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Abstract

In this paper, we consider the determination of optimal capacity levels and prices for
two substitutable products in a single-period problem. We first consider the case where
the firm is a price taker but can determine optimal capacity levels for both products.
We then consider the case where the firm can set the price for one product and the
optimal capacity level for the other. Next, we consider the case where capacity is fixed
for both products, but the firm can set prices. For each of these cases, we examine the
sensitivity of optimal prices and capacities to problem parameters. Finally, we consider
the case where each product is managed by a product manager trying to maximize
individual product profits rather than overall firm profits and analyze how optimal

price and capacity decisions are affected.

1 Introduction

Firms must continuously make pricing and capacity decisions to respond to market forces.
Facing uncertain demand, firms must balance pricing and production decisions to respond
to market demand. Many firms produce a variety of products, some of which may be
substitutable by consumers. The fact that products are substitutable makes pricing and

capacity decisions more difficult. This is due to the fact that the firm needs to consider



the effect that a change in the price of one product is going to have on the demand level
for another product. A good example is in electronics manufacturing where a firm might
produce a variety of chips. The price of a faster chip affects the demand for a slower chip
as well since if the prices for the two types of chips are sufficiently close, many customers
might opt for the faster chip, thereby significantly decreasing demand for the slower chip.

In this paper, we study single-period pricing and capacity setting decisions for a firm
that produces two substitutable products. Our aim is to build intuition on how pricing
and capacity decisions change as a function of costs, demand functions, and preexisting
capacity levels; we therefore focus on simple single-period models. This also enables us
to contrast our results with the famous news vendor problem which is a single period
problem where the capacity (production level) for only a single product is chosen. We
also focus on the issue of centralized versus decentralized decision making and how this
affects the nature of the decisions made. Many firms assign a product manager to each
product that the firm produces, and the role of the product manager is to maximize the
profits made by the product assigned to the manager. If all products are produced on
separate production lines, and the products are unsubstitutable, the decisions made by each
product manager trying to maximize product profits will correspond to decisions made by
a centralized controller maximizing system-wide profits. The more interesting case is when
products are substitutable; in that case, we analyze when the system-optimal decisions are
the same as the individual product-optimal decisions.

The classic problem where price is known and capacity is uncertain is the news vendor
problem. Following this classic problem, many extensions have been made. For example,
Ismail and Louderback [8], Lau [11] and Kabak and Schiff [9] have studied a one product
news vendor problem where the probability of achieving a pre-determined profit level is
maximized. Ismail and Louderback(l], and Sankarasubramanian and Kumaraswamy [14]
and Lau and Lau [12] have studied a single product news vendor problem where the demand
level is dependent on the price set. Therefore, both optimal price and optimal order quantity

are determined. Li et al. [13] focus on a two-product news vendor problem where the



probability of achieving a profit target is maximized.

There have been a variety of attempts to introduce the effects of capacity constraints
on the price and production decisions in the news vendor problem. Kreps and Scheinkman
[10] examine a problem where two identical firms compete with products that are perfect
substitutes. The demand for each product is a function of its own price. The two firms
enter into a two-stage competition where they set capacities in the first stage and make
pricing decisions independently in the second stage. Staiger and Wolak [15] focus on two
firms who produce the same product and have the same capacity costs. They analyze an
infinitely repeated game where prices are adjusted periodically, and examine the effects of
having excess capacity.

Examples of research involving substitutable products includes Ignall and Veinott [7]
who examine the optimality of myopic policies with several products. Bassok et al. 1],
Bitran and Dasu [2], Hsu and Bassok [6], and Gerchak et al. [5] study ordering policies
with substitutable products while Carmon and Nahmias [4] examine lot-sizing decisions in
semiconductor manufacturing where the products are substitutable. In this line of research,
it is assumed that the manufacturer is a price taker for all of its products.

We study the case of a firm producing two products with price dependent demands
where the firm has the ability to make pricing and/or capacity decisions for one or both of
its products. We begin in section two by discussing the case where a firm is a price-taker
for both of its products but has control over the amount of capacity to install for each
product. In section three, we analyze the situation of a firm which needs to decide on
the amount of capacity to install for one of its products and the price to set for the other
product. This is a situation facing firms who introduce a new and improved product which
has the potential to cannibalize sales from its existing product and where the firm only
has a limited amount of capacity online for this new product. An example of this would
be a microchip manufacturer launching the next generation of microchips after its existing
product has been cloned. In section four, we examine the case where both products have

a given capacity constraint and the firm sets prices for both products. This situation is



commonplace for firms who have no ability to increase capacity in the near term but can
only control sales and profits by adjusting their prices.

We end in section five with a discussion on how the decisions made in the previous
sections differ when decisions regarding price and/or capacity are made sequentially instead
of simultaneously. These situations can arise when a firm has different brand managers
making decisions to maximize each product’s profit independently rather than maximizing
system wide profits.

We use the following notation throughout the paper:

P,: price of product A;

Py: price of product B;

Cq: production capacity for product A;

Cp: production capacity for product B;

gq: per unit variable cost of product A;

Qp: per unit variable cost of product B;

ig : cost of adding one unit of dedicated capacity for product A;

ip : cost of adding one unit of dedicated capacity for product B;

ug(Pg, Pp): mean demand for product A;

up(Pg, Py): mean demand for product B.

For analytical simplicity, we assume throughout the paper that:

(A1) the demands for product A and B are distributed uniformly over the intervals [uq(Py, Py)—
7, uq(Pa, Py) +7] and [up(Pg, Py) — s, up(Pa, Py) + ] where r and s are the ranges of realizable

demands above/below their respective means.
We assume further that:

(A2) the unit investment costs plus variable production costs do not exceed the product

price; ig + qo < P, and ip + qp < Py with 14, qqg, i, g5 > 0;



(A3) the mean demand of product A, ug(Pg, Pp), is decreasing in P, and increasing in P

and the mean demand of product B is increasing in P, and decreasing in P,

Note that (A3) immediately follows from the fact that the products are substitutable.

2  Capacity Decisions for a Price Taking Firm

We begin our discussion with a firm that manufactures two products and must decide on
the amount of capacity to install to manufacture each product. In this situation the firm is
a price-taker in both of the markets in which it competes. For this situation, Lau and Lau
[7] provide a solution procedure for determining the optimal capacities to achieve a given
probability of obtaining a profit target. In our model, we maximize the expected profit and
derive the sensitivity of the optimal capacities to changes in key parameters.

