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ABSTRACT

In this paper, Bayesian allocation procedures for handling the

problem of nonregponses in surveys with fixed sample size are
examined for the purpose of estimating the true proportion to be found
id one of two underlying population categories, These Bayesian
estimation methods use certain families of conditional, conjugate-
type prior demnsity functions. In addition, explicit use is made of

an allocation parameter which is associated with assigning the
nonresponses observed in the sample to the underlying population
categories whose (unknown) category proportions are being estimated.
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In;roductipg:

Frequenﬁly in fixed~samplé size market researcﬁ'éuf§éys and other
sample survey studies, the sampling data aetually bbserved‘yield non-
responses such as refusals to answer, not at home, ungevealed preferehces,
and so on, In most large probability samples taken on a nationwide basis,
sample sizes range from 1,000 to 3,000 resPondenté. For fixed sample size
surveys within this range, the rate of nonresponse often turns out to be
a significant fraction of thé‘original fixed sample size chosen. Serious
bias may result when statistical anélyses of the observed data are made‘
treating the reduced, random sample size actually observed as the fixed
sample size originally chosen and thevnonresponses are ignored,

| In this paper Bayesian allocation procedures for handling the
broblem of nontqsponéés in fixg& gample sizeISurvéys are examined for the
pu:pbse of estiﬁaﬁiﬁg one of twdjunderlying'bépdlation ;roportions{r
These Bayesian estimation methddsfuse certain families of conditioral,
nétuial; conjugate—typébpfior deﬁéity functions and introduce explicitly
an allocation parametéi which is associated with aSsigniﬁg the nonresponées
observed in the sample to the underlying populatlon categories whose

(unknown) category propdrtions are being estimated.)

Aq illus;ration

Suppose one is.interestedvin estimating the proportion of house-
holds whose annual income is $10,000 or more using data obtained from a
simple random sample taken from a given target populatlon, say, the popu-
lation of all U. S. households. From this population a random sample of
n households would be chosen, and each household so selected Qould be
éueried about whethef or not its annual income was $10,000 or more. Thus
25535 to sampling the population can be represented by a two~category

Bernoulli model in Whlch one parameter represents the true (unknown)
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proportion. of households in the U. S, population having .an annual income

of at least $10,000, say, p, while the paramater q=l-prdenqtes the true

(unknown) proportion of households having an annual income-of'less than

$10,000.,

categery will occur, say, an "unrevealed" income category.

POPULATION CATEGORLES

Category Kl

Category,Kz

Income $10,000 or more

Income less than $10,000

i

q=1-p

Schematically the following representation: is appropriste:

To simplify the discussion, suppose that .in sampling only one new

. Thus the

process of obtaining information about household. income through. sampling

- can be expected td'yieldva'certain (random) number of nonresponses, and

the sampling process can be schematically represented as follows:

|

~ Population Categories

Sampling ;Sampling.CategO?y
Process .. Category K1 Category K2 Catggory C
Income $10,000 or more Ihcome less thhn $10,000 ,Unh;healed Income |
Parameters P _ g=1-p | Py
Data ml m, N
In other words, for a random sample of size n, m households

1

1ndicate they belong to the population category K (that 1¢, the households

having an annual income of $10,000 or more), and m, households give category

K2 as their income classification (annual income less than $10,000), while

mo households do not reveal their annual income classification for one
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reason or another (for example, not at home, refusal to answer, do not
‘know, and so on).

There is a simple probaBility model for describing the observed
sample data. Denote by P, the probability that a household randomly
selected will not reveal its income classification. Besides this sampling
parameter, Py and .the population parameter, p, one additional parameter
is required to specify the sampling model for the observed data.

Each household selected in the sample actually beléngs to one of
the two population categories, Kl or KZa However, m households selected
in the sample for some reason do not reveal this information. Thus, it
is natural to associate with each household which belongs to the sampling
category called "unrevealed" income‘the conditional probability that such
a houéehold actually belongs to the population category Kls as well as thé
conditional probability that the given householq belongs to the second
population category K2s Denote the former conditional probability by A.
Then, if A is assumed to be constant .from household to household, A is
simply the conditional probability that a réndomly-selected household
belongs to the population income category Kl; given that the household is
classified as a nonresponse and did not reveal its income class when
interviewed, Similéily, 1-) denotes the conditional probability that
such a household actually belongs to the second population income category

K Thus, for example, if A were known to be 3/4, then in a sample of

9¢
1,000 households selected at random, if 180 did not réVealzthéir.ianme
‘cléssifications it would be expéctéd that 135'6f these‘léq houséholds
would haﬁe annual incomes of $10,000 or more(and beiong to the‘ﬁopulation,
iﬁcoﬁé‘category Kl’ while 45 of fhese households w§uld:be éxﬁected to have
"y

anhﬁal incomes below $10,00Q and belong to the second populatidn income

catégorj bi
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With these definitions in mind for the probabilities p, q, Pys
and A, the probability that a household selected at random reveals its

income classification as Kl is simply pfkpo, while the probability that-

a household selected at random reveals its income classification as K, is

q-(l—k)poa Schematically, the sampling model may be represented as follows:

Sampling Population Categories Sampling Category
Model _
Category Kl Category K2 Category C
Category _ (1
Probabilities - P Apo (1 A)Po Po
.Data m1 m, 7 m,

)

L

This model enables one to explicitly recognize that income patterns
different from those among the households revealing their income classi-
ficatiop might be associated with households not responding, and that these
distinctions can and should be maintained if one were to allocate such
nonresponses back to the original population income categories for purposes

of statistical analysis of these sampling data; Thevdistinct‘feature of the

sampling model is the explicit use of the conditional probability pardme-

ter A as an allocation parameter for the nonresponses observed among the.

sample data.

