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Abstract

In this paper, we propose and analyze a class of methods for minimizing a proper lower semicontinuous
extended-valued convex function f : R® — R|J{oo}. Instead of the original objective function f, we
employ a convex approximation fi4+; at the k-th iteration. Some basic global convergence rate estimates
are obtained according to the properties of the approximation sequence {f}32,. We illustrate the appli-
cability of our approach by proposing (i) a new family of proximal point algorithms which possesses the
global convergence rate estimate f(z) — mingepgn f(z) = O(1/ (E;:é A;j)?) even if the iteration points
are calculated approximately, where {A;}32, are the proximal parameters, and (ii) a new bundle method
which is globally convergent under some assumptions.

Key Words. Nonsmooth convex optimization, proximal point method, bundle algorithm, global con-
vergence.

1. Introduction
Consider the following optimization problem
min{f(z) : z € R"}, (1.1)

where f: R® — R|J{oo} is a proper lower semicontinuous extended-valued convex function.
The Moreau-Yosida approximation Fy of f is defined by

Fi(@) = min{f(y) + 5clly ~al -y € R,

where ) is a real positive number.

As proved by Moreau [?], F) is a differentiable convex function defined in the whole space of R™
that possesses the same set of minimizers as the problem in (1.1). Using these properties, Martinet [?]
presented a proximal point algorithm for solving (1.1): start from an initial point zo € R and generate
{zk}32, by solving

. 1
Tk4+1 = argmin{f(z) + m“z —zi||?: 2 € R}, (1.2)

where {\¢}22, is a sequence of positive numbers.

!This material is based on work supported by the National Science Foundation under Award Number DDM-9215921
and the Australian Research Council.



Rockafellar made a major contribution to proximal point methods in [?] by proving, under some
additional reasonable assumptions, the local superlinear convergence of the proximal point algorithm for
finding a zero of an arbitrary maximal monotone operator even if the iteration points are calculated
approximately, which is an important consideration in practice. As an application, Rockafellar applied
the results to a lower semicontinuous proper convex function f. In this case, the two general criteria for
generating x4 are defined by

oo
dist(0, S(r41)) < 2K, Y o1p <o (1.3)
Mk k=0
and -
. g
dist(0, Sk (zk41)) < T“’;Cl“-nxkﬂ —al, Y o2k < oo, (1.4)
k=0
where ]
Sk(z) =8f(:v)+>‘—k(x—xk). (1.5)

For a survey of recent convergence results of the proximal point algorithm we refer the reader to {?, ?, ?,
2,5, 07.

Giiler presented in [?] two different proximal point algorithms which used an idea introduced by
Nesterov [?] for smooth convex minimization. The main difference from the classical proximal point
algorithm in (1.3, 1.4, 1.5) is that the methods given in [?] generate an additional sequence {yx}32 of
points in R", and calculate 2541 from

Tk41 = argmin{f(z) + é-i—kHa: —yl|*: z € R} (1.6)

Giiler also showed that the minimization in (1.6) can be performed inexactly by a modification of (1.3),
ie.,

dist(0, 0f (o) + - (ks ~ ) < 2 .

where 03 = O(7) for some o > 3.

Lemaréchal combined the proximal point method with the bundle method in his pioneering work [?],
(also see [?], [?] and [?]). In Lemaréchal’s algorithm, a sequence {zx}72, is generated by a sequence of
convex functions, {fx}72,. More precisely, : :

1
T4y = argmin{ fi(z) + 2_X;l|x —zx)|?:x € R"} (1.8)

where fj is a bundle linearization function of f. The power of the bundle methods has yielded many
results (see [?,7,7,7,72,2,2,7,7)).

In this paper, we study procedures that permit the solution of (1.1) via the construction of a sequence
of objective function approximations, { fx}t>,- Such approximations are necessary in many optimization
problems (for example, stochastic programming, see (?, ?,?, 2, 7, 7, 7, ?]) where the objective functions
are too complex for exact evaluation. Within the context of stochastic programming, the objective
function involves the expected value

fm=EWLM=/F@WWW% (19)

Q

where w is a random vector defined on a probability space (2,.4,P). Thus, the precise evaluation
of f and its subgradients involves multidimensional integration. To avoid the computational burden



associated with this evaluation, it is customary to replace the objective function, f, with a sequence of
approximations, {fx}52,, see (7,7, 7,2, 7,7, 7, 7].
The remainder of the paper is organized as follows. In the next section, we describe the model
algorithm and give some basic global convergence rate estimates. As the first important application, in
_Section 3, we present a family of proximal point algorithms which calculate zx4; with upy1 € df(zpy1)
by the following form . '

1 05,k
ukss + /\_k(xk+1 =)l < ogkllurs] + _Xk—”zk+1 = ykll; (1.10)
where o4 € [0,1] and o5 € [0,1). In particular, we obtain, under the same conditions, the following
global convergence rate estimate obtained by Giiler [?](with exact minimization (1.6)),

