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Optimal Selection of Hedge and Indexed Portfolios

Abstract

A common objective in financial management is the construction of a portfolio whose
returns closely track the returns of some other target asset; hedging, and indexed investing
are two such applications. It is often necessary that the constructed portfolio be composed
of a small number of underlying assets, in order to limit transaction and management costs.
In this paper, a mixed integer programming algorithm is presented for choosing a subset
of assets, and the corresponding allocations for those assets, such that the portfolio thus
composed optimally tracks a given target. The algorithm is designed to be robust with
respect to outliers, a critical feature given the familiar kurtosis of financial time series data.
The algorithm is evaluated on historical stock return data, and it is seen that accurate out-
of-sample tracking of a target can potentially be achieved with a small number of optimally

selected assets.



I Introduction

A common financial engineering objective is the creation of a synthetic portfolio whose
returns closely match those of some other target asset. Hedging is one possible motivation
for wishing to replicate a target returns series; Anderson and Danthine (1981) and Herbst
and Marshall (1995) discuss asset hedging with multiple instruments. Indexed investing
offers another setting in which one attempts to create a portfolio whose returns are nearly
identical to those of some other asset or portfolio.

The costs of creating and managing an indexing or hedging portfolio are minimized partly
by limiting the number of assets purchased to compose the portfolio. Choosing the optimal
subset of assets to include in the portfolio can be a challenging task; the choice depends not
just on the marginal correlations between the hedging assets and the target asset, but rather
on the partial correlations. This implies that the correlations between the hedging assets
need to be considered, just as is the case in traditional portfolio optimization (Markowitz
1952). If the number of candidate assets for forming the hedge or index portfolio is sizable,
then the number of pairwise correlations becomes larger than can be sensibly processed, other
than through automated methods. The purpose of this article is to describe a mixed integer
programming algorithm for achieving the dual objectives of portfolio replication: namely,
tracking the target as closely as possible, while limiting the number of assets included in the
portfolio.

The algorithm introduced in this paper uses an objective criterion specially suited to
the frequently heavy-tailed, or non-Gaussian, character of asset returns data (Fama 1965;
McCulloch 1978; Kon 1984). Thus, the portfolio allocation is robust with respect to the
large outliers that can appear in financial time series data.

Section II describes the algorithm for optimal indexed portfolio selection. Section III



describes applications Qf this technique to historical data on international stock returns, and
to data on returns of firms trading on the New York Stock Exchange; here, it is seen that
the robustness built into the algorithm does lead to performance gains, and that, indeed,
a small number of optimally selected assets can match a target portfolio more accurately,
out-of-sample, than does a portfolio composed of a larger set of assets, but with weights
chosen without optimization. Section IV gives further discussion, including references to

related work, and directions for future research.

IT The Algorithm

Let m, denote the return on a target portfolio in time period ¢, and y;; be the return on
individual asset j at time period ¢, = 1,... , N. Suppose that observations of m, and y;; are
available for t = 1,... , T these observations will usually be historical returns, but could also
be realizations from a Monte Carlo model which simulates future returns. The objective of
index optimization is to choose a subset of assets S, S C {1,..., N}, and associated portfolio
allocations w;, j € .S for these assets, so that the portfolio returns p; = 3 jes Wile “closely

match” the returns of the target portfolio mg, over the observation period t =1,...,7.

Least Absolute Deviations Estimation

The choice of the particular metric for determining the “closeness” of the match between
a candidate index and the target portfolio over the observation period is in fact significant,
due to the leptokurtic, or heavy-tailed, nature of financial return data (e.g., Kon 1984). The
commonly used least squares (LS) procedure is based on the Lo metric, which may be written

as Ly = 23‘:1 (my — py)?; since the residuals in the Ly norm are squared, the LS procedure