Likelihood function

In summary, for a random 8dmple of fixed sample size, n, were
there to be no unclassified respondehts (that is, when P, = 0 and m, = 0),
the number of resQOndents in the-saﬁplé, nys who are classified in one of
thé two population cateéories (for example, househol&s having an annual

income of $10,000 or more) and the number in the sample, ny, who are
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classified in the other category (for example, households whose income
is less than $10,000) are distributed by the well-known binomial probabil-

ity density

1

f(nl, nzlp) = n!

nl., nz

: pnl qnz, 0 iny<n,n=n +n

1 2°

On the other hand, when P, > 0, it is possible that some respondents
in the sample who actually belong to one of the two population categories
will remain unclassified (for example, households who will not reveal their
“income class when interviewed in the sample).
The observed sampling data, namely, ml, my, and m_, are distributed .
byxﬁhﬁ probability density

f(ml, m,), molp, Py A) = n! m

! m., «m
— 71— P. o (p~-Ap) 1 (qg~-(1=-Ap)2
monmlomzao o] 0
where
O<p, <Ly 0<p<l; 0<h<l;qg=1-np;
and " . . "
Apo <ps<l-(1 —‘}\)p0 with n = m, + m, +.ﬁoo

The inequality Apo f_p <1l-~- (lwfxipﬂ simply expresseé;analytw-
ically the requirement that the two sampling probabilities P - Apo and q -

H
(1~ A)po be non+negative.

Some point estimators for p

In généfal the marginal probability that an individual belongs
to one of two muﬁually exclusive categories, say, category‘Kl, can be

written using the law of total prébability as

P(K)) = P(K &C) + P(Kl&E)

,P(KlIC)P(C) + p(Klj’é’)p@

where C denotes the event that an individual selected at random from the
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given populationvdoes not reveal which category he belongs to and C
denotes the event‘that-such a randomly selected individual does reveal
his classification,

In the notation used for these probabilities

p=lp, +PBE&[C)D - p)
where

p denotes P(Kl); A denotes P(Kllc); P, denotes P(C); and 1 - P, denotes P(C).
Similarly, for the other population category, say, KZ’
P(K,) = P(K,&C) + P(K,&C)
= PCKZIC)P(C) + P(K, [C)P(C)
or, in the nqtation used for these probabilities where q = P<K2) and 1 - A = P(KZIC

q={1 - 1)pqv+ P(K,[C) (L - p,)

" From these expréssions for p = P(Kl) and q = P(Kz) one immediately
sees that whenever @p’o is small
b= P(R |0) and < 2K, [0)
and, conséquently, even when»the éample sige n is not necessarily lérge,
p and -q can be estimated by the cotrresponding sample proportions observed
among the classified reéponses dﬁdgthe nonresponses ignored.
~ On the other hand, supéose in a random sample‘of n=99

households that m, = 46 revealéﬁ an annual income of $10,000 or more,

1
my = 21 revealed an ahnual income ofﬂless than $10,000, while m = 32 did
not respbﬁd (that 1is, thg households did not reveal their income classifi-
cation). |

For these data, honresponses represent 32 percent of the sample,
indicating that'po is not small for the population of households sampled.
Thus, it would no longer be adequate here to use the above approximations

for p and q (which are valid when the proportion .of nonresponses is small)

and to’estimate.p‘andiq by the corresponding sample proportions observed:
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among the 67 households for which income data were obtained. How should
p and q be estimated from these data?
In aealyzing these data, it might be decided to disregard the

= 32 nonresponses on the assumption that these unclassified responses
should be treated differently than the classified responses iﬁ’ofder to
avoid potentially serious bias which could occur should the income
distributioh of unclassified households be significantly different from
the income distribution of those households revealing their income
classification, Thus the proportion p having an annual househeid income
of $10,006 br ‘more would be estimated by the corresponding sample
proportioh 5 among‘those households in the sample who revealed their income

classification, namely,

R T T _5_@_”0‘69
p“ml+m2 46 + 21 7

Alternately, it might be decided to divide the’mo =.32 non-
responses pfoportionetely between the underlyingvpopulatioh categories on
the assumption that respondents not revealing their actual income class.
really heve‘an income distribution similar to those stating which income
class they QZIeng to among the respondents sampled. Thus, p would be

estimated as

k! * O"69mo 46 + @ 69 x 32 _ 46+ 22._ 68 = . 69.
p = 56 96 9¢
n : 96 6

It is of interest‘ta note that the same estimatewfor p is
obtained whether one dlsregards the nanresponses or whether one allocates
them to the basic. populatlon categormes proportionate to those who indicsate
which income class they belong to, even though the underlying fationales
for these two approaches are c0mpletely.differeﬁt;%

SLill another approach for analyzing these household income data

would be to diwvide the nonresponses on a fifty-fifty basis between the two
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income classes being considered oﬁ the assumption that median annual
household income is approximately $10,000 and, hence, for any househqld‘
selecfed at random there is a fifty—fifty chance that its income,ﬁill be
under $10,000 or $10,000 or more. Under this assumption the proportion
p would be estimated as-

m

1P 0Om 60505 46 + 16 =82 _ 463

P = no .~ T 99 =799 99

Estimates of p can also be obtained when certain exact a priori
knowledge about the probabilities p, Pys gnd/or )} is available. For example,
if A were known with certainty on . an a priori basis, then the maximum
likelihood estimator for the unknown proportion p would-be (m1 +-mb)/n.

For these data, this estimator as a function of A takes the linear form
0.46 + 0.32), giving a minimum estimate of .46 if ) were 0 and a maximum
estimate of .78 if) were 1. This is obvious since A = 0 suggests allocating
none of .the m unclassified responses back‘to the $10,000: or more income
class, whereas A = 1 suggests allocating all of the m responses_back to
this income class.

| In most surveys ofythis type certainly some knoWIédge‘of the

probabilities p, Pys and A, éSpeqiallylin the form of a priori judgments

expressed as prior probability:densities would be expedtéd¢  Thus a Bayesian
analysis of such data will be presented in this paper for the case when
prior probability densities are selected from the family‘Qf;natﬁral

conjugate densities.

