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Abstract

The market model is an important construct for both portfolio managers and researchers
in modern finance. For practitioners. market model coefficients are used to guide the
construction of optimal portfolios. For academicians, the market model parameters play
a fundamental role in explaining equilibrium asset prices and other market phenomena.
This paper presents a hierarchical modeling procedure which can substantially improve
the accuracy of market model parameter estimates, through incorporation of cross-
sectional information. It is shown that this improvement in parameter estimation accuracy
translates into substantial improvement in portfolio performance. Expressions are derived
which characterize the sensitivity of portfolio performance to parameter estimation error.
Evidence with NYSE data suggests that the hierarchical estimation technique leads to
superior out of-sample portfolio performance, when compared to alternative estimation
approaches.
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1 Introduction

Stochastic linear models for asset returns play a central role in modern financial theory and
practice. Such models describe the return on each particular asset in a market as varying
linearly with some exogenous factors: y;; = a; + B;-f, +en J=1,...,p. t=1,...n,
where yj; is the return of stock j at time ¢, fi = (fy,..., fir)" are the values of the
underlying factors at time ¢, a; is the intercept and B; = (Bj1,-..,B;)" are the factor
coefficients for stock j, and ¢; is a random deviation. independent of f;, with mean zero
and variance v;. For example, the traditional single factor market model (e.g., Elton and

Gruber 1995) describes the covariation of asset returns via the model:
Ui = o5 + Bymy + €, (1)

where the single factor m, represents a market index such as the S&P 500 index which
measures the general performance of the stock market. More recently, Fama and French

(1995) modeled the covariation of stock returns via the three factor model
Yit — Tpt = Q; + ﬁlj(mf - T'ft) + ﬁQj(SMLt - 7';1) +ﬁ3j(HML,, - T‘ft) + €5t (2)

where 7y is the “risk-free” rate of return, SML; (“Small Minus Large”) is the return
on a portfolio composed of the firms with smallest market value minus the return on a
portfolio composed of firms with large market value, and HML, (“High Minus Low") is
the return on a portfolio composed of the firms with a high ratio of book value to market
value minus the return on a portfolio composed of stocks with low values of this ratio.
The parameter values (,, 3;, v;) for the different assets can be used to select portfolios
that achieve optimal tradeoffs between risk and return (Elton and Gruber 1995). In

addition, these parameters appear as explanatory variables in financial models for asset



pricing (e.g., Fama and MacBeth 1973: Fama and French 1992: Fama and French 1995).
The parameter values (a;./3;.v;) of course cannot be directly observed. but can only
be imperfectly estimated from finite samples of data. This unavoidable estimation error
presents a problem to both theorists and practitioners.

The sensitivity of financial models to estimation error suggests two remedies: reducing
estimation error, and correctly accounting for it. Vasicek (1973) noted in the context of
a single factor model such as (1) that the estimate of a beta coefficient for a particular
security could be improved by use of cross-sectional information. For example, if the
betas of the stocks tend to range between 0.5 and 1.5, then a beta estimate of 2.0 is more
likely to be an over- estimate than an under estimate. Thus, the estimate can possibly be
improved by shrinking it towards the cross-sectional mean of 1.0. Barry (1973) developed
a Bayesian approach to portfolio analysis. which includes the use of predictive distributions
to account for parameter uncertainty. Rosenberg and James (1976) suggested that the
incorporation of fundamental financial quantities such as firm size or liquidity - could
lead to improved estimates of betas. More recently, Jorion (1986), Frost and Savarino
(1986), and Board and Sutcliffe (1994) used Stein type shrinkage estimators to improve
upon the usual least squares procedure for obtaining parameter estimates for the portfolio
selection problem, and Karolyi (1992) used multiple shrinkage to help estimate betas.

In this paper, we introduce a hierarchical market model and Bayesian estimation
procedure which incorporate the above improvements to the simple least squares
estimation procedure in a unified model. This hierarchical modeling procedure, which
jointly models both th‘e cross-sectional and the time -series variation in stock returns, has
the desirable feature that the degree of adjustment of the usual least -squares estimates is
determined automatically for each security. based on relevant attributes of the data. For
securities whose parameter estimates are uncertain, either because the security has only

been observed for a short period of time. or because the security’s returns do not closely



fit the market model. the parameter estimates will be substantially modified toward a
cross -sectional mean. which may be determined by fundamental characteristics of the
firm, such as firm size or industry sector. For securities whose least squares parameter
estimates are reliable, in the sense of having small standard errors, the estimates will be
relatively unmodified.

In addition. the paper explores the impact of estimation error on portfolio selection.
We demonstrate that the improvement in estimation accuracy achieved by hierarchical
Bayes estimation leads to improved portfolio selection. We develop analytic measures
which characterize the sensitivity of optimal portfolio allocations with respect to
parameter estimation error. One result obtained 1s that small idiosyncratic variance for a
given asset indicates potentially large error in the estimated portfolio allocation for that
asset.

The paper has the following outline. Section 2 defines the hierarchical market model.
Section 3 presents a simulation study of the hierarchical Bayesian (HB) parameter
estimation and portfolio selection procedure. and in Section 4, historical data from the
NYSE are analyzed by HB and alternative methods; with both the simulated and the real
data. it is shown that the HB method out-performs the competitors, in terms of out-
of sample forecast accuracy and portfolio performance. Section 5 presents a sensitivity
analysis. Appendix A describes the numerical algorithm used to implement the HB

method.