The firm’s profit function is defined as:

Ca
R(CaiCy) = (Pa—ga)- / Za- fa(Pas Pby 7a)dsa @.1)
ua(Pa,Pp)—1
Ua(Pa,Pp)+r

+(Pa - Qa) +Cq - / fa(Paa Py, xa)dxa
Ca
Cy

+(Pp— ap) - / - fb(Pa, Py, Tp)dxp
ub(Pa)Pb)_s
ua(Pa,Pb)+3

+(Py—qp) - Cp- / f5(Pa, Py, Tp)dzp
Cy
—ig " Ca - ib : be
where
fa(Pa, Py, xg) = §1; and z, is the demand for product A and

fo(Pa, Py, xp) = 515 and zp is the demand for product B.

We first show that a unique set of capacities exists that maximizes (2.1).



Proposition 1 If P, > qa > 0 and Py > g, > 0, then there ezists a unique mazimum of
(2.1) over Cqo > 0 and Cyp > 0. The optimal capacities are:

Ca = (ug(Pa, Py) +7) — U—g‘;—i_%jand

Cy = (up(Pa, Py) +5) = (pss.

Proof: To ensure that a unique maximum exists for positive values of C, and C, a solution
must exist to the first order conditions and all second order conditions must be satisfied.

The first order conditions are:

6R§Ca’cb2 — i Ca'(Pa—4a) (ua(Pa,Po)+7r)-(Pa=ga) _ 0
="l 2r + 2r -

Ca

OR(CaCy) _ _,;. _ Co(Po—g) + (up(Pa,Py)+3)-(Po—qp) __ 0
ac, ~ 28 23 =Y

Rearranging the terms above, we obtain:

2:-4g°T la
Co = (ug(Pa, Py) +7) — —(Pa " >2r(1- —-——-—-—-—(Pa — qa)) and (2.2)
. B 2:-4p-s (1 — b
Cy= (ub(Pa, Pb) + S) —(Pb — Qb) >2 (1 —(Pb — Qb) ), (2.3)

which are positive by assumption (A2) that some profit can be earned on each product.

The sufficient conditions for the existence of a maximum are:

62R(Ca, Cb) (Pa - Qa)
5C2 = <0 (2.4)

and

> 0, (2.5)

2
32R(Ca, Cb) ) 32R(C'a, Cy) _ <82R(Cm Cb)) _ (Pa - Qa)(Pb - Qb)
B 4rs

oC? aC} dcadCh

which both hold by assumption (A2), completing the proof. O
We now turn our attention to how the optimal capacity decisions vary with changes in

the key parameters of the model.



Proposition 2 The changes in the optimal capacity miz to changes in the parameters are:

(a) if P, increases, then C, decreases, if 8““(%1’1)" > Pi'iq" , and C} increases;
a
(b) if Py increases, then C, increases and C} decreases ifi a“"g;éj,’P") (Pi.ibt;:)? ’

(¢) if qo increases, then C, decreases and Cy, does not change;
(d) if gy increases, then C, does not change and Cj decreases;
(e) if i increases, then C, decreases and Cp does not change;
(f) if 1 increases, then C, does not change and Cp decreases;

(9) if r increases, then C, increases, if (P“;q“ —2ia -, 0, and Cp does not change;

a—Ga

Py—qp)—2ip

(h) if s increases, then C, does not change and Cj increases if y——

Proof: We show below the methodology for (a). The proofs of the other cases are similar.
From Equation 2.2, we know that:
Co = (ug(Pa, Pp) + 1) — ZPl:fqu)
Taking the derivative with respect to P,, we obtain
0C, _ Oua(Pa,Pp) 2-ig-
Wg_ P : +iPa1_q:;'
Since a—u%ﬁ’ik < 0 by assumption(A3), we therefore conclude that C, will decrease if

Ouq (Pa )Pb)
oP,

> (p2 'iaér)z when P, increases.
a a

Similarly, from Equation 2.3, we know that

Co = (up(Pa, Pp) + ) — Z%% and thus g%: = W > 0 by assumption (A3).
Therefore, we conclude that Cj will always increase as P, increases. O

Parts (a) and (b) of Proposition 2 point to an interesting phenomenon; namely that
an expectation of a price increase in a product which will result in a decrease in the mean
demand for that product does not necessarily result in the firm decreasing the available
capacity for that product. Essentially, the condition in part (a) shows that if the mean
decrease in demand is not fast enough and the cost of capacity is not too expensive, it may
in some cases be more profitable to increase capacity for that product. This is because even
though on average there is less demand for that product, the unit profit may be higher

and therefore more capacity might be profitable. The following example shows the possible



behaviors for C, mentioned above.
Example 1: Case (i): C, and C, both increase with an increase in P,.

In this case, let q; = 3, qp = 2, C= 2000, c; = 60, c2 = 50, r= 400, D= 3000, d; = 100,
do = 19, s= 250, iy = 1, iy = 1, P, = 6, and P, = 10. Here, the optimal solution is
Co = 2273.33, Cy = 2301.5, and R(P,, Py) = 18592.58. If we increase P, from 6 to 7,
we observe that C, increases to 2280, C} increases to 2320.5, and R(P,,C}) increases to

20652.25.

Case (ii): C, decreases and Cj increases with an increase in P, . For this example,
suppose qq = 3, qp = 2, C= 2000, c¢; = 60, cg = 50, r= 400, D= 3000, d; = 100, dy = 19,
s= 250, ip = 1, ip = 1, P, = 10, and P, = 10. In this case, the optimal solution is
C, = 2185.71, Cp = 2377.5 and R(P,, Py) = 26168.39.

By increasing P, to 11, we find that the optimal C, decreases to 2140, the optimal C}
increases to 2396.5 and R(P,, Py) increases to 27774.25. O.

Similarly, parts (g) and (h) of Proposition 2 show that an increase in the variability
of demand for a product may result in an increase or a decrease of the capacity for that
product. However, changes in variable production or capacity costs always have monotonic

consequences on optimal capacity levels.

3 Setting the Price of A and the Capacity Level of B

In this section we suppose that a firm currently has fixed (limited) capacity for a new
product it is introducing but must decide how much capacity to maintain for its existing
product. For example, in electronics manufacturing, when a firm first introduces a new
product, the capacity is extremely limited due to low yields for the new product and the
necessary time for the factory to ramp up for production (e.g., building a new faster chip).
On the other hand, the older product that the firm produces may already be a stable
product in a market with active competition. For the older product, the firm might have

the option to change its capacity; however, it is a price taker for it. Therefore, the firm



faces the joint problem of setting a capacity level for one product and a price level for the
other.