Standardized and nonstandardized beta densities

The family of natural conjugate densities to be used in this
Bayesian analysis includes products of certain.sténdardized’and nonstandard~
ized beta densities. For convenience these densities and .some of their

moments are presented here,
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Standapdized Beta Density

on Interval (0P 1) with Parameters s >¢ > 0

r-1 (l'_kx)ij-l

g(x]r, 8) = X y 0 <x <1, 8>r>0

B(r, s)

where

fl  r=1

B(r, 8) = | x s-r-1 o _ I'(x) I(s - 1)

. I'(s) )

(1 - %)

0
In turn, the mean, mode, variance, and coefficient of variation

for a random variable having a beta demnsity are:

Mean of X : E(x|x, s) =-§
r -1
Mode of X : M(x]r, B) =
: § ~ 2
Variance of X : cz(xlr, 8) = Eéﬁ;:_El_
‘ s (s + 1)
Coefficient of  CV(x|ry 8) = o(x|r, 8) = | s -1 {%
Variation of X : ‘E(x|r, s8) |r(s+ 1)}

Nonstandardized-BétauDensity

on Interval (a, b), b > a > 0 with Parameters s > r > 0:

(x -.a)r—l (ﬁ,—Lx)S'?'l, a<x<b,s>r>0,

® - 2)°%7T B(r, s)

g(xfa, b, r, 8) =

The meah and variance of a rardom variable having a nonstandard-

ized beta density can be shown to be, respdctively,

EGxla, b, r, 9) = 226D

and
o’(x|a, b, 1, 8) = (b - &)% o> (x|r, 5), vhere ¢*(x|r, &) is given

above,
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Family of natural conjugate densities
As previously noted, the observed sampling data, namely,
My, My, and m s are .distributed by the probability depsity

. . nl mo, o, m _ 1 o m
£(my, my, mp, By, N IRERERE (® - Ap )71 (g - (1-Mp)72

where

o<p, T L 0<p<l;0<A<lyq=1-p
and

P, <P <1 —‘(1_—)\)?O with n f m +m, + mof

Upon inspecting the above likelihood function, it is immediately:
evident that its kernel and residual are simply the functions

L, 2y Ay, mp, m) = ke, Pgsrmys my, m) Ry, my, m)
where .

R(p, posrlmys my, m) = p Mo (p - ap )" (g - (1 - W)p )™

g "P‘o’ 1’ 2’ fe) 0 o . 0

n!

R(my, Myy ) = —p—mrtp—,
1° 2% 7o mo. ml. M, .

and

The kernel function can be expressed as products of .standardized

and nonstandardized beta densities as follows:

R(Ps Pos Almps my, m) = p Mo (0 = 20 )™ (a - (1 - Wp)"2.

. - m — m,
- (pomo (1 - po)ml + ™ 4+ ;) -2 i (E‘m pi i,
' (1 - Pb)‘l 2

where

a = kp;, b=1-( - A)po, and.a < p < b,
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Consider in turn.the following beta density funtions, namely,

e -a™ b-p™

g(pla, b, m, + 1, my +‘m2 +2) =

1 (1 - pO)ml T+l B(m + 1, m +m, +2)
for-
a <p<bwhere a=)p andb=1-(l- MPs
p0m0'(l - pb) o +.m2 * 1l 0 < <1
g(polmO +1, n+ 3) = B(mo +1,n+3) ’ %o ’
and

g(l]l, 2) =1 for 0 <A <1, i,e,, the uniform density on (0, 1).
The kernel function is seen to be proportional to the product of

these three beta dendities, namely,

K<po P03 )\l'mls mza mo) o glp, Po’_')‘lmls ng mO)
where
g(ps Pos Almlpvm2£ mo) =

g(pla, b, my + 1, m +my £2). gl lm) + 1, n+3) g1, 2).

Eamily_i: Nonstandard Beta Prioxs for p

: S r=1 _ s&r_i
E(plp, Asx,e) =R bop)

(1 - pé)s_l B(r, &)

where

a =vApo, b=1(1 A_K)po, a<p<b,s>r >0,

Family II: Standardized Beta,Priors‘fdgp0

£-1

u~t-1
o ) :,

P

1-p
Epylty w) = - 2

.B(t; w)

, 0 < po <l,u>t>0,

Family III: Standardized Beta Priors for X

V- A)W‘V”l, 0<Aa<l,w>v>0,

f(XlV, w) =. B(V, w)‘
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Since:the kernel function is proportiqgal to a density formed by
multiplying together certain beta densities from these families‘of beta
densities, the general form for a natural conjugate density is obtained as
the density function
f(p, po,A[r, 8, t, u, vy W) = f(plpo,fl, r, 8) f(polt, u) f(l|v, w)
where f(p[po? Ay Ty 8), f(polt, u) and £(A|v, w) are chosen, respectively,

from.among the beta prdbability densities belonging to Families I, II, and III,

Notion of conditional prior invariance

Natural conjugate prior demsities for p, E)’ and A are products
of densities in which the prior demsities for p, and ) are independent
standardized beta densities; the conditional prior demnsity for p, given P,
and A, is a nonstandardized beta demsity defined on the interval a < p < b,
where a = )p_ and b =1 - (1-Np,-

This inequality for p corresponds to the‘obvious probability
statements that -

P(K; & Q) ;P(Kl) <P} + P(K, & C)
P(K) & C) <P(K) Z(B(K)) +P(K)) + (B(K, & C) - P(K,)).

Since;_however,,P(Kl) + P(KZ) = 1, while P(KZ) = P(Kz & C) + P(K2 & C), this
inequality may be written

| P(K; & C) < P(K)) <1 -P(K, &0)
or, equivalently,

P(Kll?f) P(C) < P(K{) <1 - P(Kzl'é) P(C),

which is the inequality a < p < b where a = Apo and b=1- (1 - A)po when

expressed in terms,of the alternate notation used for these probabilities.
Thus, since the range of P dépends on p and A, any prior

probability‘density for p in. general must be a conditional probability

density, In addition, however, for a natural conjugate pfior density,
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the only dependency on P, and A exhibited by any conditional natural conjugate

prior demnsity for p is the analytical depéndency which corresponds to the
general condition that the range for p is resﬁricted by the above probability
inequalities which involved the probabilities P, and A,

The use of a natural conjugate prior demsity for p, pd and A,
therefore, greatly simplifies the prior assessments of»theée‘pxobabilities in
a given application. One reason for this simplification is that judgments
about,po and A.need only be made so that the correspondipg,personalistic
probability densities which are used to represent t@ese prior beliefs agbout
P, and A are assessed so they are independent (in the'probability‘seﬁse) of
one another.