1
Z) — mingepgn f(z) = O(————). 1.1
Noting that (i) we obtain the same convergence results using inexact minimization (??) (for examples,
for all k, o4 = 0 and o5 € [0,v5 — 2] or o4% € [0,2] and 05 = 0) and (ii) the convergence rate
(??) for algorithm (??) is higher than that obtained for (1.7) in [?]. Moreover, some applications of
the results in stochastic programming are discussed in the same section. As another application of the
results in Section 2, in Section 4, we present a new bundle method which calculate . from

. 1
Tk+1 = argmin{ fr+1(z) + m”x —ykl®:z € R"}. (1.12)
The proposed new bundle method may have a better convergence rate than the original bundle methods
since the convergence rate (??) obtained for algorithm (1.6) is higher than
1
k-1

which is obtained for (1.2) in [?]. Under some additional assumptions, we establish the global convergence
for the proposed bundle method. '

f(@k) — mingegn f(z) = O( ), (1.13)

2. The model of the methods

We begin our research with a brief description of the main idea given in the methods in [?] which is in
turn suggested by Nesterov [?] for smooth convex minimization problems. The idea of the algorithms in
[?] is to generate recursively a sequence {p}%2, of simple convex quadratic functions that approximate
f in such a way that at step k > 0, for all z € R" "

err1(T) = f(z) < (1= k) (k= f()), (2.1)

where ay is a number in the interval [0, 1).
If (??) is satisfied for each k > 0, then

k-1

er(2) = f(z) < ([T - @) (wo(®) - f(2)). (2.2)

1=0

If, at step k, we have at hand a point z; such that

f(zx) < ¢k := min{pr(2) : 2 € R*}, (2.3)



then we obtain from (??) that

k-1

k) = £(z) < (J (1 - i) (po(2) - £()), (2.4)

1=0

which implies that if Hf;ol (1 —a;) — 0, then {zx}2, is a minimizing sequence for f.

The aim of this section is to extend the above idea to a sequence of proper lower semicontinuous
extended-valued convex functions, {fx}. Since f is too complex for exact evaluation in some applica-
tions, so in each iteration, we assume that there is a simple convex function f; at hand, which is viewed
as an approximation for f at step k. Denote X = {z : z € R™, f(z) < +00}. Our asymptotic analysis is
based on the following assumption:

(Al): for any z € X and all k£ >0, fi(z) < +00.

Let z9 € R",{zx} C R™, ug+1 € Ofk+1(zk+1) and a constant a > 0 be given. For given oy € [0,1),
we define a
wo(z) = fozo) + 5”55 - zof?,

orr1() = (1= on)or(@) + arlferr(@e1) + uly (& — Thp1)]

—(1 = aw)[fr(zk) = frg1(zk)]-

The following two lemmas can be viewed as slight extensions of the related results in [?]. The proofs
follow closely those of [?].

Lemma 2.1 For all k, the quadratic functions @i (x) satisfy the following inequalities:

Pe+1(2) = fer1(2) < (1 - an)lwr(z) = fi(@)] + (1 — k)i (2), (2:5)

where
Ok+1(7) = fi(z) = fet1(z) + frtr(zk) — fi(@k)-

Proof: From the definition of @41, we have
or1(@) — fena(@) = (1—aw)lpr(@) = ful@)] + (1 - o) fu(@) = frra (@)
o frr1(@it1) + i (@ — ze41)] — (1= a) [fr(@k) — frgr(zi)]

(1 = o) [r(z) — frl(@)] + (1 — ar)[fe(z) = fr(zk) = frs1(z)

+fir1(zk)]) = [ for1 () = frar(@rt1) — ufyq (€ — Tosa)]-

Using the convexity of fi41, the conclusion (??) follows. 2

Denote 69 = 0,69 = 0,1 =0,
5k+1(£) = fk(m) - fk+1($) + fk+1(l‘k) - fk(xk)v k= 0’ 172’ ) (26)

and
ek+1(:c) = (1 - ak_l)ek(x) -+ (5k+1(1‘), k=0,1,2,.... (2.7)

Forall j:1<j<k,let .
Agj =TE_(1 = o).



It is easy to show that

k
ek+1(2) = Gk41(2) + Y Ak, jki1-5(). (2.8)
1=1
JFrom Lemma 2.1, we have
k
rr1(2) = frar(z) < (1 - @))lpo(@) - fol@)] + (1 - an)era(z). (2.9)
i=0
Letting a
« , Ok
or(z) = ot + e~ wel,
we have
ak+1 = (1 — ag)ay, (2.10)
a
Vg1 = Uk — —kuk.H, (2.11)
Ak+1

where a9 = a and vg = .