In this situation, the firm’s profit function is defined as:

Ca
R(Pa,C)) = (Pa-qa)- / Za - fa(Pay Py, 7a)dza (3.6)
ua(Pa,Py)—1
Ua(Pa,Pp)+r

+(Pa - Qa) +Cq - / fa(Paa Py, xa)dxa

Ca
Cy

+(Py— qp) - / zp - fo(Pa, Pp, xp)dz)
ub(Pa)Pb)—s
Ua(Pa,Pp)+s
+(Ps— gqp) - Cp - / f3(Pa, Py, xp)dxy — ip - Cp.
Co

In this section and the next, we assume linear mean demand functions. In particular,

we assume that:

(A4) the mean demand of product A, ug(Pqa, Py) = C — ¢1P; + coPp > 0 and up(Py, Pp) =

D — d1P, +daPy > 0.

The use of such linear functions to model product demands is widespread in the eco-

nomics literature (see Bulow [3] and Stokey [16]). We also assume that:

(AB) c;1>c0>0,dy>dy>0,¢1>do>0,and dy > cg > 0.
Note that these assumptions are reasonable for the following reasons:

e the assumption that ¢; > ¢2 and d; > d2 means that the demand function for product
A is more sensitive to changes in the price of product A than changes in the price of

product B (and similarly for the demand function for product B), and

o the assumption that ¢; > dg (and d; > co) ensures that an increase in the price of

a product cannot increase overall demand, since for example increasing the price of



product A would decrease the mean demand for A more than it would increase the
mean demand for B (i.e., one cannot create extra demand by increasing the prices of

both products).

Finally,

(A6) for products whose capacity cannot change, we assume that their capacity is above

the minimum realizable demand.

Proposition 3 If uy(Pq, Py) and uy(Pq, Py) are both linear in P, and Py and the capacity
Co for product a exceeds the lower bound on demand, uqs(P,, Py) — r, then the function

R(Pq,Cb) achieves a unique mazimum over Py > qo > 0 and Py > g > 0.

Proof:
It is sufficient as in Proposition 1 to show existence of a solution to the first order
conditions and to show that the Hessian, H, of R(P,, Cs) is negative definite over P, >

ga > 0 and Py > ¢ > 0. The first order conditions are:

OR(Pa,Cb)  [CZ— (ua(PayPb) = 7)Y  Ca-[ua(Pa, Ps) + 1 — Cy
- + (3.7)
0P, 2r 2r
+(Pa - Qa) : [Ca - (ua(Paa Pb) - "')] ) 3ua(Pa7Pb)
2r opP,
_(Po—qv) - [Cb — (ub(Pa, Py) — 2)]  Oup(Pa, Ps)
2z 0P,
= 0,and
OR(Pa, Cb) _ iy elPa Py ks = Co)- (Po—a) _ (3.8)
aCy 2s

Solving the above equations, we can obtain the optimal values for P, and C;. For the

second order conditions, the terms of H are:

2 _ -
Hyp = 8 Ré()};},c,,) _ (Ca—(ua(Pa,Ps)-7)] = Bua(Pa,Ps)

T aPa

10



_ 2
~ sl [(2BB)’ (0, (ua(Py,Py) - ) - L) ]

a

_ 2 .
—(szs%) [(au,,g;:al)) — (Ch— (up(Pa, Py) — 5)) - Z2e(Basl) ’},(,’3“””’ ]

a2R PayC Py— Ou (Pa)P
H91 = Hip = _EP(EBZZQ ={ bzsqb) A :

_ PR(P.Cy) _ _(P-a)

Hoo aC? TR

The sufficient conditions for concavity are:

Hi1<0,Ho <0, (3.9)

and

Hy Hoy — HE > 0. (3.10)

For Hjij, notice that %%EQ < 0 by assumption (A3) and the capacity of A is greater
than the minimum realizable demand by (A6). The first term is, therefore, negative. The
second derivative elements in the next two terms of Hj; vanish so that the two terms both

become negative and yield Hq; < 0. For Hgg, negativity follows by assumption (A2).

Inequality (3.10) follows by first noting that the ((P”Q_s %) au”g;;:’})b) )? terms from Hqj Hoo

and H3, cancel. The remaining terms are

[Ca - (“a(Paan) - 7')] . aua(Pa» Pb)) _ (Pa - ‘Ia) <3ua(Pa,Pb)>2) (_ (Pb - ‘Ib))
r oP, 2r 0P, 2s ’

HuHoo—Hiy = <(
which is the product of two negatives by our previous arguments in the proof of (3.9). The
result follows. O

Once again, we are interested in how the optimal decisions change as a function of the

optimal parameters.

Proposition 4 Assuming the conditions in Proposition 3,
(a) if qq increases, then P, increases and Cy increases;
(b) if g increases, then P, decreases and Cy decreases;

(¢) if ip increases, then P, decreases and Cy decreases;

11



(d) if C increases, then P, increases and Cy increases;
(e) if c; increases, then P, decreases and Cy decreases;
(f) if co increases, then P, increases and Cy increases;
(9) if D increases, then P, does not change and Cp increases;
(h) if dy increases, then P, does not change and Cy decreases;
(1) if do increases, then P, increases and Cj increases;

(i) if Cq increases, P, and Cy decrease.

Proof:

The goal here is to identify the effect of changes in one parameter on the optimal solution
of the first order conditions in (3.7) and (3.8). To reflect changes in parameters other than
the decision variables, we add extra terms to the definition of R so that R(P,,C}) is also
written as R(P,, Cp, go) when we explicitly consider changes in gq.

In this case, the first order conditions in (3.7) and (3.8) are
va,PaR(Pa, Cba Qa) = 0)

where V¢, p, refers to the partial derivatives with respect to C, and P, alone. We suppose

the solution to (3.7) and (3.8) is (C;, P;) when ¢, = g;.
2
zy/z

32
52}52

82
gygz

We next consider changes from g to g, = g} + 8¢, The solutions of (3.7) and (3.8) are

In the following, we use the notation V for the partial differential operator given by

then P, = P} + ép, and Cp = C} + 6c,. We wish to find the sign of ép, and é¢, given

bq > 0.

First, using the first order properties, implicit function theorem, and that V¢, p, R(P;, Cy, ¢3)

0, we must have
0 = VCb,PaR(Pa, va (Ia)
= va,Pa/PaR(P;’ Cl:’ q;,)éPa + va,Pa/CbR(Pt;v Cl; q;)écb + va,Pa/qaR(Pc:v CI:’ q;)é%
+epbp, +€c,00, + €4,00a,

12



where €p,, €c,, and ¢, all approach zero as é;, approaches zero. For small changes éq,, we

therefore seek §p, and éc, to solve
va,Pa/PaR(Ptrv Cl:: q;)épa + va,Pa/CbR(Pt;’ Cl:’ q;)écb = _va,Pa/qu(Pf:’ CI:’ q;)‘sqa'

To simplify the notation, let:

an = [V%b,PaR(Pav Cb’ ‘Ia)]
8’R(Ps,Cy)  8R(Ps,Cy)
oP? 3P,0C,

62 R(P a 1Cb)
ac?

BZR(PG,C,,!
aOlp
It is straightforward to show that the determinant of the matrix Hg, has the same sign
as the Hessian of R(P,, Cp) in the proof of Proposition 3 since the only addition has been

6 to the P, terms of that matrix.

