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Summary

Accurate estimation of regression models for mortgage defaults is quite difficult,
owing to the fact that a key explanatory variable, contemporaneous housing price,
can only be observed with large measurement error. In this paper, we describe
a binary regression model for mortgage defaults that accounts for measurement
error in predictors, as well as possible autocorrelation in residual.s, and develop
a Markov chain Monte Carlo procedure for Bayesian estimation of the model
parameters. Application to a large national database of mortgages shows that
taking measurement errors and autocorrelation into account has a substantial
effect on the estimates of binary regression coefficients.

Key  Words: Data  Augmentation, Logistic ~ Regression,
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1 Introduction

There is over $3.8 trillion in mortgage debt outstanding in the United
States; the mortgage debt market is larger than the U.S. treasury bond or
corporate bond markets. A critical issue for the lending institutions that
originate mortgage loans, and for the secondary investors who purchase bundles
of mortgage contracts from the originating institutions, is the probability that
-any given borrower will default on the mortgage contract.

The default probability is known to depend on covariates pertaining to the
loan. One of the covariates believed to most significantly influence default rate is
the so—called loan to value (LTV) ratio (e.g., Quercia and Stegman 1992). The
LTV ratio is the ratio of the current amount‘of principal due, to the current
market value of the home. When the LTV ratio is high, owing to a decline in
market value of the home, it may be in the borrower’s economic interest to default
on the loan, in effect exercising his or her implied put option to sell the underlying
property back to the lender in exchange for eliminating the mortgage obligation.

Participants in the mortgage market have a need for a model relating LTV
ratios, and perhaps other factors, to default rate. A natural choice for such a

model would be a binary regression equation
Prob (Default) = &(8'x), (1)

where @ is some cumulative probability function, x is a vector of covariates,
including the LTV variable, and 3 is a vector of unknown parameters to be
‘estimated. Choosing ® as the normal or the logistic distribution leads to the
probit and logistic regression models, respectively.

Software for estimating the parameters of the standard probit or logistic

regression is, of course, widely available. However, for a few reasons it is the



case that typically available mortgage default data cannot be accurately fit into
the standard formula (1). A major reason is that the crucial LTV variable is
unobservable, since it depends on the market value of the home, which can be
observed only when the home is actually sold. Several authors (e.g., Quigley
and Van Order 1995) have used a regional price index as a proxy for the market
value of homes within a given geographic region. However, there is known to be
a large amount of variation within geographic regions with respect to changes
in housing price (Case and Shiller 1989). For example, market value within a
particular neighborhood may decline significantly over a year, even if the average
price within the broad region on which the index is based has remained constant
or risen. Thus, the regional price index measures the price of individual houses
imperfectly, or with measurement error. If ignored, this measurement error in the
independent variable will lead to biased estimates of regression coefficients (Fuller
1989; Carroll, Ruppert, and Stefanski 1995).To properly account for measurement
error, it is necessary to quantify the amount of such error. The Weighted Repeat
Sales (WRS) technique of Abraham and Schauman (1991) provides a means of
assessing the amount of measurement error associated with a given aggregate
housing price index. Thus, in principle it is possible to correct for the imperfect
measurement of LTV ratios.

Another reason that the standard binary regression equation (1) may be
inappropriate for modelling defaults is that default events appear to have complex
time series properties, with defaults clustering temporally. This phenomenon can
only partially be explained by introducing observable macro-economic covariates
such as interest rate into the regression equation. What appears to be needed, in
addition, is an autocorrelated error term; however, incorporating such a fact.or 18
beyond the capabilitics of the usual logistic or probit regression program.

Finally, because defaults are relatively rare events, it is often necessary to



use retrospective, or case-control, sampling to obtain a database for mortgage
modelling. Such a sampling scheme may include all of the defaulting loans
in a given database, plus a small random sample of the non-defaulting
loans. The alternatives to this approach are either to work with a very large
database, which leads to an unacceptable computational burden, or to use a
small database, which may have insufficient defaults represented to adequately
estimate model parameters. This introduces a modeling constraint, in that any
estimation procedure proposed for the default data must be able to accommodate
retrospectively sampled data. McCullagh and Nelder (1989, page 111) state that
“one important property of the logistic function not shared by the other link
functions is that differences on the logistic scale can be estimated regardless of
whether the data are sampled prospectively or retrospectively.” Thus, subject
to appropriate checks on goodness—of-fit, it will be often be desirable to perform
specifically a logistic regression analysis of the binary default data.