Lemma 2.2 If o > fi(zk), then

a2

k
2041

Prst 2 Frr1(Tre1) + uipr [(1 = k)ak + kv — Thps — Uk41)- (2.12)
Proof: From the definition of ¢} ,, (??) and (??), we have
Crp1 = Prt1(Vkt1)
= (1 - o)k (vrs1) + o[ Fosr (Te1) + ufy ) (Vkg1 — Thgr)]
—(1 = o) [fr(zk) = frrr(zk)]
(1-oy

= (1 o) + L2808 gy — |2 — (1= o) [fa(ak) — fk+1(1:k)]

+ag frr1(Terr) + orufy (Verr = Thr)

Y

(1= ak)[frs1(@r) = frr1(Trsr)] + akz“ ||ﬁ7“k+1”2

okt (Vk = g2 Ukr = Ther) + frr1 (Tra),

by the assumption in the lemma.
Using the convexity of fi+1, we have

Crrr = Ferr(@een) + (1= an)uly (@6 — Tra1) + aufy; (6 — 2r41)

2
—aﬁq-llukﬂllz

2
= fer1(Tet1) + Ufﬂ[(l — )Tk + ORUE — T4l — ﬁﬁ:ukH}

So (2?) follows. 2



Letting
Ye = (1 — o)z + apvg,

and choosing Tx+1 With uky1 € 0fk+1(Tk+1) such that

a
Qk+1 = U£+1[yk — Tk+1 — 2ak+luk+1] >0,

we have the following lemma:

Lemma 2.3 Suppose that (??) and (??) hold. Then for k =0,1,2, ...,

ok > fr(zx).

Furthermore, for k =0,1,2, ...,
@k = fr(@k) + gk

(2.13)

(2.14) -

(2.15)

(2.16)

Proof: We prove (??) by induction. From the definitions of ¢y and €y, (??) holds for k¥ = 0. Suppose

that (??) holds for k. From Lemma 2.2 and (??), we have that (??) holds for k + 1.

Lemma 2.2 and (??) imply that (??) holds.

The Model Method (MM).

Step 0 (Initialization). Select an initial point 2o € X. Let vg = 9,a0 =a > 0,0 € (0,1), and k = 0.

Step 1. Set
Yk = (1 — og)zk + k.

Step 2. Generate fr4+ satisfying (Al). Then compute zi41 With ugt1 € Ofk+1(@k+1) such that (??)

holds, that is

012

MM _ T k
= -z — ey, >0.
Qis1 = Ukr1[Uk — Tk 20— on)ar k1] 2

Set
QAk+1 = (1 b ak)ak
and
.
Vk4+1 = Vg — —Uk+1.
Q41
Choose
aks1 € (0,1).

Step 3. Increase k by 1 and go to Step 1.

It is worth noting that for any yx € R", any o) € (0,1) and any a)x > 0, we can always find zx4; and

Uk+1 € Ofk+1(Tk+1) such that gM4f > 0. In fact, since

1
Ofk+1(z) + m(w = Uk)

is a strongly monotone mapping with modulus — 7 (akzl_ak)), there is a unique solution zx+1 such that
k

1

m(xk+l ~ Yk)-

0 € Ofk+1(Trs1) +



Let ug41 € Ofk+1(xk+1) such that

0=1ug41 + m($k+l = Yk)-

Then (zk+1,uk+1) is a desired solution. A
(From (??7) and Lemma 2.3, we obtain the following basic convergence rate estimate.

Theorem 2.1 Suppose that {zk},;“;o. is generated by (MM). Then for allz € X , k> 1,
fi(z) = fulx) + ™ < Bilpo(z) = folx)] + (1 = ak-1)ex(),

where B, = Hi:ol(l - ).

Theorem 2.1 suggests many possibilities for obtaining convergence methods according to different (a)
approximation sequences { f }$,, (b) solution methods for ¢}* and (c) choices of ax. In the remainder
of this section, we give some results based on the properties of {fi}3,. We discuss (b) and (c) in the
next section.

Denote 68 =0, 68 =0, a‘ll =0,

61?:+1 =fk+1(xk)_fk(xk)’ k=0,12,.., (217)
and
1= (1—oap-1)er + 601, k=0,1,2,... (2.18)
Then .
j=1

Corollary 2.1 Suppose that {zi}R2, is generated by (MM) with fi(z) < fiy1(z) forz € X and k > 0.
Suppose that fi, satisfies the following condition:
(A2) There is an index set K such that for all z € X,

limsup fry1(z) < f(2). : (2.20)
keK,k—oo
If )
(B B =0 21
li —ap)ed,, = .
reim (1~ ag)eey =0 (2.22)
and
limsup fry1(zk+1) > limsup f(zx) ( limsup frt1(zk+1) > limsup f(yk)), (2.23)
k€K ,k—oo k€K ,k—oo keEK,k—oo k€K, k— oo

then {zx }kex ({Yktkek) i a minimizing sequence for f.
Proof: From the assumption that fi(z) < frt1(x) we have, for z € X and k > 0, that 6;(z) < 62 and

ex(z) < €. From Theorem 2.1 and the assumptions in this corollary, we have for all z € X,

limsup f(zx) < f(z)
kEK k—o0

which implies that {zy}rex is a minimizing sequence for f. The same property can be obtained for
{Uk}kek - 2