can be very substantially affected by a single observation in which the target portfolio m,
and the index portfolio p, deviate. Thus, a selection procedure which seeks to minimize an
Ly norm may be very sensitive to the outliers commonly observed in financial data. Instead,
the algorithm to be presented in this paper will use the “least-absolute-deviations” (LAD)
criterion, based on the Ly norm: Ly = Zthl Im: — py|. The LAD criterion is frequently used
in statistical modeling, to achieve robustness against gross outliers. The median, for example,
is an LAD estimator of the location of a distribution (Lehmann 1983). As another example
of LAD modeling, Figure 1 displays a scatterplot of the monthly returns of a value weighted
stock market portfolio (*VWI” - value weighted index) vs. the corresponding monthly stock
returns for the Exxon Corporation, during 1991-1992, as well as the LS and LAD best-
fitting lines for the scatterplot. The LAD method chooses the intercept £, and slope B3, to
minimize Zfil |yi — Bo — Piz;], while the LS method chooses these parameters to minimize
Zfil (v — fo — Piz:)*. The large outlier appears to significantly influence the LS estimate;
the LS estimate of the slope of the regression line is 0.42, while the LAD estimate is 0.22.
Dielman and Pfaffenberger (1982) and Gonin and Money (1989) describe the advantages
of the LAD metric over the LS metric in terms of robustness to outliers, in the context of
linear regression modeling. Hull (1997) discusses the relationship between regression slope

coefficients and optimal hedge ratios.

(Insert Figure 1 Here]

Linear—Integer Programming Formulation

Consider now the problem of choosing portfolio allocations w; for the N securities such
that the constructed portfolio closely matches the specified target portfolio my, in the L;

norm, but with the additional restriction that at most M < N securities get non-zero
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allocation. It will now be shown that this problem can be expressed as a mixed linear -
integer program.

Define ¢/ and ¢; as the positive and negative deviations between the target portfolio
my and the indexed portfolio p;: my = p + ¢ — ¢, with ¢ = max(m; — p,,0) and

€ = max (p — my,0). Define the indicator variables z; as

1 if w; > 0
zj = (1)
0 ifw; =0,

Then the optimization problem of choosing the non-negative portfolio weights w; such that
the portfolio p; = E;v:, w;y;: 1s as close as possible to the target my, and such that at most

M of the w; are non—zero, can be written as:

T
min > & ¢ © (2a)
W,Z,eT € P
subject to Py = ijyjt, t=1,...,T (2b)
j

m—p=¢ —¢, t=1,...,T (2¢)
N

Y wi=1 (2d)
G=

0<w; <1, j=1,...,N (2e)

wj <z, j=1,...,N (2f)

0<2 <1, z integer, j=1,...,N (2g)
N

Y 4 M (2h)

J=1



The objective is the sum of the absolute deviations between p; and m;. Equations (2f)
and (2g) guarantee that the indicator variables z; will obey definition (1); equation (2h)
guarantees that at most M of the securities will have z; = 1, and hence will have non -zero
weight.

Equation (2e) forces allocations to be positive, and thus imposes a restriction against
short selling. In order to permit a short position in, say, asset k, an (N + 1)st asset can be
added to the set of candidate assets, with returns defined by ywvnye = vk, t=1,...,T.

Equations (2a)-(2h) represent a mixed integer program, which can be solved using
branch-and-bound or branch-and-cut methods (Lucena and Beasley 1996). There is special
structure to the program which can be exploited to improve efficiency, since it is known
that, at the optimal solution, either € or ¢; must be zero. This complementary slackness
condition suggests that if ¢; is entered into a simplex basis, then €; may be removed, since
the variables cannot both be basic at the optimum (Barrodale and Roberts 1978: Armstrong
and Godfrey 1979). In addition, specialized integer programming algorithms can be used for

treating the fixed-charge type variables z;; see, e.g., McKeown (1981) and Suhl (1985).

Extensions

Equations (2a)-(2h) define the fundamental algorithm for identifying the portfolio
weights w; which provide optimal matching between the portfolio p, and the target portfolio
my. There are some modifications to this formulation which may be useful in certain

applications. Kariya (1993) suggests adding a constraint on the mean return of the matching



portfolio; e.g.,
N
Y wgi > G, (2i)
j=1

for some value G, where §; = T~ Z;r:l y;- The associated integer program would then
attempt to achieve a tradeoff between high average portfolio return, and low average
deviation from the target, a tradeoff similar to the one seen in traditional mean-variance
portfolio optimization (Markowitz 1952), as well as recent variations (Yamakazi and Konno
1991), and related to the “cost of the hedge” concept in Herbst and Marshall (1995).