2 The Hierarchical Market Model |

The linear factor model (3) relates the return y;; for asset or firm 5 at time ¢ to the returns

f; on a vector of economic factors by a simple linear regression:
yir = o+ Bifi e j=1...,p, t=1....n, (3)

where the ¢; are independent residuals, which will be assumed to have a normal
distribution with mean 0 and variance v;: N(0, v;).

The hierarchical market model describes the cross sectional variation in the
and v; across the firms in the population. Here, the parameters

parameters a;, 8 i

(aj, B;) are assumed to be related to covariates z* and zf according to the linear regression

equations:
a; = 962?'*"&]'0, 'U,jQNN(O, AQ), (4)
B = 0i2) +up, ujp ~NO, Ay). j=1,...,p, k=1,...,r, (5)

with u; mutually independent for k =0, 1,...,7. The covariates z$ and z? may contain
such variables as firm size. leverage, and other accounting numbers, as well as indicator
variables representing the industry segment for the jth firm.

The firm specific variances v; may also be related to fundamental quantities of the
firm. Let 2] be a vector of fundamental variables, and let 7; = log (v;). 7; can be modeled

as:
7 =9a] +wy, w;~N(O, 6). (6)

Equation (6) establishes the prior distribution on the unknown firm specific variance

v; = exp(7;).



Equations (3)-(6) describe a hierarchical regression model (Lindley and Smith 1972).
sometimes referred to as a population model (Wakefield, Smith, Racine-Poon. and Gelfand
1994): the multiple shrinkage estimator of George (1986) is a related approach. Wakefield.
Smith, Racine-Poon, and Gelfand (1994) and Miieller and Rosner (1994) describe
alternative models that could be used for the Gaussian hyper-prior distributions; these
alternatives include a Student—t distribution, and a mixture of Gaussian distributions.

As is discussed in section 3.2, the selection of optimal portfolios is based upon an
estimate of the joint distribution of future returns {51}. To obtain this distribution, one
must model both the conditional distribution of the returns Y;t given the factor returns f;,
and also the marginal distribution of the factor returns. Here. this latter will be treated

as a multivariate normal:
. erN(lif, Qf)' (7)

Equations (3) and (7) together imply that the joint moments for the returns Yj+ are given

by:
E[yjr] =a+ ﬁ;’l-l'f: Var[yjt] = ﬂ;ﬂfﬁj + 5, COV[@/jn ykr.] = ﬁ;ﬂfﬂk- (8)

2.1 Prior Distributions on Model Hyperparameters

¢
The parameters {8y, Ay}, k=0,....r, ¥. and § in the prior distributions (4)- (6) are

typically referred to as hyperparameters: to complete the specification of the Bayesian
model, one will require prior distributions on these hyperparameters, as well as on the
parameters iy and §2; which characterize the distribution of the independent variables
in the market model (3). In this paper, we use non-informative priors for all of these

parameters, in order to allow the data, rather than the priors, to determine posterior



conclusions. The priors on the location parameters 8,1, and p, are (improper) uniform
distributions over all possible parameter values. The prior on £, is also taken to be
uniform. The prior on the A, and on ¢ are taken to be 1G(aq, a;), where v ~ IG(ag, a;)
denotes that v~! has the gamma distribution with mean ag/a, and variance ap/a?. In the
applications described in this paper. we use ap = 1, a; = 0.1, to provide proper, but very
diffuse priors.!

The joint posterior distribution for the unknown model parameters in equations (3)-
(7) cannot be evaluated analytically. Appendix A. though, describes how the model can
be analyzed numerically, using a Markov chain Monte Carlo algorithm (Roberts and Smith

1993). Section 3 describes a simulation study designed to evaluate the performance of the

hierarchical Bayes estimator.

3 Estimation Accuracy and Portfolio Performance

This section evaluates the hierarchical Bayes (HB) and least squares (LS) estimators in
terms of estimation accuracy and portfolio performance. We show in section 3.1 that the
HB estimators have significantly smaller estimation error than the LS estimators, and
in section 3.2 we show that this improvement in estimation accuracy leads to improved
portfolio performance. In section 5, we develop analytic expressions characterizing the

sensitivity of portfolio performance to estimation accuracy.

IBerger (1985, page 187) discusses the fact that the usual Jeffreys’ nou informative prior cannot be
used for the scale parameters in a hicrarchical model, since such priors can lead to improper posterior
distributions.



3.1 Parameter Estimation Accuracy

For the simulation study used in this section and the next, random datasets were
generated from the hierarchical model defined by equations (3) (7), with r = 1, and

: a _ B
with z; = 7

=z7 =1,j=1,...,p. For each of p stocks. values of @, 3, and v were
assigned by random generation from the laws given by (4)- (6). Then, for each time period
t, a value of the (scalar) factor index was generated from a N(u;, §2s) distribution, and
for each stock 7 a value of the return y; was generated by equation (3). This model
corresponds to the standard single factor model. as in equation (1).