The following result indicates that, for any bounded sequence {62}, we can choose oy, € (0,1) such
that (??) and (??) hold,



Lemma 2.4 Suppose that {|62|}$2, is bounded.
(1). If there is & > 0 such that for all k >0, o > a > 0, then (??) holds and {|e2|}32, is bounded.
(II). If ay, — 1, then (7?) holds.

Proof: From the boundedness of 6, we have M > 0 such that for all k > 0, |6?| < M. From the
definition of A ; we have, for all j : 1 < j <k, that

A, = TH_; (1 - ag—y) < (1-a).

This inequality combined with (??) yields
k .
Rl S MI+) (1-a))
j=1

which implies that {|e}[}£2, is bounded.

Since 0 < B = IIZ5 (1 — o) < (1 — @), (??) holds.

Since the condition in (II) implies the condition in (I), the conclusion of (II) follows from o) — 1 and
that {|€2]}22, is bounded. 2

Denote
f* =inf{f(z):z € R"},
X*={z:zeR" f(z)=f"},

and
fi = inf{fo(z) : z € X*}.

Corollary 2.2 Suppose that {z;}2, is generated by (MM) with fi(z) < frt1(z) for z € X and k > 0;
f* > —o0 and f§ > —oo. If fi satisfies
(A2)* for all k > 0, there is a constant by, > 0, dependent on k and f, such that for any z € X,

1£(z) = fiz)] < b, - (2.24)

then the following results (I), (II), and (III) hold.
(I). For anyz € X,

fzk) = (@) + @™ < Belwo(z) = fo(x)] = (1 — ak-1)€p + 20 (2.25)

In particular, we have the convergence rate estimate

Flze) =+ g™ < Belfolzo) - f5 + g-p(:ro,X*V] — (1 = ag-1)€2 + 2bg. (2.26)
(). If
lim b, =0, (2.27)

(??) and (??) hold, then {zx}2, is a minimizing sequence for f. In particular, if there is r € (0,1)
such that for allk >0, o = 1 —7 and by = r*, then {z}2, is @ minimizing sequence for f. Moreover,

f(@x) - 7 = O(kr*). (2.28)

(IIT). Suppose that (??), (??) and (??7) hold. If X* is a nonempty compact subset in R", then
{zk}32, is bounded and every accumulation point of {xk}3, is a minimizer for f.



Proof: It is easy to prove the conclusions of (I) by Theorem 2.1. From (??), we have that {z;}%, is a
minimizing sequence for f if (??), (??) and (??) hold. We prove (??) now. Suppose that k > 1. ;From
the definitions of 62, Ak, ; and (?7), we have

and

The above two relations and (?7?) yield
€ > —k(rF1 4 k),
This inequality combined with 8 = r* and (??) yields
flee) = "+ ax < [foleo) = f3 + Golao, X*) + (1+ )k + 2r*

which implies (?7).
The conclusion (III) follows that {zx}$2, is a minimizing sequence for f and that X* is compact. 2

If for all k > 0, fx = f, then 62 = 0. In this case, we can choose by = 0. By noting Theorem 2.1, we
have the following corollary.

Corollary 2.3 Suppose that {zy}52, is generated by (MM). If for any k >0, fr, = f, then
a
Flak) = f(z) + @™ < Belf(mo) — f(z) + Fllz = zo||?]. (2.29)

Consequently, a
flzk) = £* < Belf (o) = £ + 5 plwo, X*)?). (230)

Where p(z, W) = min{||z — w| : w € W}.

Remark 2.1 Noting that the definitions of €? and €)(z), using the same way as Corollary 2.2, we can
prove the similar results for Corollary 2.2 hold even if fi(z) < frs1(z) is not true.

Remark 2.2 The results in Corollary 2.2 (or Remark 2.1) are useful for solving some convex com-
plex problems. The following two examples can be viewed as two general models arising from stochastic

programming (see (?, 7, ?, 2, 7, 7]).

Example 1. Suppose f has the following structure
f(z) = ho(z) + ) _ prhu(z) + Ox (),
k=1

where X C R™ is a nonempty compact convex subset of R™ and ©y is the indicator function of X, i.e.,

0 ifze X
Ox(z) =

+00 otherwise.