A second . reason fog this simplificatiaﬁ is that Wheﬁever.a natural
conjugate prior deﬁsitybis used, éh aSsessmeﬁt'oflone'é‘ﬁriof judgments
aboﬁt p is made-conditianally, for the given values of:pO and Ay according
to the principle of.”coﬂditional‘ﬁridr invariqncé;" In other words, no
matter whét values of pé and A éré chosen for thé purpose of assessing a
éonditional natural conjugate beté prior density for p, the values of r and
s thch &étermine such}a.noﬁSténdardizedrbéta density must bé independent
of the particular values of po énd A being used, and, therefore, the shape;:
of such conditional Beté natural conjugate pyimrs for ﬁ must be invariant
of-ﬁ0 and A, except insofar as the range of p depends on these two prob-
abilities., Thus the assessment of a conditionél natural conjugate prior
density fo; ) can'bé!car%ied out under the assumption that,po = 0,

Consequenély; when using a natural conjugatexpfior‘forrp, Py
aﬁd:A, the prior asseésmeﬁt of the population proportion p is in effect
sepafated and made,indépehdently from the assessments of the proportions.
po'and A, which are probabilities associated with the particular sampling

process.
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Joint poesterior density

.

Using a natural conjugate density as a prior demsity. for Ps Ps

and A, the posterior demsity of p, po, and A--given the observed data m;,

My, and;mo—-can be obtaiﬁeﬁ. The posterior demsity, of course, is related

to the likelihood and the selected prior density by Bayes' theorem, namely,

£y, mys mo D, P, M) £(p, B, )
f(ml, my,s mo)

’

f(p9 PO, lel’ mzs mo) =
and, therefore,
f(p, pos Alle mzs mo) o f(mla mzs molps Pou A) f6@31$03 A).

Using a natural coﬁjugaté density for f(p, Pys A)s

f(ml’ mza m0|p’ bos A) f(po Pba A) a

(uz "ML b - T | mgtel g ympmgtuseel
+m,+s-1
(1-p)"™
o]

»Av—l (1 _‘A>w—v~l

wherea=>\po,b=1-(1-npo,a<p<b,0<po<1,'0<>\<1,

Consider the‘folloWing beta densities:

% Ky
- a)f 1 (b - p)®*T 1

. -
(1 - p )% B(x%, %)

f(PIPO’ As r*, S*) = (P

where
a=2p b =‘l - (1 - Mp_; a<p< b;‘r* =m +tr;and s% =m + m, + s,
t*-1 uk-t*=1
\ p, ~(1-p) ‘
: . ¢ = O 0 » 0 <p <1
f(poltx? ut) B(t*, u*) ' °
where t* = m, + t aﬁd u* =n + u,
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and :
ke K gt
WL g Lyl

B(v*, w¥)

£(A]ve, wh) = » 0 <re<l

where v* =.v and'w* = w,
Thus the posterior demsity of p, P,s and A--given the data.
m;, my, and m --is the density function
f(p, P, A{ml, mz,'mo) = f(p’Po’ Alr*, 8%, t*, u¥, vk, w¥)
y

where

f(PQ po’ ;\]rf, S*g t*; U*; V*, W*) = f(pipo, A’ r*’ s*) f(Polt*, u*) f(}\lv*’ W*)

with
r* =m o, g% =m otm +s
[ =?m6‘+ t, u* =n+u
vk = v, wk =W,

oéher posterior deﬁsities

| ‘ Tﬁe joinﬁ boStefior density of the probabilities pb and A
associated with the saﬁﬁling nonresponses is of interéét too. This joint
ppéterior.density is obtained from the joint pos;erioxidénsity of p, P>

and A upon integration of f(p,po,.xlml, Moy mo) with respect to p. Thus,
b 2% E _

f(Poa Afml,’mzf mo) = J‘f(\‘p'a pos, }\‘Iml'» mzs mO) dI."a
2 .

where a = Ap_ and b =1 - (1 - Mp,. Since
85 Py Almp,my, m) = £(plp, A, %, s%) £p_|tx, r%) £(]vk, W),

where f(p0|t*, r*)‘ and‘f(liv*, ﬁ*) are standardized beta densities on
the interval (0, 1), while f(plpo, A, ¥, s#) is a nenstandardized beta
density on the inte:val (a,b), the joint ﬁééter}or density of P, and A is
obtained immediatély as. | b

E@ys Almys my, m) = £ [t%, ) £O|ve, w9 | £(olp_, A, r*, s*)dp.

a
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The integral appearing oﬁ‘the right‘hapd~side of this expression
is equal to 1, of course,sincef(p[po, A, r*, s*) is a probability density
on.the interval (a,b). Consequently,

f(po, Alml, My mo) =‘£(Polml’ m,, mo) f(AIml,,mz, mo)

where m, +t - m + m, + u~t-1
, p, 9 ( ) £(p_|t*, u¥)
f(po[ml, m,, mo) = ‘ - ol " .
: B(mo + t, n+ u)
and .
W=v=1 "
- = %k
f(xlm,m,‘m)-—“l A), £ vk, wh),
1’ 72 0
B(v, w)

Since the joint ﬁostérior density of po and A is the product of

their marginal posterior densities, one important observation is that, given

the observed. data ml, Wy s ggg_mo, 128 and A continue to Be,stochastically

independent as they were before sampling (whenever a natural comjugate prior

density is used in order to represent prior judgments about p, po,'and~»o
Further, since f(AIml, m,, mo) = f(A), a second importatt obser-
vation is. that the. sample data m, mé, and m do not contain any intrinsic

information about the conditional probability allocation parameter A when a

natural conjugate prior is used to assess prior beliefs held about p, Py

and A jointly.
Finally, the posterior mean and variance of,po are given as

m +t
E(p |m,, m,, m) = & .8
Pplfiys Mos Ty u* n +u.