Four different settings, or blocks, for model parameters were used in the simulation.
The settings were selected to mimic typical monthly stock returns and to demonstrate
the performance of HB and LS estimates with different sample sizes and amounts of
parameter heterogeneity. Block 1 mimics two years (24 months) of monthly data; the
cross -sectional means and standard deviations for @, §, and 7 in this block were set equal
to values estimated from a random sample of 500 New York Stock Exchange companies
during 1988 1991; E[a] = 0.00, SD[a] = 0.70. E[8] = 1.00, SD[4] = 0.25, E[v] = 105,
SD[v] = 175. Blocks 2 and 3 change the sample size, to 72 months and 12 months. In
Block 4, the sample size is 24 months. but the cross - sectional parameter heterogeneity
is increased by a factor of 4, relative to Block 1: SD[a] = 2.80, SD[3] = 1.00. For each
simulation block, the number of firms generated equalled 30, the mean and standard
deviation of the market index f; were 1.0 and 4.0 respectively, and the cross-sectional
correlations between a, (3, and 7 were equal to 0.0. 100 replications were simulated for
each block. In the following, Blocks 1. 2, and 3 will be referred to as “NYSE(24)”,
“NYSE(72)", and “NYSE(12)”, and Block 4 will be referred to as “HIGHHET(24)” (for
“high heterogeneity”).

Table 1 compares the mean absolute error (MAE) of the hierarchical Bayes (HB) and



least squares (LS) estimates for the simulations. The table lists the mean and standard
deviation of the MAE taken over all 100 simulation replications within a block. In the
NYSE(24) block, the MAE’s are substantially lower for the HB estimates: the differences
are significant at p < .001 for all comparisons of HB and LS. using a non parametric
sign test. The comparison for the alpha coeflicient estimates is noteworthy over the 100
replications, the average HB error is less than 22% of the average LS error.

The results from the NYSE(72) block show that even for a large sample size, HB offers
substantial advantages relative to LS: average HB error is less than 31% of the average
LS error. Also, the results from the HIGHHET(24) block show that. even with cross:
sectional parameter heterogeneity much higher than is seen in actual returns data, the
HB estimator is considerably more efficient than the LS estimator.

Researchers analyzing stock market time series data face the problem of choosing an
appropriate length of data for analysis. If the dataset is too long, then the parameters may
not be constant over the entire period of observation, while if the dataset is too short, the
data may be insufficient to accurately estimate model parameters. Here, it is shown that
an HB estimation approach may help with this conflict. Comparing the estimation error
of betas in the NYSE(72) and NYSE(12) blocks. it is seen that the average LS error with
72 time series observations, 0.21, is greater than the average HB error with only 12 time
series observations, 0.19. Thus, HB may permit the efficient analysis of time series short
enough that parameters may reasonably be assumed to be constant over the observation
period.?

The hierarchical Bayes method makes some additional assumptions about the
underlying data generating process which are not required with the least squares method.

In this simulation experiment, the assumptions are not violated, but in practice, if the

*Alternatively, the HB framework can be used to explicitly model time-varying parameters, in the
spirit of West and Harrison (1989).



assumptions are grossly incorrect. then the least squares estimator could out perform the
shrinkage estimator in terms of estimation accuracy. Section 4 describes an experiment
with real stock returns data, and it is seen that, in this one setting with non simulated

data, the HB method again substantially outperforms the least squares estimator.

3.2 Portfolio Performance

Portfolio allocations w were chosen to maximize the expected utility, where the utility
function was taken to be the negative exponential U(y) = 1 — exp(—Ay), with X being
a parameter expressing aversion to risk (e.g., Frost and Savarino 1986). In general,
maximizing the expected utility will require numerical optimization, but in the case in
which the distribution of future returns yj, is well approximated by a normal distribution,
with cross sectional mean and variance g and 3, the distribution of any portfolio
wy = Z;f:] w5y wiﬂ also be normal, and the allocation vector which maximizes the

expected utility will be the solution to the Markowitz (1952) optimization problem
ra A Iy : /
max W' — sw 3w, subject to w'l =1, (9)
w

where /1 and 3 represent estimates of the joint moments, and 1 is a vector of 1’s. The
maximizer of (9) is given by w* = /\“i)_lﬂ + 1—"—’\1—7—;.;—1_'—121—_1-&2_11. The least squares
estimates of the moments p and ¥ can be determined from the respective estimates
of parameters (aj,ﬁj,bj) and (p;,82y), using the formulas (8). For Bayes methods, the
appropriate variance matrix to use is the so-called predictive variance (Barry 1973); the
predictive variance incorporates uncertainty about model parameters in addition to the
usual sampling uncertainty about future observed returns. The method for obtaining the
hierarchical Bayes predictive moments is described in Appendix A.3. Press (1982), and

Quintana (1992) provide further discussion of the use of Bayesian techniques in portfolio



selection.

The quality of an implied portfolio allocation vector w can be evaluated by the
expected utility under the true model for the future returns. Let this true model
be denoted by y ~ N(u,y, o). The true expected utility can be converted to a
certainty equivalent (Elton and Gruber 1995). which is the return, in dollars, such that
the investor will be indifferent between holding the risky portfolio w'y, and holding
the certainty equivalent. In our case. the certainty equivalent C is found by solving
1 — exp(—=AC) = E[l — exp(—Aw'y)]. and the solution is C = W'y — $w'Eow. The
benchmark for the certainty equivalent is the value obtained when w is computed by
solving problem (9) using the true moments gy, y.