Thus, we have

I & R(Pﬂ)cb) 8? R(Pa,Cb)
Qa a0Ga a
det 0P,0q, 8P,dC,
_6 82R(Pﬂxcb) 32R(decb)
5 9a  9Cp0qa BCZ
P ™ det Hy, > 0
[ 8 [Ca—(ua(Pa,Ps)-7)] . 8uaé()Pabe) (Po—gp) . Oup(Pa,Ps)
det o 2r P, 2s P, >0
0 _(Po—g»)
i L 23
B det Hg, > 0

Since Q"—“g;ﬁ&l < 0, the numerator above will always be positive. Therefore, as q,

increases, P, increases.

The change in Cy is

de

¢ OP.
32R!Pa,Cb! -6
Pa b

’R(P.,Cb) _ e aQRgPa,c,,)
a a a9%qa
2
w B

6
Ce det Hg, > 0

13



[Ca—(ua(PavPb)"')l . Sua(Pa,Py)
r 0

a

(Pa—qa) (Bua(Pa,Pb))2 5 [[Ca—(ua(Pa,Pb)—r)] ) 6ua(Pa,Pb)]
T or oF, Ga or n
det 0
_(Po—gqp) (aub(Pabe))
B oP,
(Po—g) . Oub(Pa,Pp) 0
— L 3 0P, ]
- det Hg, > 0
Since a&é};:’—m < 0 and % I;,‘:’P” > 0, the numerator above is again positive by as-

sumption (A3). Therefore, as qq increases, Cy increases .

Repeating the procedure above, we arrive at the other conclusions for (b) through (i) in
Proposition 4.
(i) In the case where we increase Cq, we have four potential cases: (i) P, and Cp increase, (ii)
P, increases and Cj decreases, (iii) P, decreases and Cy increases, (iv) P, and Cp decrease.

Cases (i) and (ii) are not possible, since given the added capacity, one would never
increase price. If P, increases, then demand will decrease for product A and increase for
product B. If this strategy improved profits in case (i), it would have been done at the lower
level of capacity for product A. In case (ii) if the price of A increased, we would not decrease
the capacity of product B since it would be in greater demand. We may also discard (iii) as
a plausible outcome given that when P, decreases demand for product B will also decrease.
Hence, we would not want to increase the capacity of product B. If this strategy would
improve the overall profits, it would have been implemented under the initial capacity level

of A. Therefore, we are left with the conclusion that as C, increases, P, and C; decrease.

O

Example 2: When P, is changed, we may observe different behaviors in the decision
variables. We now provide examples of the three possible behaviors that can occur when
we increase Py,

Case (i): P, and Cy increase

In this case let Cq = 500, qq = 2, qp = 2, C= 2000, c¢; = 100, c2 = 99, r= 420, D= 3000,

d; = 100, dg = 10, s= 1000, i, = 1 and P, = 5. Here, the optimal solution is P, = 18.24 ,

14



Cp = 3015.8 and R(P,, Py) = 12218.8.

If we increase P} from 5 to 6, we observe that P, increases to 19.16 ,C, increases to
3091.628 and R(P,, C}) increases to 15006.61.

Case (ii): P, increases and C, decreases

For this example suppose C, = 500, q, = 2, qp = 2, C= 2000, ¢; = 350, co = 18, r= 420,
D= 3000, d; = 100, d2 = 99, s= 1000, i, = 1 and P, = 15. We obtain an optimal solution
of P, =5.29 , Cp = 2869.44 and R(P,, Cp) = 24510.26.

By increasing Pj to 16, we find that the optimal P, increases to 5.34, the optimal C;
decreases to 2785.52 and R(P,, C}p) increases to 25312.3.

Case (iii): P, decreases and Cj increases

In this example let: C, = 500, q, = 2, qp = 2, C= 2000, c; = 350, co = 99, 1= 420,
D= 3000, d; = 100, d2 = 5, s= 1000, iy = 1 and Py = 3. The optimal solution is P, = 5.36,
Cp = 1726.814 and R(P,, Cp) = 1181.003

By increasing Py to 3.3, we see that P, decreases to 5, Cj increases to 2156.558 and

R(Pg, Cp) increases to 1867.28. O.

In Proposition 4, we discover that, when a firm has control over the price of one of
its products and the capacity level of the other, changes in the production costs of either
product have an impact on both decision variables. If the production cost of the product
which we have price control over increases, then we should raise the price on this product and
also increase the capacity of the other product. On the other hand, if the production cost
increases on the product whose price we cannot control, it is best to decrease its capacity
and to increase the price of the other product. We find that if the capacity investment
costs for product B increase, we should increase our price on product A and reduce the
capacity for product B. We also discover that we will increase the price of product A and
the capacity of product B if the mean demand for product A increases by a constant (i.e.,
the mean demand shifts upwards). However, if the mean demand for product B changes in

the same fashion, we will keep the price of product A the same and increase the capacity

15



for product B. In the case where the price elasticity for product A(c;) increases, we will
decrease both the price of product A and the capacity level for product B. When the price
elasticity for product B increases however, we will not change the price of product A but we
will decrease the capacity for product B. If the cross price elasticities increase, we should
increase both the price of product A and the capacity for product B. When the capacity
for product A is increased, then the price of product A and the capacity for product B will
decrease. We also observe that when the price of the product in the market in which a
firm is a price taker increases, the firm’s optimal strategy will differ depending on the price

elasticities of the firm’s products.

4 Pricing Decisions: Two Products with Capacity Constraints

We now examine the case where both products being manufactured have a given capacity
constraint and the firm must set prices for both of its products. The situation modeled here
reflects the situation where the high investment costs for new capacity make it unprofitable
to build new capacity (e.g., because it is forecast that the products are at the end of
their lifecycles and therefore it is not possible to recoup the costs of new investment) and
therefore the firm can only exercise pricing control. We will again assume that the demand
for products A and B are distributed uniformly and that the mean demands are linear in

prices. The profit function is now defined as:

Ca
R(Pa»Pb) = (Pa - Qa) : / Zq - fa(Pm Py, xa)di'a (4-11)
’ua(Pa,Pb)——’l‘
ua(Pa,Py)+r
+(Pa - Qa) +Cq- / fa(Pa, Py, za)dl'a

Ca
Cp

+(Py— gp) - / zy - fb(Pa, P, Tp)dzp
ub(Pme)_s
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ua(Pa,Pb)+8
+(Py—gqp) - Cp- / fb(Pa, Py, zp)dxp
Cy

Proposition 5 Under assumptions (A1) through (A6), the function R(P,, P) is concave

in P, and Py.