In Section 2, we introduce a model for mortgage defaults which takes into
account these various considerations. In Section 3, we describe a Markov chain
Monte Carlo technique (Roberts and Smith 1993) for estimating the model
parameters. The technique developed is an elaboration of the modelling strategy
used in Albert and Chib (1993). In Section 4, we apply the modelling procedure
to an existing database of loans. and show that ignoring the measurement error in
the regressors and the autocorrelation in the residuals indeed leads to substantial
bias in parameter estimates. ln Section 5, we describe directions for future work

in the area of mortgage model specification and estimation.



2 The Model

The goal of the analysis in this paper is to assess the relationship between
loan-to-value ratio and other economic factors, and the probability of default on
home loans. The mortgage data which are used for this analysis consist of the
date of origination, the LTV ratio at origination, the date of loss to observation,
the reason for the loss to observation, and the geographic region for each of M
mortgages. The loss to observation for a particular mortgage may be due to
default, or to prepayment, or to censoring of a mortgage that is still outstanding
at the end of the observation period. Table 1 displays a subset of the observations

in the mortgage database.
INSERT TABLE 1 HERE

To analyze the data, each loan under study was expanded into a set of
independent loan-year observations, as in Table 2; for each loan-year, a binary
response is recorded according to whether or not the given loan defaulted in the
given year. Note from Table 2 that the LTV variable is known exactly in the year

of origination, but not in subsequent years.
INSERT TABLE 2 HERE

If nothing were known about housing prices, and hence LTV values, after
origination, then it would be difficult to infer the relationship between LTV
and default. In fact, there are available data on housing index values within
broad geographic regions. An example of such data are displayed in Table 3;
these indices correspond to the geographic regions displayed in Figure 1. The
trajectory of the indices provides information about the path of the LTV ratios

for each loan. However, there is known to be substantial variation of housing



values within each region (Case and Shiller 1989). Thus, the housing indices can
be a useful proxy for LTV, but there is considerable measurement error, and this
measurement error i1s known to lead to bias in regression coefficient estimation,
if ignored (Carroll, Ruppert, and Stefanski 1995).

The notation, and the model for defaults are now described: let h;(¢)
denote the true market value of the home corresponding to loan 7 in region j,
at time period t, and let m;;(t) denote the amount of money owed; £;(t) =
log (mij(t)/hij(t)) is the log of the LTV ratio. Let c;(¢) denote the value of the
regional housing price index for region j at time ¢. Let z;;(t) denote additional
covariates pertaining to loan ¢, region j, time ¢, such as the age of loan (z, ) at
time ¢ (that is, the number of years since origination for the loan), or the prevailing
lending rate at time ¢. It is assumed that covariates z;;(¢) are measured without
error. Let J;(t) denote an unobservable variable associated with region j, time ¢;
it can be thought of as representing a regional economic factor that has not been
incorporated into the set of covariates z;;(t). Finally, let z;;(t) denote a latent
quantitative variable associated with loan (z,7) at time ¢; we will assume that
z;j(t) represents “propensity to default”, such that the loan will default if and
only if z;;(¢) > 0. The model for defaults used in this paper presumes that z;(t)

is related to the covariates £;;(t) and z;;(t) according to the linear model

zij(t) = Bo + Brli;(t) + Bayzis(t) + &;(t) + «ij(t),  €is(t) ~ N(0,&;(2)), (2)

d;(t) = pd;(t = 1) + u;(t), wu;(t) ~N(0,a), (3)
b

?::1,...,1]', jzl,...,J, tztij,...,tiej-

where N (i, £) denotes the normal distribution with mean s and variance ¢, I;
denotes the number of loans from region j, J denotes the number of geographic

regions, and (t,bj, tf;) denote the calendar dates of origination and of loss to follow—-



b

up for loan 7 in region j. The use of time values 7} and tf; in the notation for
model (2)-(3) is made necessary by the fact that there are two relevant time
scales in considering the experience of a loan in any given year: the time elapsed
since origination of the loan, as well as the exact calendar year.