The bottom rows of Table 1 display the quality of portfolios formed on the basis of the
true mean and covariance, as well as the hierarchical Bayes and least squares estimates
of these moments. For each simulation replication. the portfolios are obtained by solving
the maximization problem (9). In all blocks, the performance of the HB portfolios, as
measured by the mean certainty equivalent, is significantly better than that of the LS
portfolios (p < .001). In the NYSE(24) block, the mean optimal certainty equivalent if
the true model parameters were known was 1.29 (1.29% per month), while the the mean
certainty equivalent for the portfolio based on HB estimates was 0.46. However, the mean
certainty equivalent for the LS portfolios was 12.85. Thus, the deterioration in portfolio
performance due to estimation error is much more severe for the LS than for the HB

method. A similar pattern is observed in the other simulation blocks.

(Insert Table 1 Here)
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4 Example: N.Y.S.E. Stock Returns

The previous section compared the performance of the hierarchical Bayesian method to
the performance of a non-pooled estimator. ordinary least squares, using simulated data.
This section reports the results of an experiment in which monthly returns data from
the New York Stock Exchange were analyzed via hierarchical Bayesian methods, and an
alternative shrinkage method, the multiple shrinkage estimator of Karolyi (1992). In this
experiment. monthly returns data on 500 randomly selected securities in the Center for
Research in Stock Prices (C.R.S.P.) database were obtained for 19 four year intervals:
1955 1959. 1957 1961, ..., 1991-1994. For each four year interval, the data from the first
two years were used to obtain parameter estimates for é linear factor model, along with
the implied optimal portfolio allocations, using hierarchical Bayes and multiple shrinkage
techniques. The parameter estimates were then compared to the ordinary least squares
estimates obtained over the third and fourth years of the interval, to evaluate out -of-
sample parameter estimation accuracy of the two methods. Also, the estimated portfolio
weights were applied to the returns in the third and fourth years to assess the quality of
the portfolio selections.

The particular factor model used in the analyses was
Yjt = 05+ ﬁljm,, + ,szSMLt + €1, Ejp o~ N(O, 'Uj), (10)

where m;, the overall market factor, denotes the C.R.S.P. value weighted market index,
and SMLy, the “size sensitivity” factor, represents the return on a portfolio composed of
all the firms with smallest market value (lowest size decile in the C.R.S.P. dataset) minus
the return on a portfolio composed of firms with large market value (highest size decile in
the C.R.S.P. dataset). See Fama and French (1995) for further discussion of this factor

model.

11



The multiple shrinkage method of Karolyi (1992) was originally introduced in order
to obtain superior estimates of § coefficients in the single index model (1). The method
produces an estimate Bj for stock j which is a weighted average of, say, L + 1 different
estimates: Bj = Z—hﬁﬂ The first estimate, 5’;‘0: is just the ordinary least squares
estimate. The other L_estimates ﬁﬂ. [=1,...,L, are cross sectional group means for the
OLS coefficients  for example, le might be the average OLS  estimate for all companies
in the same size class as firm 7, and [3]-2 the average OLS [ estimate for all companies in
the same industry as firm j. The weights ; are set equal to the relative precision of each
of the estimates Bﬂ: the weight 1 on the OLS estimate is just the inverse of the sampling
variance for the OLS estimator, and the weights v, I = 1,..., L are the inverses of the
cross sectional variances of the 3 estimates within the L classes.

Chan and Chen (1988) suggests using firm size as an instrument for predicting market
beta. For the data analysis in this section, the classes used for the multiple shrinkage
estimator were the firm size (market value) decile, and the industry segment, where the
different industry classifications used were “manufacturing™ (SIC code € [2000, 3999)),
“utilities® (SIC € [4900,4999]), “finance/insurance” (SIC € [6000,6999)), “services”
(SIC € {7000,8999]), and “other”: the industries represented in the last class included
agriculture, mining, construction, and retail trade. The multiple shrinkage method
of Karolyi was applied, using these classes, for obtaining pooled estimates for the 3
coefficients, the a coefficients, and the idiosyncratic variances v, in model (10).

For the hierarchical Bayes method. the same information set - the market values and
the industry classifications for the firms was used to construct the predictor covariates
for the hierarchical pr.ior distributions for a;, G, and v;, as was used to form classes
for the multiple shrinkage method. In this application, z®. 2P, and 2™ were specified
as z§ = zf = z; = z;, where z; =(1,z)1, 29, 2j3, 24, Zj5), With z;; through z;4 defined

as indicator variables for manufacturing. utilities, finance/insurance, and services firms,

12



respectively, and z;; defined as the size decile for firm j. The Markov chain used in
the hierarchical Bayes method was run for 2000 iterations, with the first 1000 samples
discarded.

For each estimation method. portfolio weights were selected as the solution to
optimization problem (9), with risk aversion parameter X fixed at 10.0. The MS estimates
of the moments p and ¥ were determined from the estimates of parameters (a;, 8;,v;)
and (g, ;). using equation (8). The calculation of the HB estimates of p and X is
described in Appendix A.3.