Proof: The first order conditions for optimality are:

2 - Ug\LFa, —r)? a - (Ua\La, = Ca
oFur) _ (CholFaR) =] CorbulbaR) 1=l
+ (Pa = ga) - [Ca = (ua(Pa, Py) — 7)] . dua(Pa, Pp)
2r 0P,
_(Po—qp) - [Ch — (up(Pa, Pb) — 5)]  Oup(Pa, Po)
2s 0P,
=0
BQR(PG, Py) _ [02 — (up(Pg, P) — 3)2] Ch - [up(Pa, Pp) + s — Cy)
0Py B : 2s + 2s (4.13)
L (Po=a) [Cb= (un(Pa, Py) = s)]  Bus(Pa, Py)
2s OPy
B (Pa — qa) - [Ca — (ug(Pa, Py) — 7)] . 0ug(Pg, Pp)
2r 0Py
=0

The terms of the Hessian of the profit function are:

Hi = 62R(Paypb) _ [Ca_(ua(Pa)Pb)_"')] . Ouq(Pa,Ps)
11 = oP2 = T 0P,

. du, » 2 52 a(Pa,
“(P2rq ) [( {(31; Pb)) = (Ca — (ua(Pa, Pp) = 1)) - ﬂfﬂ_’zﬁz]

a

- 2 2
~(z0) | (2N (G, (u(Pa P - o) - L)

_ _ 0°R(Pa,Py) _ [Ca—(ua(Pa,Py)-7)] Oua(Pa,P, [Cy—(up(Pa,Py)—8)]  Ouy(Pa,Py)
Hoy = Hyg = BP.,anb _ L b . §-)Pb b)+ b b23 b ) bapa b
Pa—qa) | Bua(Pa,Ps) Oua(Pa,P, 8%*uq(Pa, P,
_( qu ) [ épa b) Bu ((9pb ) _ (Ca - (ua(Pa,Pb) - 7')) : Eupf,ypb b)]
Py—qp) [8up(Pa,Py) &up(Pa,P, 8%y (P, P,
_( bQS‘Ib) - ubf?P,, b) bngb b) _ (Cp — (up(Pa, Pp) = s)) - HUFJ(GEP,, b)]
H — aQR(Pme) _— [Cb_(ub(Pd)Pb)_s)] . 6ub(})avljb)
2= opT ] oP,
Po—qy) | [ 8us(Pa,Py) )2 82uy(Pa,P,
~ (B | (BB (0~ (up(Pay P) — 5)) - L)
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b

Pa— a B'ua ay 2 i 5T
_ 2rq : [( g;bﬂ)> —(Co— (ua(Pa, Pp) = 7)) - 2 ualf’ 2.

The sufficient conditions for concavity are:

Hqy1<0,Hyp <0, (4.14)
and

Hy1Hyp — H122 > 0. (4.15)
For Hi; and Hago, notice that %‘:P”) < 0 and 8“”(1;52’})” < 0 by assumption (A3) and

Co and C) are greater than their respective minimum realizable demands by assumption
(A6). The first terms of Hy; and Hoo are, therefore, negative. The second derivative
elements in Hq; and Hog vanish so that the last two terms of both become negative and
thus yield H1; < 0 and Hyg < 0.

When we calculate the determinant of the Hessian and simplify, we obtain the following

expression
(Ca—(ua(Pa,Ps)—7)(Co—(ub(Pa,Ps)—s)(c1d1—cad2) + (Ca—(ua(Pa,Ps)—7)(Py—qv)(c1d2—cad1dy)
2rs 2rs
+ (Cb_('“b(Pa:Pb)—s)(Pa’qa)(Cidl —cicodz) + (Pa_qa)(Pb—‘Ib)(c%dg"clmdldﬂ
2rs 2rs

4 P ~a)(Py—gs)c3 3

4rs >0

We know from assumption (A5) that c; > ¢z , di > d2 and from assumption (A6)
the capacities for each product will be greater than or equal to the lower bounds on their
respective demands. In addition, as mentioned in Section 1, we assume that the price of
each product is greater than the sum of the variable production costs and investment costs
(A2). Consequently, all of the terms in the expression above will also be positive and thus

the determinant of the Hessian is positive. O

Proposition 6 Under the assumptions of Proposition 5,
(a) if C increases, then P, increases, Py increases;

(b) if ¢1 increases,then P, decreases, Py decreases;
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(c) if co increases, then P, increases, Py increases.

Given the symmetry of the problem, the parameters D, di and dy will exhibit the same

behavior as their counterparts above.

Proof: (a) Following the same methodology as in Section 3, we will now show the case
where the demand parameter C is increased from C to C + 6. The proofs of the other
parameters are done similarly.

We again have two linear demand curves: ug(Pq, Py) = C —¢1Pg+c2Pp and up(Pg, Py) =
D — d1Pp+ doP,.

We define He as:

0°R(Pa,Ps) 9R(Pa,P)
¢= 621::};:,?6 azn(;f;b)
Tpa?_zp,, 9P

It is straightforward to show that the determinant of the matrix Hc has the same sign

as the Hessian of R(P,, Py) in the proof of Proposition 5 so that det Ho > 0. We now

examine the changes in the variables to an increase in the parameter C. The change in the

price of product A when C increases is:

( 9 (Ca—(ua(ga,sz—r))Cg + (Cb_(ub(PQabe)"s))d2
9 R(Po,Ps) T s
det ~om b (Pa=ga)c1ca | (Po—gp)dr1dy
+ 2r + 2s
5 82R(Pa,P,) _ (Co—(up(Pa,Py)=3))d1 _ (Pa—Ga)c} _ (Po—gb)d?
5 _ L oP,0C s 2r 2s
Fe detHe > 0
[ (Ca=(ua(Pa,Po)=1))cz | (Co—(us(Pa,Ps)=5))ds
_8(Ca—(ua(Pa,Py)-7)) _ 6(Pa—ga)c1 2r 2s
2r 2r
P,—qa)cic (Py—qp)d1d
det _+_( 2r)12+ b2l;12
ca(Pa—ga) _ (Cy—(up(Pa,Po)—3))d1 _ (Pa—ga)c3  (Po—gs)d?
. L 2r s 2r 2s
B det Ho > 0

As discussed above, the denominator will always be positive. When we calculate the

determinant in the numerator and simplify, we obtain

8(Pa—qa)(Py—ay)(c1d2 —cod1d3)
4rs

8(Cp—(up(Pa,Ps)—3)(Pa—ga)(c1d2—c2dy)
2rs

+
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(Ca‘(ua(Pabe)"r)(Pb_Qb)dj

> 0.