A similar extension to program (2) can be obtained by generalizing the objective as:

T
min Z T, + (1 —T)e; (2a’)
t=1

w.z,et e

where 7 is a real number in (0,1); for 7 # 0.5, this has the effect of differentially
penalizing positive and negative deviations between the target and matching portfolios.
This optimization problem can be interpreted as a quantile regression: the portfolio p, is
selected to match the 7'th percentile of m, conditional on 3y, ... ,yn: (Koenker and Portnoy
1997). For 7 = 0.5, the matching portfolio is selected as the conditional median of m, given
Yiey -+ Ynt-

Given that M assets are to be included in the matching portfolio p;, one may wish to
ensure that wealth is distributed relatively evenly over the M assets; i.e., that the matching

portfolio is suitably “diversified”. This consideration can be incorporated by, for example,



adding to the portfolio optimization problem (2) the following constraints:

-1
wJSl“a(ﬂ/fM ); }jzly'”)N (2J)

for some e in [0, 1]. Choosing @ = 0 in (2j) is effectively non-binding, since it is redundant
with (2e), while choosing o =1 forces each of the M securities included in the portfolio to

have equal weight, 1/M, and thus forces the portfolio to be maximally diversified.

III Applications

In this section, the optimization algorithm described above is applied in two settings,
in order to demonstrate the potential value of the new procedure. First, least absolute
deviations (LAD) and least squares (LS) methods are applied to international stock returns
data; it is seen that the LAD estimator leads to superior out-of-sample predictions. Next,
the branch-and-bound integer programming method is used to create an optimal stock index
based on assets trading New York Stock Exchange; here, it is shown that an accurate index

can be formed from a relatively small number of assets.

International Stock Returns

Data for this study were obtained from the DRI Basic Economics database, and
consisted of monthly nominal returns on stock indices from Canada, France, Italy, Japan,
United Kingdom, United States, and West Germany, from 1950 through 1995. The West
Germany (W.G.) return series was chosen as the target portfolio m,, and the remaining
countries’ stock returns were used for the Yje- The goal of the analysis was to select portfolios

of non-W.G. returns which could accurately match, or hedge, the W.G. market return. Two
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methods were used: an LAD estimator, and an LS estimator. In both cases, the number of
assets receiving non-zero allocations was unconstrained.

22 datasets of monthly returns were obtained, each of length 48 months. The first dataset
contained data from 1950-53, the next from 1952- 1955, and the last from 1992--1995. For
each dataset, the first 24 months of data were used to form the optimal portfolios. The
remaining 24 months of data were used to evaluate the ability of the constructed portiolio
p; to match the W.G. portfolio m; out-of-sample. The out-of-sample accuracy measures

used for the study were the mean absolute error (MAE), & 221225 |m: — p¢|, and the mean

square error (MSE), & fi% (m; — p,)?; these measures were computed for each of the 22
consecutive datasets.

In terms of MAE, the LAD method outperformed the LS method in 15 out of 22 periods
(p-value = 0.026, binomial sign test), and in terms of MSE, the LAD method outperformed
the LS method in 17 out of 22 periods (p-value = 0.002, binomial sign test). The median
gain in accuracy of the LAD method relative to the LS method, over the 22 tes.t periods,
was 9% for the MAE measure (standard deviation=12%), and 15% for the MSE measure
(standard deviation=22%). The LAD method appears to have an advantage in analyzing

the long-tailed returns data.

N.Y.S.E. Data

Data for this study were obtained from the Center for Research in Stock Prices (C.R.S.P.)
dataset. The target portfolio m; was chosen as the C.R.S.P. Value Weighted Index (V.W.L.),
which is a measure of overall stock market performance. The component assets used for the
y; were fifty randomly selected stocks from the C.R.S.P. database; all these stocks trade on
the New York Stock Exchange (N.Y.S.E.). The goal of the analysis was to select portfolios,



based on subsets of the fifty stocks, which could accurately match the V.W.I. market return,
using the integer programming method of Section II to constrain the number of securities
entering the index portfolio.

19 datasets of monthly returns were obtained, each of length 48 months. The first
dataset contained data from 1955-58, the next from 1957-1960, and the last from 1991-
1994. For each dataset, the first 24 months of data were used to form the optimal portfolio,
using a branch-and-bound algorithm to solve optimization problem (2), with minimand
st Zfi] |m¢ — p|. The remaining 24 months of data were used to evaluate the ability of the
constructed portfolio p; to match the V.W.I. portfolio m, out-of-sample; the out-of--sample
accuracy measure used was the mean absolute error, & 5o [m: — pil.