4.1 Parameter Estimates

Figure 1 plots the posterior means for the coefficients of z in the prior equations (4) (6),
for the 19 two-year estimation periods between 1955 1956 and 1991-1992. The signs
for several of the coefficients are consistent over time. For example, the coefficient for
zp. the indicator for utilities. is consistently negative, both for predicting idiosyncratic
variance (Figure 2(b)); and market beta (Figure 2(c)). The small market beta for utilities
suggests that these firms have relatively little undiversifiable risk; the sensitivity analysis
to be presented in section 5. however, demonstrates that the low idiosyncratic variance
for utilities may render the firms highly sensitive to estimation risk. As expected, zs, firm
market value, is highly related to the size sensitivity measure f, (Figure 2(d)); it is also
the case that larger firms have consistently lower market beta f;, and, as is suggested in

Malkiel and Xu (1997), lower idiosyncratic risk v.

4.2 Prediction Accuracy and Portfolio Performance

Table 2 describes the accuracy with which the hierarchical Bayes (HB) and multiple

shrinkage (MS3) estimates from the leading two-year periods predict least squares

13



estimates from the trailing, two year hold out periods. The table lists. for each of the
methods. the mean and standard deviation, over the 19 analyses, of the mean absolute
error (MAE), across all 500 firms, in predicting future least squares parameter values.
The row in the table labeled “# HB" refers to the number of periods in which the
HB method outperformed the alternative estimator: the p-value reported is from the
associated binomial sign test. For example. the MAE for the HB estimator for the §
coefficients was smaller than that for the MS estimator in 18 of the 19 analyses; this
difference is statistically significant (p < .001). For the other model parameters, o and v,
the HB estimator was more accurate as well.

Table 2 also displays the out -of sample performance of the estimated portfolios, in
terms of certainty equivalents, the risk- adjusted measure of portfolio performance. It is
seen that the HB method significantly outperforms the MS method in terms of portfolio
performance: in 14 out of 19 periods, the HB portfolio had a higher risk adjusted return
than the MS portfolio.

The HB and the MS methods both employ shrinkage, and both make use of
fundamental information on the firm to estimate model parameters. One possible reason
that the HB method could outperform the MS method in some settings is that the MS
formula does not correspond exactly to a Bayes estimate, in that the formula takes into
account the precisions of the different estimates used to form the weighted average, but
does not take into account the correlations between the estimates. While in the present
setting the HB method out performed the MS method, one can expect that in many cases

the two methods could have similar performance.

(Insert Table 2 Here]

14



5 Sensitivity Analysis

The previous sections demonstrated the considerable extent to which estimation error
degrades portfolio perforinance. In this section, the relationship between mis estimated
market model parameters and mis-estimated portfolio weights is explored in greater
detail.

Sensitivity analysis for portfolio selection in the general mean-variance framework
has been discussed in Best and Grauer (1991) and Chopra and Ziemba (1993). In these
studies, it was seen that portfolio selection is sensitive to errors in parameter estimates,
and particularly to errors in estimates of the asset means. In this section, the sensitivity
analysis is specialized to the case of the factor model for stock returns, in which setting
the intercept parameters o; are critical in determining asset means. It is shown that, for
data with similar characteristics to N.Y.S.E. stock returns: (a) the error in estimating
wj, the optimal weight for stock j, is due largely to the error in estimating «;, and less
to estimating ax. k # 7; and (b) the sampling variance of the estimated weight for stock
J, W}, is approximately inversely proportional to 0;. The findings suggest that the value
1/0; can serve as a useful diagnostic in portfolio optimization: a security with a high value
of this quantity is “suspect”, in the sense that the security’s estimated portfolio weight is
likely to be far from the true optimal weight.

The sensitivity analysis derived in this section will be conducted with respect to the
least squares estimator, though is appropriate asymptotically for the hierarchical Bayes
estimator as well. Attention will be directed to the common special case in which there

is just a single independent factor in model (3):
Ui = a5+ Oifr + i, €5 ~ N0, v;);

this restriction simplifies the necessary notation. In this setting, if the factor ft in

15



equation (5) has been scaled to have zero mean and variance vp;. and if the ¢, are
independent of €, for k # j. then the sampling distributions of the model parameters
{aj, Bj.v;,j = 1.... .p} are all independent of each other, with sampling variances given
by Var|@;] = v;/n. Varlf;] = v;/(nvy). Var[t,] = 2v%/n. It follows from the independence
of the parameter estimates that the first order approximation to the sampling variances

for the optimal portfolio weights w;,7 =1,... ,p. is given by

QJ

W;

P P p
Var[i}] ~ k\;ﬂ(%y - Varlag) + ;(Z& - Var(By] + f\; Bﬁ: Var[ty]. (11
Because of the special importance of estimating the asset means in portfolio analysis
(Chopra and Ziemba (1993) find that “errors in means are about eleven times as important
as errors in variances”) attention will be focused on estimation of the o coefficients; the
variance of w; will thus be approximated by Var[w;] ~ 3} _ 1((5‘;—;’:)2 - Var|dy). It is shown
in Appendix B that ——l will tend to be more significant in magnitude than I
further, the analysis in Appendlx B and the computations below show that ﬁ;- can be very
accurately approximated by 1/A0;. Altogether, this leads to the simple approximation:
Varfi;] =~ ( ) -Varld;] = (A;)~2 v;/n = 1/(Mnd;) o< 1/9;; i.e., the uncertainty about
wj is mversely related to the estimated idiosyncratic variance 9;.