+ 6(00,_(ua(Pabe)_r)(Cb_(ub(Pa)Pb)'—s)dl +

4rs 4rs

From assumption (A5) we know that ¢; > ¢2 , d; > dg. From from assumption (A6), we

know that the capacities for each product will be greater than or equal to the lower bounds

on their respective demands. We also know from assumption (A2) that the price of each

product must exceed the combined variable production costs and the per unit investment

cost for capacity. Consequently, all of the terms in the expression above are positive.

Therefore, we conclude that if C increases, the price of product A will increase.

det

The change in the price of product B when C increases is:

_ 662R(Pa,Pb)

[ (Ca—(ua(PasPy)-r))er  (Pa=0a)®  (Py—gy)d2
2r

23
(Ca—(ua(Pa,Po)—1))c2 + (Co—(up(Pa,Pp)—3))d2

2r 2s

T

(Pa=ga)erca | (Po—gp)d1d:
+ 2r + 23

0P, 0C

_ s R(Pu,P)

9P,0C

det

det Ho > 0

[ (Ca—(ua(PasPy)=s))cr  (Pa=0a)3  (Po—gs)d3

r 2r 2s

(Ca=(ua(Pa,Py)-1))ca + (Co—(up(Pa,Pp)—5))do
2r 2s

(Pa=ga)cica | (Po—gp)didn
+ 2r + 2s

_ﬂca-‘(’ua(Pa,Pb)—”')) _ 8(Pa—ga)c1
2r 2r

6c2(Pa—qa
2r

det Ho > 0

For the numerator in this case we obtain the following expression:

_ 6(Pa—ga)(Po—gs)(c1d1d2—cd3) n 8(Ca—(ua(Pa,Py)—7))%cy + 6(Pa—4a)(Cp—(ut(Pa,Ps)—5))c1d2

4rs 4r?

2rs

n 8(Ca—(ua(Pa,Py)—7))(Cp—(up(Pa,Ps)—3))

4rs 4rs

dy n 8(Py—q5)(Ca—(ua(Pa,Ps)—7))c1d2

> 0.

Since ¢1 > ¢z, d1 > d2 by assumption (A5) and the prices of each product are greater

than the variable production costs as discussed in the proof of 6p, above, the first term of

the expression will always be positive. All of the other terms will also be positive since the

capacities of both products will be greater than or equal to their respective lower bounds

by assumption (A6). Therefore, we conclude that if C increases, the price of product B will

also increase. O

Example 3: If C, increases, then any of the following cases are possible:
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Case (i): P, and P}, decrease

In this example let: C, = 1000, Cp = 1000, q4 = 2, qp = 2, C= 2000, ¢; = 50, cy = 35,
r= 400, D= 3000, d; = 50, d2 = 35 and s= 500. In this case the optimal solution is
P, =98.03 , P, =109.28 and R(P,, Py) = 174435.5.

If we increase C, from 1000 to 1001, we observe that with the set of parameters above,
P, decreases to 98 ,P}, decreases to 109.27 and R(P,, P;) increases to 174474.30.
Case (ii): P, and Py increase

In this case suppose: C, = 1000, Cp = 1000, q, = 2, qp = 2, C= 2000, c; = 1000,
cg = 18, r= 400, D= 3000, d; = 21, d3 = 19 and s= 1000. In this case the optimal solution
is Py =2.24 , P, =90.91and R(P,, Py) = 72452.92.

In this case, increasing C, to 1001, we find that the optimal P, increases to 3.14, the

optimal Py increases to 92.22 and R(P,, Pp) increases to 73461.97.

Case (iii): P, decreases and P} increases

For this example let: C, = 1000, Cp = 1000, q, = 2, qp = 2, C= 2000, ¢; = 60, co = 50,
r= 400, D= 3000, d; = 1000, d9 = 19 and s= 250. In this case the optimal solution is
P, =21.71 |, P, = 2.86 and R(P,, Py) = 16293.95.

By increasing C, to 1001, we see that P, decreases to 21.70, P; increases to 2.860694

and R(P,, Pp) increases to 16299.87.

Note that the case where P, increases and P}, decreases is not possible because this
strategy would adversely affect the number of product A being sold and thus would not
help the firm take advantage of the additional capacity. In fact, if the firm were able to
improve its profits using this strategy, it would have done so before adding more capacity.
Since our problem is symmetric in A and B, we see that Cy can also exhibit the same
behavior. O
Example 4: When the production costs of the products change, we have more than one
potential outcome. We show below examples how changes in q, affect our optimal pricing

strategy. Given the symmetry of the problem, the same outcomes can occur for qp.
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As the product cost of product A (q,) increases, we have the following possible cases:

Case (i): P, and P, increase

In this example let: C, = 1000, Cp = 1000, q = 2, q5 = 2, C= 2000, c; = 50, co = 35,
r= 400, D= 3000, d; = 50, d2 = 35 and s= 500. In this case the optimal solution is
P, =98.03 , P, =109.28 and R(P,, Py) = 174435.5.

If we increase q, from 2 to 3, we observe that P, increases to 98.15, P, increases to
109.35 and R(P,, Py) decreases to 173578.5.

Case (ii): P, increases and P}, decreases

For this example let: C, = 1000, Cp = 500, q¢ = 2, q = 1, C= 2000, c; = 50, cp = 49,
r= 400, D= 1000, d; = 51, d2 = 49 and s= 250. In this case the optimal solution is
Pg = 588.41 , P, = 576.96 and R(P,, Py) = 696029.8.

In this case, increasing q, to 3, we find that the optimal P, increases to 588.42, the
optimal P}, decreases to 576.95 and R(P,, Py) decreases to 695218.8.

It is clear that the case where both prices decrease is not possible since it would only
adversely affect the profitability of both products. The case where P, decreases and P
increases is also not possible since this strategy would have been pursued before the increase
in production costs if it were possible to increase the profit function’s value. O

From proposition 6, we discover that changes in the price elasticities of the products
have different effects on the optimal pricing strategy. When a product’s demand becomes
more sensitive to changes in its price, the optimal strategy is to decrease the price of both
products. On the other hand, if the cross price elasticity increases, the optimal prices of
both products increases. When production costs change, the optimal pricing scheme will
be different depending on the parameters of the mean demand functions and the available
capacities. We observe that when production costs increase a firm will either increase the
price of the product whose cost has increased and decrease the price of the other or increase
both products’ prices. Similarly, the parameters of the model affect the optimal pricing
strategy when the capacity of one the products is changed. In the case of an increase in

capacity, we have shown cases where a firm may increase or decrease the price of both of
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its products or it may decrease the price on the product that has the additional capacity

while increasing the price of the other.

