i i = o e 0 '
building use. Define a vector XI (XII’ , ka) € R with ij equal

to the square footage of building I in use category j. Then the model

yI = X_'B + u, introduces a vector B € Rk of coefficients associated with

I I
the distinct use categories. In this case y; can be measured for a sample of
buildings and.this sample data can be used to estimate B and a'y. .

If the cost of measuring 1 is high, it is worthwhile to develop an effi-
cient sampling strategy. In order to develop a strategy, an aﬁalysis database
has been assembled which includes the known a and XI and a preliminary esti-
mate of Yy for all 205 buildings. Three use categories have been used:

1. General, including classrooms and offices;

2. Laboratory, both class and research; and

3. Nonassignable, including out-of-use, custodial, and
structural areas.

Analysis of these data using the algorithm (6.2)-(6.3) led to the estimated

relationship
i = 0.371 xIl+ 2.359 X1y + 2.359 X1qs with
~ — -7594
o = 22.43 (sz + XIB)

and to the following finite population statistics:
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N = 205
A%
N a_§. = $17,520
I=1 I°1
A
N a5 = $10,614
I=1 I1I -
N
T a5 M2 < s26,430.
1=1 I I

Initially, the analysis follows the same steps as the previous example.
If an error limit of + 10% with 95% probability is adopted, the required
sample size using an equal probability sampling plan uncorrected for the finite

population is

2
(1.96 cvau/.IO)

n, =
= 874.8 buildings,
where
N N
. -1 2~2.1/2,, -1 A
ev. = (N ) a“a)'/N(N Y a.y.)
au h T N i
= 1.509.

This is corrected for the finite population size N = 205:

=}
1]

1 nO/(1+n0/N)

166.1 buildings.
The efficiency of this equal probability sampling plan is

2

-1
eff (1+cvao )

N
E 8128 2

l§ 2
() a.a.)/
=1 ' 1 1

1612,
so that this plan can be greatly improved.
An alternative plan is to select buildings with probability proportional

to their size as measured by X, + Xge Using (4.5), the efficiency of this
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plan is approximately
N N N

~ 2 2A 2 ...1
() a o)/ ) (xpotxn) ) a o (x4 ,) ]
121 R RIS VA LI e B B PR &

= .2616;
so this helps, but not much. .

The besf plan, in the sense of Theorem 3, is to select units with proba-
bility proportional to their relevance for the characteristic of interest, i.e.

The sample size n, that would be

with probability proportional to a o 2

S o

required with this plan can be calculated from the size and efficiency of the

equal probability plan:

n (eff)n1

2

26.78 buildings.

This figure n, should be regarded as a lower bound that can only be

2

achieved by using the optimal inclusion probabilities of Theorem 3. However

N
in this case, n,la_|6_/ ] |la_|o, exceeds one for the most relevant units,
A A GRS A

so the optimal rule is infeasible. In this situation the best feasible design
is to use 100% sampling for units M+l to N with optimal choice of m for
I < M. Here the units are considered to be in order of increasing relevance,
and M is found as follows. Let v be the required value of v(a'y):

Hooa.2

-1 M )
v=n (]} lalo) - ] a’o
I=1 I''I I=1 I I

since units M+l, ..., N contribute no variance. Moreover, for I=1, ..., M,

=
]

M
nla_lo/ ) la_|g
I L

M M 94 9
la_lo. Y la_lo /¢ ) a,%6." +v).
1'% LAl 8 Y

In particular, M is the largest unit such that
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u % 2.2
la, | g la_lo /(T a.“6.% +v) (6.5)
VR TRl le 3% 8 RS

=
[l

< 1'
Using v = (.10 ) aI§I/1.96)2

3.35787 x 100,

]

M turns out to be 193. So the best feasible design is to select the
12 most relevant units with certainty, and to select n, additional units
with probability proportional to relevance as in Theorem 3. Here

M M
A2 24 2
n, = () lalo)?/C ) a. ac " +v)
37 L

16.43 buildings.

This may be raised to 18 to comply with the convention of using a sample of at
least 30 observations. In fact, 123 buildings are totally irrelevant in the
sense that a; = 0, so these 18 buildings are selected from a ver& small popu-
lation of 70 buildings.

It may be convenient to select these eighteen buildings using a
stratified sampling plan. Table 6.3 summarizes a preliminary plan with three
buildings selected from each of six strata with approximately equal aggregate
relevance in each stratum. The asymptotic efficiency of this plan is .87.

The last column of Table 6.3 shows that the inefficiency comes mostly from
stratum one. Table 6.4 shows a subdivision of stratum one into three strata
with one sample building per stratum. With this refinement the asymptotic ef-
ficiency is improved to .95 so this stratified plan is almost optimal.

All of this analysis relies on asymptotic approximations which require
validation in this and any other application involving small or moderate
sample sizes. 1In specific cases, both biaé and mean squared error can be
effectively examined through computer simulation of both the finite population

and the sample, conditional on an assumed superpopulation model. This
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Stratum Size
h Nh
1 43
2 9
3 7
4 4
5 4
6 3

Stratum Size
h Nh
la 30
1b 9
lc 4

Sampling ,
TFraction ~ A
n /N Y a o ) aIZGIZ
h' h’ IeSy LeSy (14cv 2)—1
% x104 x108 h
7 .17.285 13.093 .53
33 17.538 35.457 .96
43 19.775 56.484 .99
75 15.341 59.567 .99
75 19.943 99.999 .99
100 18.052 108.727 1.00
Table 6.4 A Substratification of Stratum 1
Sampling
Fraction ~ )
a_c Z a_“g
nNy g DT Tesy | T (4ev. 2y
% x104 x108 h
3 6.085 1.778 .69
11 5.895 4,264 .91
25 5.305 7.050 1.00
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technique can be used to study both aspects of the strategy, sample design, and
estimator. Within the accuracy of the asymptotic approximations, a large class
of estimators is unbiased and equally efficient, but simulation may reveal
important differences in the performance of these estimators with small and

moderate samples. This work is underway.

7. SUMMARY AND CONCLUSIONS

Most work in sampling methodology has been directed to survey research,
public health, and other fields where auxiliary information is limited, where
the study is multipurpose, and where most of the collected information is
qualitative. The present work is directed to management applications of
sampling in that the study is narrowly focused on one or juét a few quantita-
tive variables that are closely related to detailed auxiliary information
readily available in an administrative database. This relationship can be
exploited to plan efficient data collection and analysis--in particular to
determine the required sample size and to determine the most relevant units to
be included in the sample on a random basis with var&ing inclusion probabili-
ties. The optimal sample design can often be well approximated by a one;day
stratified sampling plan.

These sampling plans are based on an assumed superpopulation model for the
relationship between the target variable and the auxiliary information.
However the proposed strategies utilize estimators which are more convention-
ally based on the sample design in the sense that they are asymptotically de-
sign unbiased even if the assumed model is misspecified. This provides a kind
of robustness that is important in many sampling applicationms.

The proposed methodology for sample design is based entirely on asymptotic

approximations which need to be investigated in specific applications involving



-38-.

small or moderate samples. Simulation can perform this task and perhaps reveal
differences in the small-sample distributions of estimators that are asymptot-
ically equivalent in terms of their mean and variance. For larger samples, the
genefalized regression estimators are expected to perform well.

In many management applications, multivariate regression models are
widely and effectively used for data analysis. This paper has offered an

approach to data collection which ties directly into these models.
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