Equations (2)-(3) differ from the standard probit model in three respects.
First, the independent variable £;;(t) is unobservable, since the market value of
the house, hi;(t), can be measured only imperfectly via the regional -housing
price index ¢;(t). The weighted repeat sales technique used in Case and Shiller
(1989) implies a particular relationship between the time series ¢;(t) and the

unobservable series h;;(t); namely,

log hyj(t) = log hij(t — 1) — log ¢j(t) 4 log ¢;(t — 1) + vi;(2),
vij(t) ~ N (0, Ai5(£)) (4)

Let w;;(t) = log (mi;(t) /mi;(t — 1)) — log (c;(t)/¢;(t — 1)); then
£ () = € (t — 1) + wi;(¢) + vi;(F)- (5)

w;;(t) is thus the observed component of the change in £;;(t). The original loan

to value ratio, K;j(tg) is known for each loan (3,j), since the housing value is

observable at the time of loan origination tB Correction for measurement error
in regressors requires knowledge of the amount of error (Fuller 1989); the WRS
technique (Case and Shiller 1989) provides estimates of the measurement error

variances A;;(t).!

!The results of Case and Shiller (1989) suggest that A, the variance of housing price within
regions, varies both across regions and over time, and in particular depends on the time since
origination for the given loan: i.e., A;;(t) = Aj(t — tB)



The second respect in which model (2)-(3) differs from the standard probit
model is in the inclusion of the auto-correlated variance component d;(t). This
component is included to account for clustering of defaults within particular
calendar years, beyond the extent which can be explained by the temporal
variation in £;;(t) and z;;(¢). The parameter ¢ in equation (3) measures the
degree to which such clustering occurs, and the parameter p measures the degree
to which a year with an extraordinarily high number of defaults tends to be
followed by another such high-default year.

The third respect in which equations (2)-(3) differ from the usual probit
regression formulation is that the standard probit model assumes that the
variances &;(t) of the errors €;(t) in (2) are all equal to 1. Here, we will
retain more generality; this generality allows for the use of probability functions
®(-) in equation (1) other than the cumulative normal. Albert and Chib (1993)
show that if the &;(¢) are randomly distributed according to an inverse gamma
distribution, then the unconditional distribution of the €;(¢) is the Student-t,
which may fit certain datasets better than does a normal model. As discussed
in Section 1, a retrospective data collection approach, in which all defaulting
loans but only a subset of non default loans are included in the analysis,
may be required in order to obtain an adequate number of defaults with a
manageable total sample size; this consideration leads to a preference for using
the logistic link function. If the variables 1/2¢;;(t) are modelled as following the
asymptotic Kolmogorov distribution, then the €;;(t), conditional on the &;(t),
are normally distributed, but the unconditional distribution of the €;;(t) is the
logistic (Andrews and Mallows 1974). We show below that it is thus possible to
combine the computational convenience of a (heteroscedastic) normal regression
model with the interpretive convenience of the logistic model; see Mallick and

Gelfand (1994) for a further discussion of alternative link functions in binary



regression.

Since the analysis proposed in this paper is Bayesian, prior distributions on the
model parameters are required. We use non-informative, locally uniform, priors
on all the parameters, except for the variances §;;(t), which for identification
reasons must have a proper prior distribution. Given an analysis based on non-
informative priors, the outputs of the analysis can be adjusted, using the methods
of Smith and Gelfand (1992), to incorporate informative priors, should such be

available.

3 Model Estimation

In this section, we demonstrate that the likelihood function for the coefficients
B is given by a product of high-dimensional integrals, and that while this
likelihood function cannot be easily maximized, draws from the posterior
distribution of B can be obtained fairly straightforwardly using a Markov chain
Monte Carlo approach.

To simplify the derivation of the log-likelihood, assume for the present time
that the autocorrelated variance component §;(¢) is not present, or alternatively
that §;(t) = 0 for all j and all ¢. Also, assume that the variances ¢;;(t) in (2) are
all known and equal to 1; i.e., that the model is a simple probit regression. Then

the model for defaults becomes

zij(t) = Bo + Bli(t) + Bxi(t) + €is(t), e(t) ~N(0,1), (6)
Gi(t) = (= 1) + wij(t) + vi5(2). (M)



Equations (6)-(7) together imply that

zi;(t; ) Bo + B £i;(t; )+ﬁ23’u(tq)+fu(t )
Z,]() ﬂ0+ﬂl tJ IJ +qu +T )+IB2‘Z'J()

€i;(1) +Zﬂ1v,, +1), t=t0+1,. 0

Thus, the set of latent variables z;(t), t = o .