We assume the following:

bl) For j >0, h; : R® — R is a convex function.



b2) For j > 1,h;(x) > 0 and there is a constant My > 0, such that
supy>1{|h;(z)| : ¢ € X} < M.
b3) For j > 1,p; >0 and
oo
ij < 400.
j=1
Then, we can let

frla +sz )+ Ox(z)

and solve the problem (1.1) by (MM). If h;(z) > 0 or p; > 0 is not true, we can also solve this example
by noting Remark 2.1.

Example 2. Another type of these problems can be formulated as

min{ f(z) = /Q F(z,y)dy + Ox(z) : 7 € B, (2.31)

where (Q is a compact subset of R™ and F(.,.) : R® x R™ — R is of bounded variation on 2 in the sense
of Hardy and Krause; F(.,y) is convex for any given y € Q.

In this case, according to some integration rules (see [?, ?, ?, ?] for details) we can choose, for
j:OSjSk—l,Q;“CQandy}“le,suchthat

k-1

fi(@) =Y Flz,y5)u(@) + Ox(2)

3=0

satisfies
k—
c1) For all k > 1, QF N, 0F =0 and |J;Z O = Q.

2) limg o0 sup{|f(z) — fi(z)| : 2 € X} = 0.

;From Remark 2.1, we can solve (??) by (MM).

3. New proximal point algorithms

A new family of proximal point algorithms with four parameters (A, ak, 04k and o5 k) is proposed in
this section by devoting a new solution method for (??). In fact, Giiler [?] gave one method (1.6) for
solving (??). We use (??) here to solve (??). The method described below is based on one important
property (Lemma 3.1) which claims that we can choose A, 04 and o5 such that the solution set of
(??) is contained in the solution set of (?7?).

Lemma 3.1 Let u,v and w be vectors of R™, A\ > 0,7 € [0,1] and t € [0,1). If
1 t
le + < =)l < 7lluf + v = wl, (3.1)

then
1-7)2(1 -t =71 +7)1+1t)?

T M. (52

ul(

w—v) >

10



Proof: The inequality

1 1
(w+ 30 - )70~ 0) < Ju+ 30 - w)lv — w]
and (??7) imply that
1-t ‘ ' .
o (w = 0) 2 o = wl* = 7ul o - w]. (33)

On the other hand, from (??), we have

147 1-71
> - > —
Ml 2 o~ wll > Al
which combining with (??) yields (??). 2
Let

(1-m)21-t)2—7(1+7)(1+1)
(1-t)(1+1)2

(From Lemma 3.1, we may now state our proximal point algorithm.

U(r;t) =

The General Proximal Point Algorithm (GPPA).
Initialization. Select an initial point zy € X. Let vy = zg,a9 = a > 0, and k = 0.

Step 1. Choose Ay > 0,04 € [0,1],05% € [0,1) and calculate a > 0 such that

2
Qe

—F I\ VY ; .
S — o) S % (04,k;05,5), (3.4)

Set
Yr = (1 — )Tk + Vg

VStep 2. Generate fi41 satisfying (Al). Then compute 41 with ugt1 € 0fk+1(2k+1) such that

1 05,k
|uks1 + )\_k(zk+1 —yp)ll < oaklluksr ] + )\L;cﬂxkﬂ — Ykl|- (3.5)

Set.
ak+1 = (1 — ax)ag
and

Qg
Vk+1 = Uk — mukﬂ-
+

Step 3. Increase k by 1 and go to Step 1.

Theorem 3.1 Suppose that o4 € [0,1] and o5k € [0,1). If (Tkt1, Uk+1)(Uk+1 € Ofks1(Tha1)) i85 @
solution of (77), then

Uhyr Wk — Tht1) > U(oqk; 058 M|k ]| (3.6)
Therefore, (Tk+1,Uk+1) 18 a solution for (?7). Moreover,
o
(1 - ak)ak)\k

GPPA _

Ak
ai > qiiPt = 7[2‘1’(04&;05.0 - Juks]? > 0. (3.7)

11



Proof: For any given k, let v = ug41,v = Tg1,w = Yk, A = A\, 7 = 04k, and t = 05 . (From Lemma
3.1, we have (?7?).

(From the definition of gM* and (??), if (??) holds, then g™ > 0 so that (zx+1,uk+1) is a solution
for (??). (??) follows the definitions of g™ and gZFF4. 2

By the above conclusions, we may state global convergence results similar to Corollary 2.1 - Corollary
2.3 but do not repeat these results here. We are more interested in finding o4k, 05 and oy such that Gy
tends to 0 as fast as possible for any given sequence {A;}$2 (see [?]). From the definition of Sy, this is
equivalent to having oy as large as possible. To find such oy, for any ¢ > 0, set

o

c— ———— =0, 3.8
(1 - ak)ak)\k ( )
or
aﬁ + capAray — cagAg = 0.
Therefore,
: k)2 + deagAg — cag
ax(0) = v/ (care)? + QCak k= Cakd (3.9)
Similarly to the proof of Lemma 2.2 in [?], we can prove the following lemma.
Lemma 3.2 . 1
< Br(c) (3.10)

T vay o Ja) ST wan oA

Let
Y(e) ={(r,t) : T €[0,1],t € [0, 1), ¥(r,t) > g}

Since for any ¢ € (0,2],{(r,0) : 7 € [0, <]} C £(c), Z(c) # 0. ;From Corollary 2.3 we have the following
convergence rate result.