and
% (u* - t%)

o (p, my, m) == P
o M1 Mr Mo (u*) (u* + 1) (n +‘u)2 (n+u+l)

(%Q-+:t) (@l + m, + (tii))’

while the posterior mean and variance of ) are identical to the prior mean

and variance of ), namely,

E()\Imls mz, mo) = % = T = E(}\)
and -
v*(w* ~. y¥%) _ v(w-v) _ 2

(w*) (wk + 1) w (w+ 1)

o (A}ml, m,, M )
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Besides the joint and marginal posterior demsities of the para-
meters P, and A associated with the sampling nonresponses, the joint
posterior densities of p and P, and p and A, as well as the marginal.
posterior density of p, are of interest too. These posterior densities,
however, are difficult to.obtain in analytical form, and a Monte Carlo

analysis of them may be necessary.

Marginal density of the observed data

The marginal density of the observed data My, My, and m, can be

- obtained from the relationship

f(p’ PO’ Ay ml’ mzs mo)
9
£(p, pys Almy, my, m)

f(ml, m, , mo) =

and it is readily seen to be the density

£( ' y = n! | B(r*, s*%) B(t*, u%)
Bps Mo Wy mo! ml! mzl » B(r, s) B(t, u)

or, equivalently,

f(ml, mz,‘mo) =

F(n+1)F(m6+t)F(ml+r)P(m2+ser)P(ml+m2+u~t)F(s)P(u)

PG T @ P T ny# ) T, ¥ T ¥9) [ () T (a=D) T (E T (o)

sometimes called a "beta-binomial" density or a "hyper-binomial" density.

Posterior mean of f(plml, m,) mo)

Since the Bayesian point estimator of p against quadratic loss

'

is the posterior mean of f(p]ml, m, mo), namely,

, ) . .
E(P]ml,,mz, m) = J pf(p[ml, m,, m )dp,
)
the posterior density of p--given the observed data my, My, and mo-—is
required. This posterior demsity, however, is difficult to.obtain in

analytical form.,
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The posterior mean E(p]ml, mz,fmo) may . be derivéd without
explicitly~obtaining the posterior demsity of p since an alternate expression
for the posterior mean is. |

E(plml) mzf mO) = E(E(PIPO, A, ml, m2, mo)),’

where the outermost expectation appearing on the right-hand side of this
identity is understood to be formed with respect to the joint posterior den-.
sity f(po, A]ml,.mz, mo) ofvp0 and A, given the observed sample data,

The conditional density of p--given po,,l, Wy My, and mof-is a
nonstandardized beta density defined on the interval (a,b) where a = Apo

and b =1- (1 - A)po, namely,
f(Plpoa'XD mlj'mzs mO)‘= g(Pla, b, r*, S*)

WBére ,
Hm Koo ]
-1 (b - p)s r ‘l

]

(b - a)
(1 - p)% B, o¥)

g(pla, b, r*, s*) =

and a < p j!% with r* =m; +r and gk = ™ +‘m2 4,3. Thus the conditional.
mean of p=-given Pys Ay ml, M, 5 and<mof~is sim@lyl

E(Plpo, b M To» mo) = E(ple, b, r¥ §*)

where

* * - TH * .
R N S | )

Substitution of a = Apo, b=1-~- (1~ A)po, r*=m +r, and s* =m_ + m, + s

1 1 2

into this expression gives the conditional mean of pf~given'p0, A? my, Wy,

and mo—-explicitly as

+
ml I

Eelegs Ao my, myy m) = ey + | s |- by,

In turn, according to the identity previously given, the posterior
mean of p--given only the observed data Mys My, and ms namely,
E(ﬁ!ml, m,y mo) --can be obtained by using the right-hand side of this

expression for E(p|po, Ay my, oy, mo)‘and forming its conditional
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expectation with respect to the joint posterior-density~of‘pd and A, given
the observed sample data, namely,

m, +r
E(E(plpas As mls mzs mO)) E(>\Po+ (ml +,m2 + S)(l - Po) l ml,'mz,ﬂ mo).

Applying this identity when the prior demsity of p, Py and A
is ‘a natural conjugate density yields the expression -

p* = E(p|m;, my, m )

R r# £E |

or, substituting for v¥*, w*, t*, u*, r*, and s*,

where

vhk =y, wk =y

th = m +t,u*=n+ u

r* = my +.r, s* = my +nm2 +s. |
: + ,‘l‘s +- -L
eo(v) L S . f»ml.ﬂ T “ oy m2v+ u t'
? | w n+u m tm,t+s || n+tu -

Structure of Bayesian point estimatogj
The Bayesian estimator .for p_agéinst quadratic loss using a:
natural conjugate prior‘density has a very simple and appealing structure,
As previously noted, the marginal'probability~that-an‘individua1'bélongs
to one:ofltwo mutually exclusive categories, say, category Kl,-caq be written,
using the law of total probability, as -
P(R;) = P(K; & C)‘+ P(Kii& )

= P& [0P(0) + P®, (D20,

where C denotes - the event .that an individual selected at random from the
given population does not reveal which‘categorywhe~bglongs to,‘while‘E
denotes the event that such a randomly selected individual does reveal his-

classification.
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In the notation used for these probabilities
p=1Ap, +B(K [O)( - p)
An examination of the Bayesian point estimator for p reveals that:

p* can be expressed as

% = )kpk T - p%
p¥ = Nep¥ + PX(K, [O) (1 - p¥ )

where A%, pg , and P*(Kllﬁ) are simply estimators for the probabilities
X, Py and’P(Kl|E) ﬁhich appear in the expression connecting the;probébility
p with these other population probabilities, |
Thelestimatmrs‘l*, ?g', and P*(Ki]ﬁ) 9f X, pé; and P(Kl]E) can.
be shown to be weighted averagés of the prior opinions héld_aboﬁt thesé
probabilities (as expressedvthrough their expécte& valuéé determined from
the prior probabllity densities being used) and the sample estimators of
those, probablllties based on. the observed data mg s m2, and . W .
In other words, consi&ering M for example,
. 3 x(0),