2o s tf’j come from a multivariate

normal distribution, and are non-independent, due to common dependence on
the measurement errors v;;(t), t = tB- +1,... ,tS Let p;; and X;; denote the

mean vector and covariance matrix of z;(t), t = b

Hrvees U, these moments both

depend on B. Then the likelihood function for the parameters B is given by

J I

L= HH/ (2; s, S )d (8)

i=1i=1

where ®(z; 4i;, £i;) is the multivariate normal density function, and the region
Aj;j depends upon whether or not loan (3,7) is a default; if loan (¢,7) is not a
default, then A;; = {z]|z, < 0,2, <0,... yZn,, < 0}, where n;; = t tB, and if
loan (i, 7) has defaulted, then A;; = {z]z, < 0,2, <0, ... y2n;, 2 0}.

Equation (8) demonstrates that the likelihood function is a product of
multidimensional definite integrals. one integral for each loan in the dataset.
In the dataset used for this paper. there are over 4400 loans, with some observed
for as long as 7 years, so that some of the integrals will be over a 7 dimensional

region. Evaluation of the likelihood function, then, is very expensive (see, though,

Geweke 1991), and numerical maximization of the likelihood function even more



of a challenge. Incorporation of the variance component d;(t) into the equation for
loan defaults, and consideration of distributions other than the normal, will even
further complicate the likelihood function. Thus, maximum likelihood estimation
of the model parameters appears to be prohibitively time consuming in the
setting of complex measurement error. However, exact finite sample inferences
on the parameters of the binary regression model specified by equations (2), (3),
and (4) can be estimated via data augmentation (Tanner and Wong 1987) and
Gibbs sampling (Gelfand and Smith 1990).

Gibbs sampling is a particular variant of the class of procedures known
as Markov chain Monte Carlo methods (Roberts and Smith 1993), in which
parameter vectors are randomly generated from a Markov chain constructed so
that the chain’s stationary distribution is equal to the joint posterior distribution
of the model parametefs. Summary statistics of the randomly generated .
parameters — means, variances, histograms — serve as posterior estimates of the
model parameters.

Let ® be the set of all the model parameters, and let D denote the
data. The joint posterior distribution is [@ | D], with associated full conditional
distributions [01 | 81}, D], [62] 6(=2), D] ,- .- , [0k | 6(-k), D], where 6y denotes
the set of all parameters 6 except ;. The Gibbs sampling procedure is
initialized with some arbitrary vector (f1,...,0). A new realization of 6; is then
randomly generated from the conditional distribution [01 [ 6(-1), ’D], a realization
of 0, from the conditional distribution [92 | 0(_2),’D], and so on, with the cycle
repeated several - typically hundreds or thousands - of times. The stationary
distribution of the vectors (8y,... ,6;) generated in each cycle of this procedure
has been shown to be equal to the joint distribution [® | D] (Geman and Geman
1984). Because the process is ergodic (Gelfand and Smith 1990), the mean and

variance of any variate 6 can be estimated by the sample mean and variance

10



of §; over the realized stream of numbers generated by the Markov chain. In
practice, one usually omits the first several hundred samples generated when
computing sample means, variances, and histograms, to be sure that convergence
to the desired density has occurred. Tanner (1993) and Tierney (1994) provide
further information on the implementation of Markov chain methods, and on
the convergence properties of these methods, Roberts (1992) and Robert (1995)
offer discussions of convergence diagnostics, and Andrews, Berger, and Smith
(1993) and Geweke and Keane (1996) provide detailed examples of econometric
applications of the use of Markov chain Monte Carlo methods.

The data augmentation/Gibbs sampling method for estimating model (2)-
(4) works by alternating between imputing values for the unobserved values
zi;(t), £i;(t), d;(t), and §;(t), and estimating model parameters 3, p, and
a. Given the imputed data, the parameter estimates are obtained easily, and
given the parameter estimates, the data augmentations are also fairly direct.
Appendix A describes the Gibbs sampling estimation algorithm in greater detail,
and includes formulas for the conditional posterior distributions used to generate
model parameters. Most of these distributions are obtained from established
results in Bayesian econometrics (Zellner 1971). The exception is for the
conditional posterior distribution of &;(t), the latent scale parameters for the
z;;(t); Section A.5 describes a Metropolis-Hastings method for generating the
&;(t) in the case when the z;(t) have an unconditional logistic distribution, as is

desired for the application in this paper.