Theorem 3.2 Suppose that for all k, fi = f, o satisfies (??). If (oak,05%) € X(c), then for any.
z € X, (GPPA-(c)) has the global convergence rate estimate -

Ak—1

o) o) + X (o sionn) -t < L2104 @f2)e ol

(1+ (Vea/2) ThZg /A7)

IN

(3.11)

IA
pS
]
L7
]

Therefore
4f(z0) = f* + (a/Dp(z0, X*)*) (3.12)

o520 VA)?
The algorithm (GPPA-(c)) converges (f(zi) — f*) if

i VA = 0. (3.13)
k=0

flze) = f* <

In particular, if for allk >0, Ay > A > 0, then

YN (fla0) - £ + (a/2)plz0, X))

flxg) = f*

IN

(3.14)
= O(h).
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Since
20,k

>
(2 + cagAg + \/(cak)\k)2 + 4cak)\k)\/(cak)\k)2 + 4deap Mg

ak(c) is an increasing function about c.
On the other hand, since ¥(0,0) =1 and for all 7 € (0,1], ¢t € (0,1),

ai(c) =

(1-7)%1-t) 7(1+7)

U(ri) = T+82  (1-9)

<1

Therefore, ¢ = 2, i.e.,
ak(2) = (ak)\k)2 + 2a Ak — kg

is the best choice for By — 0 as fast as possible for a given sequence {A}%2,. ;From Lemma 3.2, we have

1 1
vy - M S L mn e

(3.15)

and the following result.

Corollary 3.1 Suppose that for all k, fr, = f, ¢ = 2 and oy, satisfies (??). If o4 = 05 = 0, then for

any € X, (GPPA-(2)) has the global convergence rate estimate

flzo) - f(z) + (a/2)||$ — 2ol
(1+ (vV2a/2) T80 /32

flzi) = fz) < (3.16)

Therefore,
2(f(zo) — f* + (a/2)p(x0,X*)2).

k-1
a Z]:O \/-A—J)2
In [?], Giiler selected ¢ = 1 and gave the convergence rate results (??)-(??) with the calculation of
zr+1 performed exactly by (1.6). Let

fl@e) = f* <

(3.17)

e ={(r,t):7=0andte[0,V5-2];7 € [0,—;—] and t = 0}.

Since W(0;v/5 —2) = \Il(é;O) =%, U(0,t) = 1—;7 (also \II(T 0) = 1 — 37) is decreasing for ¢t € [0,1)
(r€[0,4)), Tp1 C I(1). Therefore, we have

Corollary 3.2 Suppose for all k, fr = f, ¢ =1 and oy satisfies (7?). If (04 k,05,k) € ZE1, then for any
z € X, (GPPA-E1) has the global convergence rate estimate (7?), (7?7) and (??) for the case ¢ = 1.

(From (??) and (??) with ¢ = 1, we can deduce that the convergence rate obtained for (GPPA-(2))
is twice faster than that obtained for (GPPA-EL).

Remark 3.1 From Theorem 3.2 in this paper and Theorem 2.3 in [?], we obtained, for (GPPA-E1),
the same convergence rates as those obtained in [?] for The Proximal Point Algorithm (PPA), but
our algorithm (GPPA-E1) is more practical than (PPA) because (1) we calculate zx+1 by (??), and (2)
the calculation zg4+1 by (1.6) can be almost as difficult as the original minimization problem (1.1). On
the other hand, the convergence rate obtained for the algorithm with inexact minimization in [?]
is lower than the convergence rate obtained for (GPPA-E1) in this paper (see Theorem 3.2 in this paper
and Theorem 3.3 in [?]); furthermore, we do not need that o4 and o5k tend to 0 (One cannot deduce
that oq kllukta|l + 32 |lze1 — yell = O(5 &) for some o > ).
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Remark 3.2 There are many possibilities for obtaining convergent proximal point algorithms. In
fact, the two conditions to guarantee these possibilities are g5 > 0 and 8, — 0. By viewing Corollary 2.1
of [?], we can deduce that (GPPA) has the same possibilities for guaranteed convergence as (PPA).