AR = E(Alml, Wy, My ) = ':‘I;=E(>\) =

Thus the posterior éqtimate aflk—-given the obsérved déta'ml, My and‘mo*wié
not . affected or changed by the data and, théiéfdre, it remains the same

(‘0)3

as the prior estimaté of A expréssed as the mean A =’E(x) of the prior

dénsity'assignéd to A. In other words, the sample data do not- containiany

intr1n51c 1nformatlon about the conditional probablllty allocatibn parameter

when a natural comjugate prior is used to assess prior beliefs held about

Ps Po’ and A,

On the other hand, the-postérior estimate pg. of po, namely,
'* -_; u T = EE.’?
pOm“E(pojmi’ My mo) u*®

can be expressed as
n m o, t

o L
pk=w; ) +w, E(p) = 4
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where

2 = ;{TE'_’ and E(p )

:Hrl-

Thus, pg is simply a weighted average of .the sample estimate of

=]

Py namely, ﬁo = 593 and the prior estimate of p, as expressed by. the mean

po(O) = E(po) of the prior densitylassigned:tO‘po.

Finally, the posterior estimate of P(Kllﬁ), the conditional.
probability that a classified observation belongs to the population category

Kl’ is simply the posterior mean of p--given the observed data ml; m,, and .

m and given that ﬁ = 0 which, of-course simply expresses analytically
the fact that P(K IC) is a conditional probability formed among classified
respondents among whom, therefote, the probgbility that'an-uncléssified
response will be‘found'(bamely, po) must be 0, Thos{

r#*

P*(Kll—é.) = E(PIPO =‘Os A,‘ ‘hl’ mzf mG) = E;g"

A brior estimate of P(Kliﬁ), however,;is simply the mean of the

ofior conditional density assigned to ﬁ, given po =0, namely,
(o) = I _ _
P (k[0 = < = EGp[p, =0, 1),

while the. sample estimate of. P(K IC) is merely the proportion among the.
cla331fied observations belonging to the given population category, namely,

m

B, [O) =

1

It can be seen 1mmed1ately that the posterior estimate P*(K ]C)

——given the observed data my, My, m --is Just a weighted average

of thesa two estimates (the first reflecting prior Judgments about . this

probabillty, while the second is. based only on the sample data obtained),

namely,
o ml i' f my + r
PR [C) = w ] +w, Blplp, =0, ) = m ¥m, * s
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where »
‘m o
"""""“"“"‘——'—-14+ 2_ Y. = o S = = I

Evaluating the risk of the Bayes estimator

For-quadratic loss, the risk of using the Bayeés estimator

p* =FE{p{ml,,m2, mo) when the data m, 3 mz and m are observed is proportional

the conditional - variance czfplml, m, mo) of the marginal posterior density to
of p. Wheft using a partictular joint ﬁrior density, &, for expressing
prior judgements held about p, Pys and A, the Bézes ri§k assoclated with

choosing p* = E(p!ml,,mz, mo)is‘giVen.(up to a constant of proportionality) as
. 2 ‘
o*(8) = E(¢“(p|m}, my, m)) s

namely, the risk of the Bayes eétiméﬁor,.ﬁ#,;against quadratic ioss‘
averaged over‘the‘bbservéd datam1? mz;.and m using the joint marginal
éénsity, f(mi, m,, mO), of‘tﬁe data. |
The required conditiohél variance'cz(plml,vmz, mo) cah be obtained
indirectly from the identity
olay, my, 8) = P ®Glp, A, my, my, 1)) +EG @l A, my, my, m))
, Yo o SR L) 2’ o
where again, as when p* =“E(p|ml? L mo) was detéfmiﬂeé, the outermost
éxﬁected'values required for the two expressiéns Which appear on the right-
hand side of this idénﬁity are. understood to be ma&é‘with respect to the
joint éoste;ior density of p_and A, givet Eﬁe;obéervgd samble data, namély,
f(ﬁe,‘llmlg'mz, m).
Pfeviously the conditional expectationlE(élﬁo, X, CTRUY mo),
vwhosé conditional variance is required as the fifst of tﬁe two térﬁs of this
identity, Was,determiﬁed as.

. i
E({p a As my, my, m) = Ap_ + () (1-p )
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where r* =m. + r and s* =

1 1 + m2,+‘s. To obatin its conditional.variance,

recall the general expression for the variance of the product of two

stochastlcaliy independent random variables X and Y.

o (xY) = AR 2T + EE®)o(¥) + EA(V)oA(X)
which, of courge, can be extended sM#iild other conditioning random variables

Z be: used

OZ(XYIZ) = 62(X[Z)62(Y]Z) o+ EZ(}{"}Z)UZ(YIZ) + EZ(YIZ)OZ(XIZ).