5 Individual-Product Optimal Decisions

In the previous sections, we examined cases where a firm makes decisions about both of
its products’ capacities/prices simultaneously. We also assumed that the firm was trying
to maximize overall profits (from both product lines). However, it is often the case that
firms have separate brand managers for each product line and that these brand managers
are evaluated based upon the profitability of their product line alone. In that case, the
brand manager will make decisions in order to maximize profits of his or her own product
line alone rather than to maximize overall profits for the firm. In this section, we analyze
how each of the decisions analyzed in Sections 2-4 would be changed by the fact that they
are made by managers trying to maximize individual-product optimal decisions rather than
globally optimal decisions maximizing the sum of the profits from the two product lines.
We therefore differentiate between the globally optimal decisions in Sections 2-4 and the
wndividually optimal decisions in this section.

We also note that in this section we pay attention to the order in which decisions
are made and announced. We will show below that this order is significant when both
managers can only make pricing decisions but the order does not affect the eventual decisions
otherwise. We explore various assumptions about the managers’ behavior as in the classical

Cournot, Stackelberg, and collusion models of duopoly.

5.1 Capacity decisions

We return to the case in Section 2 where the firm determines the optimal capacities for
both of its products; however, we now assume that products A and B have their own brand
managers. Regardless of whether manager A or B makes its capacity decision first; the

profit function for the manager of product A is:
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Cao
Ry (Ca) = (Pa - (Ia) : f Zq * fa(Pa,Pb, xa)dxa
ua(Pa,P,,)—r
Ua(Pa,Pp)+r
+(P, - ga) - Ca - éf fa(Pa, Py, 2a)dxq — iq - Cq where fa(Pa, Py, za) = 21_,- and z,
is the demand for product A.

Similarly, product B’s profit function is defined as:

Cy ua(Pa,Pb)—f—s
Ro(Cy) = (Po—qp): | zbfo(Pa, Po,zp)day +(Po—ap)-Co [ fo(Pa, Pp, xp)dzp—
‘U.b(Pq,,Pb)—S Cb

ip- Chp

fo(Pa, Po, zp) = 21—3 and zp is the demand for product B.

Proposition 7 The individually optimal C4 and Cy are the same as the globally optimal

C, and Cy of Proposition 1.

Proof: The result directly follows from the fact that the first order conditions for C, and
C) are the same as those in Section 2. O

Proposition 7 states that if brand managers can only make capacity decisions, even if
they make individually optimal decisions, they will end up maximizing global profits as one
manager’s capacity decision does not affect the other’s decision. In the next subsections,
however, we show that when pricing decisions are involved (which affect the other product’s

demand as well), individually optimal decisions differ from globally optimal decisions.

5.2 Deciding on the price of A and the capacity level of B

We now examine the case where the optimal price of A, P}, and the optimal capacity for
B, C}, is determined.

The manager maximizing product A’s profits has the following objective function:
Ca
Rl(Pa) = (Pa - Qa) : f Tq - fa(Pa, Py, ma)dxa
ua(Pa,Pb)-r
ua(Pa,Py)+r

+(Pa - Qa) -Cq - f fa(Pa, Py, xa)dxa,
Ca
where: fo(Pa, Py, zq) = % and z, is the demand for product A.
Note that the manager of product A does not care about the decision that the manager

of product B makes about the capacity for product B. However, the manager of product B
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does care about the price of product A as this affects the demand for product B. Therefore,
the optimal C) is a function of the optimal P, which is obtained by solving the first order
condition above. Product B’s profit function is defined the same as R2(C}) in the previous
subsection.

The first order condition of R;(P,) is:
8R1(Pa) _ [C2—(ua(Pa,Ps)-1)? 4 (Pa=9a)(Ca—(ta(Pa,Po)=1)|  Bua(Pa,P)
Pa - 2r [Z)

2r a

Ca-[ua(Pa,P)

o +7-Cal _ o, Rearranging terms and substituting in the functions for u, (Pg, Ps)

+

and up(Pg, Pp) we can obtain the optimal value of P,.

Comparing the optimal P, in this case with the optimal P, derived in Section 3, we
clearly see that the optimal pricing strategy for product A differs depending on whether
individually optimal or globally optimal decisions are being made. The following example
shows globally optimal price and capacity levels can be significantly different than individ-
ually optimal levels.

Example 5: Suppose that C, = 1700, q4 = 3, q5 = 2, C= 2000, c¢; = 60, co = 50, r= 400,
D= 3000, d; = 55, d9 = 40, s= 250, i, = 1 and P, = 77.98. We obtain a globally optimal
solution of P, = 76.38 , C, = 2009.886 and R(P,, Cp) = 228761.18. Product A’s profits
in this case are 94560.83. For the same parameters, the individually optimal solutions
are: P, = 68.82 with a profit for product A of R(P,) = 105701.13 and consequently
Cp = 1707.557 with R(Cp) = 111224.07 resulting in a total profit of 216925.20. We see in
this case that the manager of product A can improve the profitability of product A alone
by decreasing its price compared to the globally optimal price of product A; however this

decreases the sum of the profits from both products.

5.3 Pricing decisions

In Section 4, we discussed the case where a firm simultaneously sets the prices for both of
its products. We now examine the case where managers for products A and B set prices

in order to optimize individual product profits. Let us assume that the price of product A
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is set first. The profit function for product A will be the same as the previous subsection
R;(P,). However, as we can see, the optimal price for A depends on what price will be
chosen for product B. Since we assume that all pricing and capacity information is known,
the decision maker for the price of product A can predict what product B’s optimal pricing
strategy will be after the decision is made regarding the price of A. Product B’s profit

function is defined as:
Cy
Ro(Po) = (Po—gqv): [  xb fo(Pa, Pp, xp)dzp
ub(Pabe)_s
ua(Pa,Pb)+s
+(Po—gqv)-Co- [ fo(Pa, Py, zp)dzy — iy - Ch,
Cy
where fy(Pg, Py, xp) = 21—3 and zp is the demand for product B. Therefore, before determining

product A’s optimal price, we solve product B’s problem.