4 Data Analysis

The mortgage data used for the analysis come from high initial LTV loans

(initial LTV equal to 95%), which loans were sold to the Federal Home Loan
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Mortgage Corporation (FHLMC). The loans, all of which were originated in 1983,
are on single family homes, and all necessarily conform to FHLMC underwriting
restrictions. Table 4 provides a summary of the default behavior of the loans; the
geographic and temporal clustering of defaults is evident. 100% of the defaulting
loans were included in the analysis, and 10% of the non-default loans were
included; since most loans were non-defaults, this sub-sampling had only a minor
effect on posterior standard deviations for model parameters, while significantly
reducing computing time. The interpretation of the coefficient estimates is not
affected by this non-random sampling scheme, due to the fact that the logistic
link function was used for the binary regression model (McCullagh and Nelder

1989).

INSERT TABLE 4 HERE

The housing indices used for the study were the FHLMC Weighted Repeat
Sales indices, which are based on the Case and Shiller (1989) index construction
methodology; see Table 3. Figure 1 displays the five U.S. geographic regions
corresponding to the indices. The weighted repeat sales methodology permits
estimation of the amount of measurement error associated with the indices.

Table 5 lists the R?’s for the indices; these correlation measures are defined as

R? = Var [log[e;(t)/c;(0)]] / Var [log[hij(t)/:;(0)]] .

The low correlations indicate the considerable extent to which housing indices
may mismeasure actual changes in individual housing price. These R? measures,
though, may even be over-estimates; Case and Shiller (1989, page 127) study
housing values in Atlanta, Chicago, Dallas, and San Francisco/Oakland, and
find, using slightly different methodology, R? of .07 for Atlanta, .16 for Chicago,
.12 for Dallas, and .27 for San Francisco/Oakland. Since the Case and Shiller

12



(1989) study uses data at a lower level of aggregation than does the present study
(city versus multi-state region), this suggests that the measurement error in the
FHLMC may be understated; this effect may be due to appraisal smoothing
(Ross and Zisler 1991). To account for this possibility, a sensitivity analysis is
performed, in which the analysis is conducted under several different assumptions
concerning the amount of measurement error.

For forecasting the default status for each loan i in region j, time ¢, the
covariates used, in addition to the LTV ratio, were the age of the loan at time ¢,
and the interest rate (1 month treasury bill rate) prevailing at calendar time t.
The age of a loan will be related to the true (unobservable) LTV, since older loans
a) have payed a larger amount of their mortgage, and thus tend to have a lower
amount of principal due, and b) have had more time to have their housing value
depreciate (or appreciate). Analyses which ignore measurement error in LTV
may erroneously attribute default behavior to aging (“seasoning”) of loans, when
really it may be increasing LTV’s that are causing defaults. Thus, the present
analysis, which accounts for measurement error in LTV, will afford a view of the
actual relationship of age and default, conditional upon (true) LTV.

Table 6 lists the posterior means and standard deviations for the regression
coefficients. The column labeled “Measurement Error” denotes the assumption
made about the extent of of measurement error in the housing indices. The first
analysis, with “0%” error, assumes that the housing indices are perfect measures
of the actual housing value for each individual loan. The second analysis, with
“100%” error, assumes that the R? values cited in Table 5 correctly quantify
the amount of variation in price within the geographic regions. The analyses
with “200%” and “300%” measurement error, are based on the assumption that
the variance within regions is 2 times and 3 times larger, respectively, than that

obtained by the WRS method; the value corresponding to 300% is consistent with

13



the results Case and Shiller (1989) obtained for their more disaggregate housing
index data, and may be the most believable estimate. The parameter estimates
were obtained by running the Markov chain Monte Carlo procedure for 50,000

iterations, and discarding the samples from the first 25,000 iterations.
INSERT TABLE 6 HERE

As anticipated, the analysis which does not account for measurement error has
an estimate for the coefficient for LTV which is substantially smaller than those
obtained when the measurement error is acknowledged. This implies that default
rate is more sensitive to changes in housing prices than the naive analysis suggests.
It is also interesting to note that, even after accounting for the measurement error
in LTV ratios, the age of the loans has a statistically significant effect on default
probability, and indeed the coefficient for age increases in magnitude. It appears,
then, that the seasoning effect cannot be explained by the imperfect measurement
of LTV, the age of the loan may be acting as a proxy for some economically
significant characteristic of the borrower. The coeflicient estimate for interest
rate, on the other hand, decreases in magnitude when the measurement error is
taken into account. As expccted, the posterior standard errors for the parameter
estimates are larger for the analyses which acknowledge the measurement error
in the housing index numbers.