This expression. for GZ(XY[Z) can be immediately applied to obtain
the variance.cz(E(p[p s Ay my, My, m )) con&iﬁiéﬁédvonly~on the observed
data ml, m,, and m, of the conditional expectatich E(p{p R A Wy MWy B )
Thus 1et X denote A - ¢ énd Y denoté P, where-—glv%n ml, mz, and m_--c. denotes
the constant, r*/s* or (M'ifr)/(m + m, +8), Then E(p]p o! A, ml, m2, m )
can be written as the product of X and Y shlfted by the additien of a

’cOnStant ¢, namely, |

E(pH) i) A, my, My, m3) = XY +c
where X=X ~-cand Y‘ p ; for the givens ml, m,, and m are stochastlcally
independent random variableé Consequently, taklﬂng as the condltioning

N

random varlables mg s My, and- m it is seen that

‘ . 2 2, N
S Elgs Ay my, w0y, my, m) = o (¥ee|2) = oPay|n)

+.h

. S B m ‘ o

: R % . ; : . i .

where, of coursey ¢ = E; S does not alter the conditional
. 89 ml +. m, + 8 ‘

variance of XY, givén Z, since for glven Z (that is, for giVen Ty, My, and
m ) the llnear shift ¢ can be treated as a constant, Therefpre,

o (XYIZ): o (XIZ)G (x[z) + B2 (x|2) o 2(1|2) +'E2(Y|_Z)QZ'CX|Z)
or,alternatively,

2 . .
o (E(plpo,‘k, m, Wy, m )|ml, my, ™ ) X (A c]ml, m2, m )c (p lml, m2, mg +

i (A= c]ml, m, s m )0 (p !ml, my, M ) + E (p: lml, my, m )c (- c|m1, my, W )
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Again, conditioned on.m,, m,, and m_, c may be treated as a constant and,
? 1’ 72 o’ ; -

therefore,
2 2
o (A-eclml, m,, mo) =0 (}\Iml, m,, mO)

and the conditional variance UZ(E(plpO, 0, My My, mb)) can be. expressed as
GZ(E(plp Ay m,, my, m_)) = Gz(llm m,, m )cz(p]m m,, m ) +
O’ H l’ 23 o) lﬁ 2’ f3) 19' 2’ fo)

E?(”,gilml, mz,mp)oz(polml,mz, mo) + Ez(polml, mz, mo)oz(xlml, o, mo).
The second tqrm requlred to obtain the conditional variance
g (plml, mz, m ) from the given identity involves the expectation of the
conditional varlance o (plp 5 A, > Ty, mZ, m ) formed with respect to the joint
margindl posterlor dén51ty of pOuand A——glvenvthe-observed,data.ml, m, and
m s Since the conditional density of p--given P, A, My, My, and mo—wis a
+ r and s* ; m, +m, + s

1 1 2
on the interval (a,b) where a = Ap and b =1 - (1- A)p R whlle the variance

nonstandardized beta density with parameters r* = @

of such a nonstandardized data. randqm X variable is given generally a8

cz(Xla,b, T, g%) =‘(b-a)202(Xlr*,S*)
ﬁith-cz(Xlr*,s*) denoting the variance of a standardized random variable

with parameters r* and s*; namely,
r*(s*—r*)

(s*) (s*+l)

Gz(Xlr*‘,S*) =
the conditional variance cz(p[p‘, Ao ml’ my, W ) is giVen as

2 o £ (sk-rk)
o"(plp,s Ay my, m,, m ) = (b—a) o 1@ r¥*,s%) = G*“--—~*—~J(l—ﬁ ) ,
! o) L1 72 o’ | I (s*)z(s*+1)

gince b - a nu(l—(lfx)po),—vxpo =,] - P,

Thus the conditional expectation of‘oz(plpo, A, m, ﬁz, mo)——given
only the observed data ml; m,, and mo—-ié

oy L rk(sterk) L )2
E(o (Plpc)’ )\s-mls mZ’ mo)lml’ mzs mo) = (M)E((lnpo) Iml’ m2’ mo)o
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In turn E((l—q;g]ml, m,, mo) may be expressed in terms of the conditional

expectation and conditional variance of Pys given My My M, namely,
, 2 2 2
Ek(l“PO) !ml, m,, mo) =g (l_polml"mZ’ mo) + E (l_Polml? m,, mo)
or, equivalently,
E(1-p ) |m, m), m) = 0% |m, m, m) + (1-EG_|m, m., m )2
0 1° 722 o o1’ "2 o o1’ 72 Yo'l ¢

Using this identity, the expression

e ‘ * (%
E(o (plpos A, m, My, mo)? = Qf;ﬁ;izizilgﬁ (0 (p Iml, My, W ) + (l =E(p lml’mz’m )) )

is obtained for this conditional expéctation.

| Finally, since thé risk of using the Bayes estimator
p* =t'E('plml, mé, m ), when tﬁe bbservéd samﬁie;data ml,'mz, and‘m0 are
obtained from the sample survey, is given (up to a constant of proportionality

for quadratlc loss) by ¢ (lel, My M ) from the 1dentity

2,0 ‘ 2, 2 1.
' ‘G (plmls mz! mo) =0 (E(plp05 3? ml’ mz, mo)) * E(G (plpoé A’ mls mZ’ mO))’
the risk of this Bayes decision takes the explicit form up to a constant

of .proportionality
2 ' 2 2, :
g (plml, m, mb) =0 (A]ml, m,, mo)c (polml, m, mo) +
2,, t* 2 2 » . 2.
E ()\."\’ﬁ Iml,mz,mo)ﬁ (polm]-, 1'!12, mo) + E (p0!m1’ mz, mo)o ()\lml "mzsmo) +

f%%@";)(c (7l myomy) + (2@ fmy g, ).
g% g¥+1

The various conditional means and conditional variances required for Py and ‘A

in this expression for 02(p[ﬁ1,m2,mo) are summarized below:
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Conditional Expressed.in Terms | Expressed .in Terms
Mean or Variance of Parameters of of Data and Parameters
of Posterior .Densities Posterior Densities of Prior Densities
2,.. _
o (klmlsmz,mo) v¥ (y¥-v*) v(w-v)
() 2 (wit1) WOeHD)
2 ‘ m +t +m,+u-t
o (pbjml,mz,mo) | t*(u*—t*) ; )(ml 2 )
(u*) (u*+l) — (n+u) (n+u+1)
2,00 : . . +1) ( -
g (plpo =0, A, ml,mz,mo) r* (s%—r¥) (ml r)(m +8-1)
X %
(s*) " (s*+1) (m1 +s) (ml 2+s+1)
' -
E(A}ml,mz,mo) X; v
, u w
* : +
» E(p0|ml,m2,mo) Eg | mo+ E
: u ntu
E(pip =0,A,m, ,m, ,m ) r* ., +r
l o 71720 o ‘ 1 .
l+m2 ]