A number of different methods were used to form the indexing portfolio p;:

50e - an equally weighted portfolio using all 50 stocks |

200 - a portfolio with at most 20 stocks, with the 20
stocks and the weights chosen optimally

20r - a portfolio with 20 stocks selected at random, but
with weights chosen optimally

50 - aportfolio with at most 5 stocks, with the 5 stocks
and the weights chosen optimally

5r - a portfolio with 5 stocks selected at random, but

with weights chosen optimally

Table 1 displays the results of the analysis. It can be seen from the table that optimization
can indeed lead to accurate tracking of a target out-of-sample. Portfolio 50, which optimally
selects the five assets to receive positive weight, as well as the appropriate weights for the

assets, performs better at tracking the overall market measure V.W.I. than does portfolio



5r, in which the five assets are selected at random; the difference is statistically significant
(p = .031, binomial sign test). The difference in performance between portfolios 200 and 20r
is statistically signiﬁcgnt as well (p = .0096). The optimized portfolio with five assets, 50
outperformed the equally weighted portfolio with fifty assets, 50e, indicating the potential
economy that can be achieved with optimized indices. The average computing time required
to identify the 5o portfolios was less than 0.2 CPU seconds, using a Sun Sparc 10 Workstation

with 150 MHz processor.

(Insert Table 1 Here]

IV Discussion

The mathematical theory of portfolio selection in the face of significant, fixed transaction
costs has been treated, for example, in Akian, Menaldi, and Sulem (1995) and Cvitanic
and Karatzas (1996). The mixed integer programming framework presented in Section II of
this paper provides a practical algorithm for selecting a hedging or indexing portfolio whose
historical returns optimally match those of a target portfolio, while keeping the number
of assets included in the matching portfolio small. The empirical example of the N.Y.S.E.
portfolio presented in Section III shows that index optimization can successfully produce
accurate tracking of a target with a small number of intelligently chosen assets.

Kariya (1993, chapter 12) discusses alternative approaches for choosing an index portfolio.
These approaches also aim to achieve close matching of a target portfolio, with a small
number of assets. The approach advocated in Kariya (1993) differs from the method
introduced in this paper in a few ways. First, Kariya (1993) uses an Ly, or least sum

of squares, objective criterion, whereas the present article uses an L, or least absolute
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deviations criterion. The LAD criterion will have advantages in the presence of outliers
in the data; For returns data that are approximately normally distributed, though, the LS
criterion could lead to more efficient estimates of the optimal portfolio weights. Another
difference between the method of Kariya (1993) and the present paper is in the method
by which the subset of assets to be included is determined. The present paper uses global
optimization, via branch-and-bound methods, to choose the subset which leads to optimal
tracking in a training sample. Kariya (1993) uses a heuristic method which involves the use
of cluster analysis to identify assets that behave similarly, in the training sample, to the
target being tracked.

The least absolute deviations method for measuring riskiness of financial portfolios was
used in Yamakazi and Konno (1991). Other related papers are Stone (1973) and Sharpe
(1971), which discuss approximate methods for minimizing portfolio volatility - measured in
the Ly norm - via linear programming methods. Young (1998) discusses the use of a minimax,
rather than least absolute deviations, criterion in portfolio optimization, and shows how this
criterion can also be treated within a linear or linear-integer programming framework.

Given a specified subset of assets to be included in the index or hedge portfolio, the
optimal weights for the assets are obtained via a simple linear programming problem.
Perhaps the more challenging task in finding an optimal hedging portfolio is the selection
of the subset of assets to receive positive portfolio allocations. The branch-and-bound
method used in this paper works quite efficiently for moderate to large sized problems.
Future research in the area of indexed or hedge portfolio optimization may involve the use
of alternative optimizafion techniques - e.g., genetic algorithms (Michalewicz and Janikow

1991) or tabu search (Glover 1994) — to explore the space of candidate asset subsets.
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Figure 1: Scatter plot of monthly stock returns, 1991-1992, with estimated regression lines:
Solid = LAD, Dotted = LS
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Table 1: Results of N.Y.S.E. data analysis. MAE denotes out—-of-sample mean absolute

error; Median and SD denote the summary statistics of the MAE over the 19 periods of
analysis.

MAE
Method | Median  SD
50e 0.0787 0.0249
5 0.0735 0.0301
5¢ 0.0927 0.0297
20 0.0734 0.0312
20c 0.0833 0.0321
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