This example suggests the complex way that measurement error for just a
single instrument can affect regression coefficients in a setting with multiple
predictor variables. In practice, the estimated model for default rates may be
used as part of a scenario analysis program for managing risk with mortgage
portfolios. The effect of the analysis in this paper is to demonstrate that loan
default behavior is more sensitive to changing housing prices than had previously

been shown, and also to make default behavior less sensitive to interest rates

14



than would appear from an analysis which ignores the imperfect measurement of

housing price in the regression data.

5 Conclusion

The U.S. mortgage market is a large component of the national economy,
and understanding this market is important both to participants in the primary
and secondary mortgage markets, and to academics who wish to understand the
macroeconomy. While stock markets and treasury bond markets have been very
intensively studied by financial economists, studies of the housing market have
been relatively less common; this is largely because real estate is very thinly
traded, and thus price data are much less easily available than are data for stock
and treasury bond markets. The recent development of real estate price indices
(Case and Shiller 1989; Abraham and Schauman 1991; Clapp and Giancotto
1991; Quigley 1995) promises to help lead to greater understanding of housing
markets; however, as this article has shown, using regional price indices without
accounting for the variation of prices within regions can, in some circumstances,
lead to significantly biased inferences of housing market model parameters. The
data augmentation method described in this paper provides a way of correcting
for this inequivalence between housing index values and actual housing prices.
The method will be useful in the estimation of default models, prepayment
models, and any other model in which housing value may be an important
covariate. Measurement error in binary regression models has been previously
examined, for example in Stefanski and Carroll (1985) and Carroll, Ruppert, and
Stefanski (1995). The measurement. error process examined in the present paper
differs substantially from these earlier treatments, in that the measurement error

process considered in equation (4) itself has time series properties, and thus a
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single measurement error will effect multiple observations in the binary regression
equation (2).

In addition to treating the measurement error problem, the current paper
also demonstrates the treatment of autocorrelation, and shows how a logistic
regression analysis can be performed by modeling the logistic distribution as a
scale mixture of normals, augmenting the data with the continuous probits, and
then using standard normal regression theory.

Future research will involve joint modeling of defaults and prepayments, and
will also involve the development of a fully Bayesian version of the weighted

repeat sales method for construction of housing price indices.
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A The Markov Chain Monte Carlo Estimation
Algorithm

The Gibbs sampling algorithm for estimating the parameters in model (2)-(4)

consists of the following sequence of steps, which are performed repeatedly:
1. generate 3;
2. impute the missing LTV ratios £;;(t);
3. impute the autocorrelated random effects §;(t);
4. generate scale parameters f,-j(t);
5. generate autocorrelation parameters p and a.

In each step, the generation/imputation is done using the respective conditional
posterior distribution for the particular parameter; these distributions are derived
below. The Gibbs sampling procedure can be initialized as described in

section A.7.

A.1 Generating 3

Conditional on the latent variates z;;(t), the LTV ratios ¢;(t), the
autocorrelated components §;(t), and the variances &;(t), the distribution for
B = (Bo, f1,B,) can be obtained using the standard results for Bayesian linear
models (e.g., Zellner (1971)). Let Z;(t) = z;(t) — 4;(¢), and let z denote the
quantities Z;(t) strung into a vector of length n = Ele E;‘IJ:1(t?j - tB) Let E
be a n x n diagonal matrix with elements £;(t) on the diagonal, and let X be
the n x (2 + p) matrix whose first column’s elements are 1’s, second column’s

elements are the £;;(t) elements arrayed as a vector, and last p columns are
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the z;;(t) similarly arranged. Then the full conditional distribution for 3 is
N ((x=7X) " xEs, (X'ETX) ),

A.2  Generating z;(t)

As in Albert and Chib (1993), the z;(t) are generated from truncated normal
distributions. If loan ¢ of region j defaulted at time ¢, then the conditional
distribution for 2;;(t) is N (fo + £16i;(t) + Byzi;(t) + 6;(2), &;(t)) I (zi;() > 0). If
this observation does not correspond to a default, then the full conditional
distribution is N (8o + £1€;;(t) + Byeij(t) + 8;(2), &;(2)) I (24(t) < 0).  Clearly,
2;;(t) cannot be positive unless ¢ = t%:, and is positive then only if the loan is lost
to observation due to default, and not to prepayment or censoring. Gelfand,
Smith, and Lee (1992) provides information on generating from a truncated

normal distribution.