From these. expresslons the follow1ng may also be obtalned namely,

-t . etk fp )

u® (u*+l) (n-l-u) (n"l*u+l)

Usinélthese,various expressionsfg(plml,m ,ﬁo) may be written in

terms of the parameters of the posterior demsities of p, po; and. A as

'02(P|ml:ﬁ2,mo) (v*(w*~v*) (t$(u*ut*)

2 )+
(w*) (w*+1) (u*)” (u*+1)

£zt t*(u*“t*) 52 vk (wkov) r*(s¥-r%) - (u¥-t¥) (uk-tH+1)
W* s* (ug'e) z(u*+1) u (W*)Z(W*+l) (S*)Z(s*-l-l) u* (u*+l)

Alternately, Gz(lel;szmo) may be written in terms of the observed
data my, My, and m and the parameters of the prior demsities of p, Py and

A as.
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V(W“V) ) (m +t)(m +m2 u=t)
(w+1) (n+u) (n+u+l)

2 (n lml,mz,m ) = ( ) +

, m1+f H(mtt) (ml+m2+u t) m it
-

W m,+m +s) - )+

) <v(w v)
2
172 (n+u) (n+uﬁl)

W (w+1)

+
n+u )

(m +r) (myts-1) (my+mytu-t+l) (Igl-hn2+u—t)

(— : Y ’ ‘ iyt S
(m1+m2+s)2(m1+m2+3+1) (n+u) (ntut+l) |

From this last expression for 02(p0|m1,m2,m0), the Bayes risk

under Quadratic 1oss of using the estimator:p* = E(p!ml?mZ’mo) can be
evaluated up to a constant of proportionality by forming the expectations of
the various terms involving the,observed,data mys Wy, M with fespect to
their joint marginal demsity f(m ,mz,m ). This calculation will not be
undertaken here; instead, wvarious. asymptotlc expressions for ¢ (piml,mz,m ),

which are valid when the sample size n is large, will be explored.

Asymptotic expansions for Uz(p!ml,mz,mo)

First, suppose the sample size n is large relative to the para-

meters t.and u which determine the prior natural conjugate beta-deosity for p
, T , 0

t -t , .
Then'a-: 0, — 2 o, and-E;E-g;o, andvoz(plml,mz,m‘) may be approximated as

Ble

2 2 P (1- p )
o (p|my,my,m ) & (0" (VER) - w +m oL Y-S +

¢ +r)(m +s-1) "
20y G + (—k ) (1-p,)’
(n,tm+5)” (myhmhet])

=]

A

where,p0 Eg-is the proportion of nonresponses actually observed in the
~ m, + m
sample and 1 - P, = '

is the proportion»of'classified responses

observed in the sample.
Alternately, Supp09e‘the sample size n is large with respect to

the parameters r and s which determine the prior natural conjugate conditional
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beta density for p. In this situation %"g_o,

Blm

‘ S=r
Y o, and o X 0; therefore

an approximate expression for (g(plmi,mz,mo) is

2, 2, . -
o elmymym) 2 GPO0HEQ) - P )% +t>‘m1 e
p +p (n+u) (ntutl)
172
5 (A)(m +t. 1 2+u t+l)(m 2+u—t) . P3Py )
(n+u)(n+u+l) h(P s )3
17%2
o ml
where Pq =¢—E-denote5»the sample proportion of classified responses belong-

~ m
ing to the first population category, and Py = —% denotes the sample

proportion of classified responses belonging to the second population category.
As a thif& éituation, suppose the éamole size n is large with

respect to each of the four parameters t; u, r, and é related to the prior

naturgl conjugate beta densities aSsigneé\to po_énd p.' In this case the two

appfoximations previously given for oz(p]ml,mz,mo) become the approximation

5 p (l-p ) o * P S
oz<plm1,mz,mo> v (62 (WHEQD) = i )2)< ) + 02<A><p 22,
: | + B n(p,+p,)
PPy 1P

Fihally, when the sample size n dominates r, 8, t, and u in the sense

t | o
that %, 53 o and — are small, then whenever the,sample‘51ze is large and

5le

5 + ;2 is not exceedlng smali (or, equlvalently, whenever the . proportion
of nonresponses . obserVed in the. sample, éo, is not almest 1 and the»sample,
does not yield almost all nonrésponses), the condltlonal varianoe

0 (plml,mz,m ), which gived the risk of. using p* = E(plml,mz,m ) as an
estimite for p (except, perhaps, for a multiplicative constant), i
approximated simply by | |

2 "
Oz(lelngsmo) NGO O\) (Po)z
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In other words, this asymptotic. expression for Gz(lel,mz,md)
indicates that whenever the sample taken is large enough sé that the samplé
data related to p and p, are no longer overly influenced by whatever prior .
judgments may have been held about them, then, provided most of the
observations in the actual sample are not nonresponses, the risk of using
the Bayes estimator p* = E(p|m1,m2,mo) to estimagg P is determinéd by
(1) the square of ﬁhe observed proportion of nonrésponseé iﬁlthe sample,
and (2) the varlance of . the prlor natural conjugate beta. density for the
allocatlon parameter A (this prlor density, of course; -expressing the only

information which is available about .the-allocation‘,paramete,r)°

In summary, when the sample size n is large .and the observed sample

information about p andip coutweighs the prior judgementéfmade'about‘them, ghould

the proportion of - nonrespmnses observed in the gagple be‘small the risk

in using the Bayes estlmator.p* = E(p%ml,mQ,m ) for" purposes of estimatlng

D lsﬂnegllgible. Alternately,.lf the observed g;oporq;on‘of nonresponses . is

large, but not so large that almost the entire sample consists of non-

responses, then should the prior judgementsuheldwabéut‘the allocation parameter -

Afrgfléct thgrheariy,cer;gin‘belief that A is a_particularrvalue S0 that

e$§¢ntially the entire unit mass of the prior deasity is placed at this point,

again for ﬁractical,ggrposgs the risk of using this Bayes estimator can

be ignored.