In the following, we will give another choice for o, and prove that {zx}32, is an asymptotically
regular sequence ( ||zx4+1 — 2x|| — 0) under the condition that X* is a compact set. This result has not
been discussed in [?] and does not appear clear for this type algorithm. We only prove it in a special
case of the choice for ay.

Algorithm 1.
Step O (Initialization). Select an initial point zo € X. Let vg = 29,09 = a > 0,9 > 0, and k = 0.

Step 1. For zg, vk, ak, Ax, set
- Ok Ak
k= 1+ap);’

Uk = (1 — ok) Tk + agvg.
Step 2. Compute
Ty4+1 = argmin{f(z) + ﬁ”z —ukl®: 2z € R},
k1 = Vk + (Th41 = Yk),
ak+1 = (1 = ak)ax,
and choose Ax4+1 > 0.

Step 3. Increase k by 1 and go to Step 1.

It is not hard to show that Algorithm 1 is a special case of (GPPA). In fact, since oy = 1—3_’(‘%3—’6, we
have

A (,‘1,2c
)‘k = = 3
ap(l —ak) ~ 2ax(l — ag)
which implies (??) holds; on the other hand, in this algorithm, we can let uyy; = —/\lk(:ckﬂ = Yk),
therefore, :
(077 (o7 1

Uk4+1 = /\—($k+1 - Yk)-
k41 k41 Ak

This relation combining with the definition of Ax and the construction of a;, yields
Q

——Uk41 = Tk+1 — Yk,
Qk+1

which implies that
Vk+1 = Vk + (Th41 — Yk)-

;From above discussions, we can deduce that Algorithm 1 is a special case of (GPPA).

Lemma 3.3 Suppose that {\;}32,, {ok}i, and {8k}52, are generated by Algorithm 1.

(I) For k =1,2,...,
1

Bk = ———5—-
1+a2f=01 Ai

14



(1) If {

-z—:lf—él{T}i":l is bounded, then
j=0 "9

k
lim ka2 () Bidi-1) =0 3.1
. Lo ak(;ﬂ 1) (3.18)
and
lim fry1de = (3.19)
k—o0
Proof : (I) For ¢ > 0, since 1 1+a o and aipy =

(1 — o;)a;, we have
1+a¥i o)
—a = j
" l+a Ym0
These equations yield the desired conclusion (I)
(IT) Set

k= kai(zk: Biiz1)-
i=1
Then . N
o = ko'l ;HaZ’_LA [1+a2_o -
Since {:L, Y

——k—k—}k , is bounded, there is M; > 0, such that for all 7 > 1,

A

7 <M.
SizoN
Noting that for all ¢ > 0, A; > 0, we have

3vk 1
Ck S %Zi:l i‘
a k
: o
Conclusion (??) follows using === — 0
Since 1 k) 1 R
Ae = — k < — k
Pre1 i kl+a(Mho+ ..+ ) = akXo+ .o+ A1’
(??) follows the assumption

2
Lemma 3.4 Suppose that {zx}$, and {yx}?>, are generated by Algorithm I

Lemma 3.3 hold, X* is a nonempty compact set and

If the conditions of

) Ak = oo, (3.20)
then
lim ||zes1 = yell =0
k—o00
Proof : ;From Corollary 2.3, we have
1 a
(@) = $() + gl = e < Belf@o) = £(@) + Gl = ol (3.21)
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(From (??) and Corollary 2.2, we have that {z}$2, is a bounded sequence; since X* is nonempty,
f* > —oo, which implies that {f(zx)}32, is bounded from below. Set z = Tk in (?7), we have

2)\1_1 Iz = yr-1[1* < Brlf (o) — f(z) + gllzk —zo))?, (3.22)

which implies that {f(z)}2, is bounded from above. The boundedness of {zk}20 and {|f(z1)|}22,
with (??) yield the desired conclusion. 2

Theorem 3.3 Suppose that the conditions of Lemma 8.4 hold. Then {zx}32, is an asymptotically reqular
sequence. -

Proof : Since ) i
ok = woll> < (3 flvi = vica )2 < B Y lfos = v |,
=1 =1

we have

IN

k
llok v — cukwo|® kag iy [lvi = viea |2

k
kal% Yot i — yiz1]?

< 2 sup{f(zo) - f(z:) + &l|zi — 2o||%,5 = 0., k}ka2 X, Bidi_y.

Using (??), we have oy, = T—%—ﬁ%‘fﬁ = afk+1Ax — 0. This result and Lemma 3.3 yield that agllvg|| — 0.
Hence |lyx — zx|| = || — cwzk + axvi|| — 0. This conclusion, as well as the fact that |lZk+1 — zk|| <
lZk+1 — vkl + lyx — k|| and Lemma 3.4, yields Tky1 — T — 0. 2

iFrom Theorem 3.3, Remark 14.1.1 in [?] and the boundedness of {z}, we have the following
corollary.