A.3 Generating £;(t)

The conditional posterior for the LTV ratio £;;(t) is proportional to the prior
times the likelihood. The prior is defined by (5), and the likelihood by (2). The

log—posterior is thus equal, up to a constant, to

2{., 7 (2i5(t) = Bo = ol (2) — Byoii(t) — 65(2))°
2,\.,(t) (€;5(t) - (1—1) wi(t))?
=g (Gt + 1) = £5(t) — wy(t + 1))

Zij

Rearranging shows that the full conditional for the unobserved
£;(t) is N (w1 +wz +ws) ™ (wr01 + waaz + wyas) , (wr +wj + ws) ™),
where wi = (&(M)BA), wr = M), ws = (At +1)7
o = (z(t) = fo— Bymii(t) = 6(t) /B, 00 = L(t—1)+wy(t), and

18



az = Li(t+1)—w(t+1). A simple modification of this expression is

te

i» in which case the full conditional is

required for the endpoint ¢ =

N ((wl +w2)—1 (wr0n + wae), (wy + wy)~ 1)'

A.4  Generating §;(t)

Let S(j,t) denote the set of all loans in region j that are at risk during
calendar year t; i.e., S(7,t) = {z, ]|tb <t <t} The posterior of d;(t) depends
on the experience of these loans during year ¢; if there are many defaults, then
6;(t) would appear, a posteriori, to be high. The likelihood and prior for d;(¢)
are obtained from equations (2) and (3), respectively, the full conditional is thus

N (D;(t)~'d;(t), D;(t)™1), with

Z 6;1 t) zt] ﬂlzt](t) - ﬂ;xij(t)) +

{€S(5,1)
ap8i(t— 1) +a p8y(t + 1),
Di(t)= ) &) 4247,

1€S(5,t)

Simple modifications for d;(t) and D;(t) are appropriate for the first and last

calendar years in the database. In the former case,

d;(t) = Z &is(t) Zv — Bo — Buli;(t) + ﬂ;m;j(t)) + a_lij(t +1),

'ES(J»t)

D)= ) &) 1.

ZES(J,t)
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in the latter case,

di(t)= D &) (5(t) — Bo— Bulis(t) + Bazis(2)) + a7 pds(t 1),
. 1€S(5,t)
Di(t)y= ) &) +a

1€S(4,t)

A.5 Generating ¢;;(t)

In the standard probit regression setting, the §;(t), the variances of the
residuals €;;(t), are all fixed and equal to 1, and hence do not need to be generated
during the Markov chain. Let 7;(2) = [&;(2)]"'/%; Andrews and Mallows (1974)
show that if the density of v;;(t) is given by

o0
fr(y) =23 (1)K exp (—k/277), (9)

k=1
then the unconditional distribution of the deviates €;;(t) is the standard logistic.
A logistic regression analysis can thus be performed by modeling the residuals as

a particular scale mixture for normals. The prior for ¢;;(t) is given by

1

5 (&), (10)

Je((&(0))™) - 9

where 7(£:;(t))™3/% is the Jacobian of the transformation from 7;;(t) to &;(t).

The likelihood function for &;(1) is proportional to

(65(0)F exp (— (z,-ja)-ﬁo-mw)—ﬁ;z,-,-w—aj(t)f), (1)

|
26:5(1)

and the full conditional posterior for £;;(t) is just the product of the prior and
the likelihood function. This full conditional distribution is not of a standard

form. To sample from the distribution, one can use a Metropolis-Hastings
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technique (Tierney 1994; Hastings 1970), which involves generating from some
approximation to the full conditional, and then accepting this sample with some
specified probability, in order to correct for the approximation.

To obtain a suitable generating density, the prior density in (10) can be
approximated by an inverse gamma density, by matching the first two moments;
combining this inverse gamma approximate prior with the likelihood function (11)
gives an inverse gamma approximate posterior, which empirically is seen to lead
to very high acceptance probabilities. Use of the Metropolis-Hastings method
requires frequent evaluation of the function in equation (9); while the sum is
convergent, the evaluation is expensive. Computational time can be significantly
reduced by building an accurate spline approximation to the log of the density
in equation (9) at the start of the program, and then using the spline function,

rather than the asymptotic summation, at each Metropolis-Hastings step.

A.6 Generating p, a

Given the values of d;(t), the parameters p and a are obtained using results
from Bayesian analysis of AR models (Chib 1993). Let t; and t, denote the
first and last calendar years during which loans in the database are at risk;

iy = min;,j{t}}} and f. = max; ;{t5;}. Then the full conditional for p is

> Y B a1 S a1 ).

1=1 i=ty+1 1=1 1=ty J=1 t=ty 41

and the full conditional for a. is

IG l(t—tf—l)—ZZ = pbi(t=1))* |,

J=1 t=ty
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where IG (o, a1) denotes the inverse gamma distribution.