The simulation described in Section 3 helps to clarify the relationship between
parameter estimation error and portfolio weight estimation error. Table 3 describes the
correlations between the squared errors in estimating w?, and: (a) the squared errors
in estimating a; (ERR(alpha)); (b) the squared errors in estimating 4; (ERR(beta)); (c)
the squared errors in estimating v; (ERR(var)); (d) the squared errors in estimating aj,
multiplied by the sensitivity l/f)J2 (ERR-SENS(alpha)): and (e) the estimated variance
of wy, 1/9; (EST-VAR(w)).  The correlations are computed across the 30 securities

for each simulation replication: Table 3 lists the average and standard deviation of these

16



correlations, over the 100 simulation replications. The rows corresponding to ERR(alpha),
ERR(beta). and ERR(var) confirm the central importance of estimating the o parameters
in determining portfolio weights: the average correlation between mis estimation of a
and mis estimation of w* is generally very high. The rows corresponding to ERR-
SENS(alpha) demonstrate the additional importance of the sensitivity factors 1/, as
the mean correlations reported are even greater than those for ERR(alpha). In practice,
ERR(alpha) cannot be observed, since its calculation depends on the true, but unknown,
value of a;. However, Table 3 shows that the observable quantity 1/9; (EST-VAR(w))
tends to be positively correlated with the error in estimating wj}: the measure 1/?; can
thus serve as a diagnostic in assessing possible errors in portfolio allocation. In each of
the blocks, the correlation of 1/9; with the exact value of Z—g—, presented in Appendix B,
is over .95.

Classical portfolio theory (e.g., Elton and Gruber 1995) has held that the idiosyncratic
variance of a security, v;, is economically inconsequential, since idiosyncratic risks can,
in principle, be diversified away. Malkiel and Xu (1997), though, show that idiosyncratic
variance appears to be cross sectionally correlated with ex-post expected returns. This
section has demonstrated a second respect in which idiosyncratic variance may be
significant: the uncertainty of an estimate of optimal portfolio weight wj can in practice

be quantified by the simple expression ﬁj_l.

(Insert Table 3 Here]

6 Conclusion

This paper advocates the use of hierarchical Bayes methods for estimating market model
parameters and for selecting portfolios. These methods automatically and optimally

use cross-sectional data to improve upon parameter estimates for each individual firm.
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The hierarchical Bayes procedure incorporates parameter uncertainty into the estimate
of predictive variance. thus allowing for rational management of estimation risk.

The improvement in estimation accuracy leads to improved portfolio performance.
This paper shows through a sensitivity analysis that the optimal portfolio weights are

most strongly affected by estimation error when the idiosyncratic variances are small.

A Markov Chain Monte Carlo Estimation

A.l1 Gibbs Sampling

Exact finite sample inferences on the parameters of the hierarchical regression model
can be obtained using Gibbs sampling (Gelfand and Smith 1990; Miieller 1991). Gibbs
sampling is a particular variant of the class of procedures known as “Markov chain Monte
Carlo methods” (Roberts and Smith 1993), in which parameter vectors are randomly
generated from a Markov chain whose stationary distribution is equal to the joint posterior
distribution of the model parameters. A Gibbs sampler involves iterative resampling
from the full conditional posterior distributions of all of the model parameters (Gelfand
and Smith%1990). For the hierarchical market model of Section 2. all of the associated
parameters.can be sampled directly, except for the variances v;, and for these parameters
a Metropolis Hastings step can be imbedded (Tierney 1994). The derivations of the
conditional distributions follow from standard results in Bayesian analysis (Zellner 1971).

Details are provided in the following sections.
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A.2 The Full Conditional Posterior Distributions

A.2.1 Generating p; and €y

Given the observed factor returns f;. ¢ = 1,...,n. the conditional posterior

n
distribution of p, is N(} fi/n. §;/n). and the conditional posterior for £,7" is
’ t=1

n

W(%’;(ft = uy)(f = pg)', ), where V.~ W(T, d) denotes that V has the Wishart
probability density proportional to |T|%/2|V|(@-"-1/2 exp(—3 Tr(TV)), and expected value

dT—1.

A.2.2 Generating aj

Let y5; = yu — ﬁ;f,,. Then, conditional on §;, and f;, the quantity yj, is normally
distributed with mean «; and variance v;. Since the prior distribution for «;
is N(8pz$. Ao), the conditional posterior for a; is N((Ag l%z;" + nv; ly;)(Ag by

nv; )7L (Agt+ nupt)7h), where §f =07t YL v

A.2.3 Generating f3;

Now let X = (( fzk))gfss,f and y; = (yi+ — @)ict<n denote the regression
data for the market model for stock j.  From (5), the prior mean for B,
is f)'z§~3 , and the prior variance is A = diag(Ag). The full conditional
posterior distribution for 3; is then N(n}, Aj}), where the posterior parameters are

7= (A7 07 XX) T AT0'] + 07 'Xy;), AG = (AT 07 (XYX))

A.2.4 Generating v; and 7;

The conditional posterior of v is not of a standard form. However, 7; = log(v;)

can be generated from its correct distribution through use of an imbedded Metropolis
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chain (Hastings 1970: Tierney 1994). Let w(7;) denote the exact conditional posterior
density for 7;. and let T}g) be the value of 7; after g iterations of the Markov chain
algorithm. In a Metropolis sampler. a new candidate value of 7;, 77 is generated from sorme

density f(7) which approximates the desired conditional posterior (7). With probability

(@) /=)
QB PPN ELSA A K
max{1, O ()

value is retained, and the Markov chain proceeds. The 7; so generated will. asymptotically.