The first order condition of Ro(Pp) is:

8Ry(Py) _ [C2—(up(Pa,Py)—5)? 4 (Po=)[Co=(up(Pa,Py)=3)] | Bup(Pa,Py)
3Pb - 2s 23 Pb

Cy-[up(Pa,Ps)+8—Cs] _ 0
2s -

+

From the equation above, we can obtain an expression for the optimal price for product
B, which may then be used to find the optimal price for product A. To find the optimal
price for product A, we have three different approaches available: (i) the Cournot model, (ii)
the Stackelberg model, and (iii) the collusion model. In the Cournot model, each product
manager assumes that the price of her or his product does not affect the price of the other.
In the Stackelberg, one manager follows the other’s lead in setting price. In the collusion

model, both managers act together to establish best prices for overall profit.

(i) Cournot model
In this approach, the manager of product A assumes an optimal price of product B, P},

as a parameter in the first order condition of R;(P,) to obtain:
ORy(Pa) _ [CZ‘(“a(Pa»Pb‘)‘T)Z] + (Pa“la)'[ca"("a(PmP;)“T)] . 3“a(Pa:P;)
0P, 2r 2r 0P,

+c,,.[u,,(Pa,21:,;)+r—c.,] _o.

The optimal solution, P, was shown in Subsection 5.2 where Py, is now substituted with

P;. The manager of product B follows the same procedure to obtain a price with P} as a
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parameter. Solving the simultaneous equations for the two prices produces the result.

(ii) Stackelberg model
For this approach, the manager of product A assumes that the manager of product B is
the price setter. We substitute the optimal P} as a function of P, directly into the function
R1(P,) to obtain:.
R1(Pa) = (Pa— ga) - cja 2a fo(Pa, Py, Za)dza
ug(Pa,Pp)—1

Ug(Pa,Pp)+r
+(Pa - Qa) +Cyq - f fa(Pav Pg’xa)dza-
Ca
The first order condition for this function clearly differs from the Cournot approach

shown above since P} is dependent on P,. Therefore, the optimal price for A differs from

the price obtained in approach (i).

We now illustrate the above approaches. For analytical simplicity, we examine the case
where both products have unlimited capacities and the mean demand functions for products
A and B are ug(P,, Py) = C — 1Py + coPp and up(Pa, Py) = D — d1Pp + d2P, tespectively

and where ¢; > co , d1 > dg,c1 > do, and d1 > co.

(i) Cournot model
We first begin by finding the optimal price of product B. In this case, product B’s profit

function is defined as:
Ro(Py) = (P — qb) - ub(Pa, Pb)-

The first order condition is:

Oup(Pa, Ps)
0Py

up(Pa, Pp) + (Po— qb) - =0.

Rearranging terms, we obtain:

* _ D + d2Pg + qpdy
b 2d; '

We now solve for the optimal price for product A. The profit function for product A is:

R1(Pa) = (Pa - qa) . ua(Pa, Pb).
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The first order condition is then:

Oug(Pa, Py )
P,

ug(Pg, Py) + (Pa — ga) - =0.

Substituting P} into the equation above and solving for P, we obtain the optimal price

of A to be:

pr_ Dt 2Cdy +2¢1d1gq + c2d1gp

a

4c1dy — codo

(ii) Stackelberg model

We again begin by finding the optimal price of product B. The profit function for product
B is the same as in the Cournot model above and hence the optimal price of B, P, will be
same expression.

The profit function for product A is now defined as:

Rl(Pa) = (Pa - Qa) 'ua(Pa,Pl;)-
Substituting Py into the profit function and solving for P, in the first order condition,
we now have the optimal price of A to be:

Pt — Dcg +2Cdy +2¢1d14a + cad1gp — c2d2ga
a 4cidy — 2codg '

(iii) Setting both prices simultaneously(collusion)

We now return to the model presented in Section 4, where the product managers agree
to set both prices simultaneously. In other words, there is collusion in setting the prices
for both products in order to optimize system wide profits. We present below the optimal
prices for the products where both products have no capacity constraints.

The profit function in this case is:

R(Pa,Pb): (Pa_(Ia)'ua(Pa,Pb)+(Pb_Qb)'ub(Pa»Pb)-

The first order conditions are:
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. aua(Pay Pb)

Ua(Paan)+(Pa—QG) aP' - =0
a
Oup(Pq, Py
ub(Pa,Pb)'*'(Pb—Qb)'—"—g}:b ) _ o,

Solving the equations for P, and P; we obtain:

Pt C + c19q — dagp 4 (c2+d2) - (2¢1(D — c2ga + d1gp) + (c2 4 d2)(C + c14a — d2gs))
e 2c1 201(461(11 - (02 + d2)2)

and

_ (e2+dy) - (2¢1(D — caga + dags) + (2 + d2) (C + c19a — d2gp))

P*
b 4c1dy — (co + dg)?

From the expressions in (i), (ii), and (iii) we observe that the optimal prices obtained
from the model depend on the price elasticity and cost parameters. We provide below exam-

ples where the optimal prices are different relative to each other based on these parameters.
Example 6: Collusion prices > Stackelberg prices > Cournot prices.
Suppose qq = 2, qp = 2, C= 2000, c¢; = 60, co = 30, D= 2000, d; = 60 and do = 20. In

this case we obtain the following results:

Collusion Stackelberg Cournot
Po = 29.63 24 23.04

Py= 29.51 21.67 21.51

Example 7: Stackelberg prices > Cournot prices > Collusion prices.
In this case let qq = 2, q = 200, C= 2500, ¢; = 175, cp = 2, D= 2000, d; = 79 and

d2 = 10. The resulting prices are:

Collusion Stackelberg Cournot
P, = 8.52 11.109 11.107

Py= 117.08 117.1296 117.1295
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Example 8: (Collusion price of A > Cournot price of A > Stackelberg price of A) and
(Cournot price of B > Stackelberg price of B > Collusion price of B).
For this example let q, = 200, q5 = 2, C= 2500, ¢; = 175, co = 2, D= 2000, d; = 79

and dg = 10. The optimal prices are:

Collusion Stackelberg Cournot
P, = 107.75 107.23 107.26

Py= 1931 20.444 20.447

From these examples, we may conclude that the timing of pricing decisions, the opti-
mization of individual versus system wide profits along with the relative sizes of the price

elasticities, and costs can have different impacts on a firm'’s optimal pricing strategy.

6 Conclusions and Further Research

In this paper, we addressed joint capacity and price decisions for substituable products. We
have shown that pricing and capacity decisions are highly affected by the actual parame-
ters that the decision makers can control. The presence of decision makers who optimize
individual channel profits versus optimizing system wide has a significant impact on the
decisons made.

Many research questions on pricing and capacity setting for substitutable products re-
main open. For example, the case where a firm has control over both products’ prices
and capacities remains open. (Preliminary research shows this problem to be extremely
challanging.) Furthermore, we have only considered a single period problem in this paper.

Further research should consider multiple period problems.
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