A.7 Initialization of the Gibbs Sampler

The z;(t) can be initialized to equal 1 for default observations, and -1 for
non-default observations; the ;(t) can be initialized at the mean of the prior
density in (10); the £;(t) can be initialized to wi;(¢), the unbiased prior means
based on the regional indices; and the §;(t) can be initialized to small random
values. The coefficients @ and the parameters p and a can then be estimated

from these initialized data.
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Figure 1: Regional composition of U.S. mortgage indices
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Table 1: Sample observations from mortgage database

Region | Initial | Year | Year | Reason | Coupon

Loan LTV | Orig. | Term. { Term.x* Maturity

1 1 95 83 86 0 12 360

2 3 95 83 89 1 12 360

3 1 95 83 88 0 12 360

4 2 95 83 90 2 12 360

5 1 95 83 85 0 12 360

6 3 95 83 86 0 12 360
4416 1 95 83 86 0 12 360

* Reason for termination: 0 = censoring, 1 = default, 2 = prepayment.
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Table 2: Sample observations from mortgage database after expansion

Interest

Loan Region Year Default Z LTV Age Rate
1 1 83 0 <0 95 1 8.34
1 1 84 0 <0 7 2 8.97
1 1 85 0 <0 7 3 6.98
1 1 86 0 <0 7 4 5.54
2 3 83 0 <0 95 1 8.34
2 3 & 0 <0 7 2 897
2 3 85 0 <0 7 3 6.98
2 3 86 0 <0 7 4 5.54
2 3 87 0 <0 7 5 4.83
2 3 88 0 <0 7 6 5.81
2 3 89 1 >0 ? 7 7.68
3 . . . . . .
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Table 3: Freddie Mac regional housing indices, 1981-92

Region

Year 1 2 3 | 4 9
81 | 89.23 | 76.74 | 89.31 | 95.19 | 88.63
82 | 94.73 | 76.48 | 90.91 | 99.38 | 91.70
83 | 96.84 | 92.52 | 93.83 | 103.94 | 94.89
84 | 98.66 | 96.52 | 97.91 | 99.09 | 98.19
85 |103.41 | 114.38 | 103.68 | 101.76 | 104.39
86 | 111.12 | 133.77 | 110.16 | 104.14 | 112.55
87 | 119.48 | 149.48 | 117.21 | 101.04 | 128.12
88 | 126.1 | 163.0 | 120.3 | 98.8 | 146.0
89 | 1344 | 170.2 | 123.9 | 102.2 | 172.2
90 | 138.7 | 165.7 | 124.5 | 101.9 | 178.0
91 | 1449 | 168.7 | 128.5 | 106.9 | 181.5
92 | 150.35 | 169.19 | 133.66 | 110.95 | 179.32
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Table 4: Summary statistics for 4,416 FHLMC loans originated in 1983
with initial LTV of 95%, by region. NC=North Central, NE=Northeast,
SE=Southeast, SW=Southwest, W=West.

Region
NC NE SE SW W
Number of loans originated in 1983

504 1200 632 1196 884
Year Number of loans that defaulted
1984 0 l 3 1 3
1985 0 5 4 4 11
1986 4 4 4 24 18
1987 4 6 3 45 10
1988 2 3 9 93 7
1989 4 0 4 32 3
1990 3 2 4 15 0
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Table 5: Measurement error (R?) in FHLMC WRS housing price indices. The
R? is defined as the variance of the change in the index divided by the variance
of the change in individual home prices, over various horizons

R2
Region 1 year 5 year 10 year 20 year
NC .289 .296 .320 387
NE 279 .292 334 A7
SE 344 361 .333 298
SW 398 378 .385 406
W 315 370 435 653
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Table 6: Parameter estimates (posterior means and standard deviations) for
logistic regression coefficients, under different assumptions for measurement error

Measurement, error
(as multiple of WRS estimate)

0% 100% 200% 300%
Intercept | -1.577 (0.347) | -2.145 (0.385) | -2.819 (0.472) | -3.472 (0.623)
LTV | 3.619 (0.356) | 4.228 (0.529) | 4.646 (0.582) | 5.031 (0.771)
AGE | 0.550 (0.037) | 0.612 (0.047) | 0.673 (0.058) | 0.748 (0.078)
Int. Rate | -0.400 (0.054) | -0.351 (0.057) | -0.292 (0.063) | -0.253 (0.071)
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