Corollary 3.3 Suppose that the conditions of Lemma 3.4 hold. Then either the accumulation set of .
{zr}52, is singleton or it is a connected set.

Remark 3.3 From (??), we can deduce that the convergence rate obtained for Algorithm 1 is lower

“than the convergence rate obtained for (GPPA-(c)) ( c € (0,2]), so we may hope that for any ¢ € (0, 2],

(GPPA-(c))(with fi, = f) also has the properties that ||zx11 — yk/| — 0 and |lTk41 — 2kl — 0 if X* is a
nonempty compact set.

Remark 3.4 From (??) and (I) of Lemma 3.3, we obtained, for Algorithm 1, the same global
convergence rate estimate ((??)) as obtained for (1.2) by [?]. In [?], it was shown that the condition (??7)
is necessary and sufficient for the convergence of the classical proximal point algorithm (1.2), but we do
not know whether (??) is still a necessary condition for convergence of Algorithm 1.

4. A new bundle method

In this section, we give a new bundle method by combining (GPPA) with the original version of the
bundle method. In iteration k + 1, 4, is calculated by the formula

. 1
Tt1 = argmin{fri1 + ——|lz — y|* : € R"}
2k
where f41 is a bundle linearization function of f. More precisely, for k > 0,

frwr = max{fi(z), f(zk) + g} (z — zx)}, (4.1)

16



where
fo(z) = f(zo) + g5 (z — o) (4.2)

and gx € Of(zk).
The Bundle Method(BM)

Step 0 (Initialization). Select an initial point 2o € X. Let vo = 20,00 =a >0, fo(z) = f (z0)+9d (z—m0),
and k = 0. ’

Step 1. For zj, vk, ak, choose A, > 0 and ay € (0,1) such that

(677 )

Set
vk = (1 — ak)zk + 0KV

Step 2. Compute gy, € 0f(zx). Generate fr41 by the formula (?7). Compute
. 1
Ty = argmin{ fie+1(2) + mﬂz —yil|? : 2 € R},

Vkt1 = Vk + (Th+1 — Uk)

and
Ak+1 = (1 - ak)ak.

Step 3. Increase k by 1 and go to Step 1.

It is not hard to show that (BM) is a special case of (GPPA). ;From Corollary 2.1 and Lemma 2.4,
we have the following convergence result.

Theorem 4.1 Suppose that {zx}s>, is generated by (BM). Suppose that for all k > 0, we choose
o =1 —1*; where r € (0,1) is a constant. If -

(1) {f(zk) — fr(zk)}32, is bounded from above;

\ (2) there is an index K, such that {||gk||}rex is a bounded subsequence and

lim (z —1x) =0;
kEK‘kﬁoo( k+1 k) k

then {zx }kek s a minimizing sequence for f.

Proof: From the convexity of f and the construction of fi, we have for all k > 0, for all z € R",

fi(z) < f(z)

which implies that
fra1(zx) = max{fi(zx), f(zx)} = f(zk).

Hence

16| = | frs1(zk) = frlzi)| = fzk) = fr(zk)-

;From the assumption (1), {|62|}%, is bounded.
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(From the definitions of oy and Ax, we can deduce that (??) and (??) hold by using Lemma 2.4.
Using the construction of fi once again, we have

fer1(zhe1) > Flae) + g5 (The1 — %)

which combined with the assumptions in (2) yields that

limsup fi41(Tr41) > limsup f(zy).
k€K, k—o0 k€K ,k—oo

Hence, the conclusion follows Corollary 2.1. 2

Remark 4.1 It is worth noting that in the convergence result of (BM), we must assume that oy is
close enough to one and A is big enough. Furthermore, we assume some weak conditions (1) and (2).
These are disadvantages in this method, but the method has two differences from the original bundle
methods (see [?, ?, ?] for details): (i) It has no null steps. This means that it is not always necessary to
have inner iterations from the current point zj to the next point zx4;. (ii) The calculations of {zx}32,
are based on (??), not based on (1.8). Since the convergence rates obtained up to now for the origi-
nal proximal algorithm ({zx}$2, generated by (1.2)) are lower than the convergence rate obtained for
(GPPA) (see [?, ?] and Section 2 of this paper), we hope that (BM) has a higher convergence rate than
the original bundle methods.

Remark 4.2 It is possible to give another choice for fi. In fact, we can choose

folx) = f(y0) + 35 (= — o)
and
o1 = max{fi(z), f(ye) + 3¢ (& — i)}

where g, € O0f(yx). From Corollary 2.1 and Lemma 2.4, we can give the convergence result of this
method, which is very close to Theorem 4.1.

Acknowledgements. The authors are thankful to Claude Lemaréchal and two referees for their
helpful comments. Indeed, Condition (II) of Lemma 3.3 is suggested by one referee, while Corollary 3.3
is suggested by another referee.
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