}. this value is accepted as the g + 1st sample of 7;; otherwise. the old

have the correct distribution 7(r;).

By Bayes theorem. the exact conditional pdsterior distribution 7(7;) is proportional
to the product of the likelihood and the prior for 7;; the likelihood of the data is
proportional to exp(—27; — %le*’i), where §; = i(yj, — a; — Bf;)?, and the prior
for 7; is proportional to exp(—g(7; — ¥'z})?). The ltilz(zzlihood, as a function of 7;, can be
approximated closely by a normal distribution by matching the modes, and the second
derivatives at the modes. The resulting normal approximation has mean log(S;/n) and
variance 2/n. Given a normal prior and approximately normal likelihood, the conditional
posterior of 7; is also approximately normal, with mean (% log(S;/n) +6~'4'27) /(3 +671),
and variance (¥ + é71)~%; this normal distribution forms a suitable generating density f
for the Metropolis chain. In simulation studies, the normal approximation is seen to be

very accurate. with the acceptance probability usually close to 1.0, and seldom less than

0.9. Given a sample of 7, the corresponding value of v; is given by v; = exp(r;).

A.2.5 Generating O, A

Let o denote the a coefficients for all securities, arrayed as a vector, and let By similarly
denote the § coefficients associated with the kth factor. Let Z® be the set of fundamental
variables related to a. and Z# the corresponding set of variables related to 8. Then the full
conditional distributions for 8y and 6. k = 1,... .7 are N((Z*Z2*)7'Z2%a, Ao(Z2*'Z2*)™})
and N((Z%ZP)VZP' By, Ax(ZP'Z°)~1). respectively. The full conditional distributions for
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P
Agand Ap. k=1...., r.are 1G(ao+p/2. a1+ 3 (a, - 652%)%/2) and 1G(ag + p/2. a; +
J=1

(Bjr — 6423)2/2).

™=

l

j=1
A.2,6 Generating ¢, 6

Let 7 denote the log variances 7 for all securities, arrayed as a vector, and let Z7
denote the set of fundamental variables related to 7. The conditional posterior for
is N((Z7'27)"'Z'7. 6(Z™'Z7)™"), and the conditional posterior for § is IG(ag+p/2, a) +

4

2 (15— ¥'23)°/2).

j=1

A.3 Predictive Moments

Let Y represent the future returns for the vector of assets under analysis, and let S

1

denote the set of all model parameters. Then the predictive moments are defined as
i = E[Y|D] = E[E[Y]S, D]}, £ = Var[¥|D] = E[Var[¥]S, D]] + Var[E[YS,D]]. The
inner conditional expectations and variances E[Y[S, D] and Var[Y|S, D] are determined
by equation (8): thus. one can generate realizations of these conditional moments at each
step of the Markov chain. The estimate of the predictive mean E[Y’ID] will then be the
sample average of the generated values of E[i’IS,'D], and the estimate of the predictive
variance will be the sample average of the generated values of Var[YS, D] plus the sample

variance of the generated values of E[YS, D).

A.4 Initial Conditions

The algorithm requires initial values for starting the Markov chain. Initial values for the
parawmeters c;, 0;, v; can be obtained by using ordinary least squares regression — Le.,

the usual estimators for these parameters. Initial estimates for ©, A, 1 and 6 can be
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obtained by multivariate regression of these estimates of a;’s 8;'s and 7;'s versus the z{'s.

8- -
z, S and 2]'s.

A.5 Markov Chain Monte Carlo Algorithm: A Summary

The Gibbs sampling algorithm for generating samples from the posterior distribution of

the model parameters can be summarized as follows:
1. Obtain preliminary estimates of the parameters a;, 8,, v;, via ordinary LS
regression.
2. Based on the initial estimates of a;, B, v;, obtain preliminary estimates of the
parameters @, A, 1, and 6, via LS regression.

3. Repeat for G Gibbs iterations:

(a) Generate samples of factor moments y; and §;.

(b) For each security j = 1,... ,p, generate samples of o, B;, 7; and v; from

their respective posterior conditional densities.

(c) Given the new samples of a;, B;. and 7; generate samples of hyperparameters

©. A, ¢ and 4.
(d) Given the samples of p;, £y, and oy, B, v;; 7 =1,...,p, compute values for
E[Y]s, D] and Var[Y|s, D], using equation (8).
The estimate of a particular parameter, say B;, is obtained by its posterior mean:
G
ElB;ID] = 555 L ,Bg-g), where B is the number of initial samples discarded, and
g=B+1

ﬁgg) is the value of 3, generated in step 3b above during the gth iteration of the

Markov chain. The predictive moments E[Y|D] and Var[Y|D), are determined by the
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G G
formulas: E(Y|D] = z== ¥ E[Y[s.D)9. Var[Y|D] = 555 2 Var[Ys, D)@+
9=B+1 g=B+1
G
— §+1(E{Y|S, D)@ —E[Y|D])?. where E[Y|s, D] and Var[Y|s, D]\ are the values
g:
of the conditional moments generated in step 3d during the gth iteration of the Markov

chain.

B Sensitivities of Portfolio Weights

Section 5 derived an approximation to the variance of the estimated portfolio weights, in
terms of the derivatives of these weights with respect to model parameters (a, 3,v). In
this section, the relevant derivatives are derived.

Let o = (01,....0p), B = (Br,...,0p), v = (v1,...,7p), and V = diag(v). The
vector of mean returns of the securities is: g = a + pp0, and the covariance matrix is:

Y =V + vy 86" The optimal portfolio weights from the previous section are:

»l1ry! v

* /\—1 E—l _ . 12
©“ ( D It e’ (12)
where
Bl= vl (— B yy-iggyl,
(1 +'U1L[,B,V—lﬁ) ﬁﬁ (13)
The sensitivity of the optimal weights with respect to « is:
ow* op dw* s st
—_— = - )‘—1 -1_& -+~ )
oo Oa Op (= 1'y™11 ) (14)

where %f;’— is a p X p matrix with (7, 7)th element equal to %E’f—
J
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It can be shown that:

ow? _’1 1 1+ UMU[S?} + (5 - /31')2] .
i = . - 1
da; (o) {1 (v,;1'2—11) ( T+ ) ohsy Ji/ve (19)

owr 1+ U}\[U[Sg 13 B )(ﬁ 8 )] . .

— = —(yul'T™h for 7 16

da; ( Uiv; ) ( 1+UMZk=1 B2 Jux ori#j (16)
where u = Y b vihs B = v Yh_ Be/ve. and SF = w30 (B - B)?/vx. The

analysis of these results is facilitated by recognizing that the matrix ! is equivalent
to a conditional covariance matrix. Let y be a multivariate normal random variable with
mean 0 and covariance matrix A"1X7L, Then the conditional variance of y given its sum,
1y, is the same as S — aw . Consequently, a , as given in Equation (15), must be positive,
as it is the conditional variance of Y; given 1'y. Although ‘5&',‘ in Equation (16) can be
positive if either §; or 4, is much greater than 3 while the other is much less than B, for

x/
the typical values of the market risk it is usually negative. Moreover, QL”— 1 = 0. so that

owi _ P

o = =l aa . Thus, when Equation (16) is negative for all j # ¢, w] tends to be

more sensitive to estlmatlon error in a; than to estimation error in «; for 7 # .

Matrix expressions for the partial derivatives of the optimal weights with respect to
[ and v can be obtained as well, but they do not have simple interpretations. Formulas
for these derivatives can be obtained from the authors.

In practice, the exact values of . 8 and v in equations (12) -(16) will be unknown,

and so will be replaced by their respective parameter estimates.
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Table 1: Estimation accuracy (mean absolute error. MAE) and portfolio performance
(certainty equivalent) of Hierarchical Bayes (HB) and Least Squares (LS) estimators on
simulated data. 100 simulation replications per block. MEAN and SD denote mean and
standard deviation over the 100 replications.

NYSE(24) | NYSE(72) NYSE(12) | HIGHHET(24)

MEAN SD |MEAN SD |MEAN SD |MEAN SD

Alpha HB 0.33 0.09| 027 004| 042 020] 000 0.16
MAE LS 1.54 036| 088 018 217 047| 156 0.37
Beta B 017 003| 013 002 019 003| 030 007
MAE LS 0.38 0.0 021 004{ 055 017| 038 0.11
Variance 1B 2245 746 | 1449 6.24| 3231 12.50| 23.86 8.40
MAE LS 2425 829 | 1475 6.32| 3523 13.06| 2535 9.08
Certainty TRUE | 1.29 0.35] 1.36 036] 138 041| 1245 570
Equivalent HB 046 034| 078 036| 038 053] 558 511
LS 21285 470 | -204 1.18| -46.98 24.02| -10.32 17.63
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Table 2: Estimation accuracy (mean absolute error) and portfolio performance (certainty
equivalent) of Hierarchical Bayves (HB) and Multiple Shrinkage (MS) estimators in
N.Y.S.E. cross validation study. 1955 1994. # HB denotes the number of periods. out of
19, in which the HB estimator outperformed the MS estimator: P value is the associated
significance level (binomial sign test).

MEAN SD # HB P value

Alpha HB 1.57  0.30 18 < .0001
. MS 1.64 0.33

Beta HB 041 0.07 18 < .0001
MS 0.43 0.07

Variance  HB 233 054 11 0.18
MS 234 0.53

Certainty HB | -49.58 30.56 14 0.01
Equivalent MS |, -78.56 51.76

Table 3: Correlations between squared error of estimated portfolio weights, and the
potential sources of this error. for simulated data. MEAN and SD denote mean and
standard deviation of the correlations over the 100 simulation replications.

CORRELATIONS

NYSE(24) NYSE(72) NYSE(12) HIGHHET(24)

ERR(alpha) MEAN 0.656 0.754 0.480 -0.018
SD 0.161 0.128 0.216 0.130

ERR (beta) MEAN  -0.035 0011  -0.007 -0.130
'SD 0.154 0.183 0.180 0.093

ERR(var) MEAN 0.112 0.008 0.171 0.131
SD 0.199 0.203 0.223 0.071
ERR-SENS(alpha) | MEAN 0.892 0.022 0.856 0.596
SD 0.095 0.075 0.167 0.279

EST-VAR(w) MEAN 0.377 0.247 0.512 0.514
SD 0.199 0.180 0.217 0.241
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Figure 1: Posterior means of hierarchical model coefficients.
Manufacturing: __ Utility: .... Finance: __ Service: .... Firm Size: __
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