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Abstract

In this paper we compute Karmarkar’s projections quickly using Moore-Penrose g-inverse
and matrix factorization. So computation work of (AT D2A)~! is decreased.
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1 Introduction

In 1984, Karmarkar [1] proposed a new polynomial time algorithm for linear programming based
on repeated projective transformation. This algorithm creates a series of interior points converging
to the optimal solution. His work has sparked tremendous interest and inspired other to modify
his algorithm or to investigate similar methods for linear programming. A lot of variations of
Karmarkar’s algorithm have been made.

In all variations of Karmarkar's algorithm, the major work is repeated computation of (AT D2 A)~!
or solution of system of linear equations

ATD?Ay =b.

Since D changes at each iteration. To decrease computation work of Karmarkar’s algorithm com-
puting (AT D?A)~! quickly is needed. Many papers do their best to compute (AT D2A4)~! quickly
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using rank-one update, approximate scaling matrix, updated Cholesky factorization and so on (1]
(2] [3] [4]- [5] [6] have given efficient solution for block-angular linear programming, especially for
two-stage stochastic linear programming.

In this paper we decrease the work of computing (AT D2A)~! using Moore-Penrose g-inverse
and matrix factorization.

In section 2, we review some characters of the Moore-Prenrose g-inverse. Karmarkar’s algorithm
is formulated in section 3. In section 4 , we give method for computation of (AT D?A)~! using
Moore-Penrose g-inverse and matrix factorization. The complexity of the algorithm is analysed in
section 6.

2 Moore-Penrose g-inverse

In this section, we review some characters of the Moore-Penrose generalized inverse ( g-inverse )
[7] [8] which are useful in following sections.
We consider real m x n matrix A. Let A* be the Moore-Penrose g-inverse of A.

Character 1 a) AYAAT = ATAAT = AT,
b) AAT(AT)* = (AT)*ATA = A.
¢) (ATA)* = A+(AT)*.
d) (AAT)*+ = (AT)* A,

Character 2 a) If rank(A) = n, then

At = (ATA)1AT.
b) If rank(A) = m, then
At = AT(AAT)L,

Character 3 Let A = BC, where A, B and C be m x n, m x r and r x n matrices respectively,
and

rank(A) =rank(B) =rank(C) =r, then

At =C*Bt.

3 Karmarkar’s algorithm

For the purpose of discussion, we consider linear programming problem without generality

max CT:B

st Az <b



where ¢ and z are n-vectors, b is an m-vector and A is a full rank m x n matrix, where m > n
and ¢ # 0. Problem (1) has an interior feasible solution z°.

We focus on a variation of Karmarkar’s algorithm which is generally called the dual affine scaling
method [2].

Algorithm 1 (A,b,c,z°,stopping criterion,0 <y <1)
1. k=0.
2. stop if optimality criterion is satisfied.
3. vk =b— Azk.
4. D* = diag {1/v%,...,1/0k).
5. hy = (AT(DF)24)"!c.
6. hy = —Ahg.
7. @ =+ x min{—vf/(h,)i|(hv)i < 0,i=1,...,m}.
8. gkl = g% 4 ah,.
9. k=k+1, goto 2.

The major computation work of the algorithm is computing (AT (D¥)24)-1.
Since D¥ is m x m full rank diagonal matrix, then rank(D*A) = n, and

(D*A)* = ((D*A)TDkA)~Y(DkA)T,
(D*AY(D*ANT = (AT(D*)*A)"{(D*A)TD*A((D*4)T D*4)T)~!
= (AT(D%2A)~1.
Thus step 5 of algorithm 1 can be written as
he = (D*A)*((D*A)*)Te.

In following section we will discuss computing (D*¥A)* quickly. For simplicity, we write D as
D. In general we let rank(A) =r <n.

4 Matrix factorization

Proposition 1 Let D be a full rank diagonal matriz, A be a m x n matriz, and A = BC, where
B is a full rank m x r matriz, C is a full rank r x n matriz, then
(DA)* = cY(DB)*
= cT(cct)-Y(BTD*B)~'BTD.



proof. Since D is a full rank square matrix, so rank(DA) = r and rank(B) = r. According
Character 3 and Character 2, We get needed result. This completes the proof of the proposition.

Using Gauss elimination method, we factorize A into A = LU, where L is a m x r unit lower
trapezoidal matrix, U is a r x n full rank upper trapezoidal matrix.Thus

(DA)* = UT@UT)-Y(LTD?L)~'LTD.

(UUT)~! does not change at each iteration. If r = n, U is full rank upper triangular matrix,
we have

(DAYt =v-Y (LT D?L)'LTD.

So major work of computing (DA)* is the computation of (LT D2L)~1.
We partition L into
(1)
L,

where L, is a r X r unit lower triangular matrix, L, is a (m — r) x r matrix. Correspondingly we
partition D into
D= D, 0
0 D,
where D; is r x r full rank diagonal matrix, Ds is (m —r) x (m — r) diagonal matrix. Thus

DL,
T T
( Ly Dy, L3 D, ) ( DLy )

LTD*L, + LY DiL,

LTD?L

m-r
LIDL, + Y 2T, (2)

i=1

where
D, = disg {dr+1,...,dm},

LI =(,...,l;-n).

LTD2L, is already Cholesky factorization form. A Cholesky factorization of LT DL can be
computed using a series of rank-one updates by (2).

To compute a Cholesky factorization of LT DL, m — r rank-one updates are needed. But
m rank-one updates have to be done to compute a Cholesky factorization of ATD?A in general
Karmarkar’s algorithm [3]. So computation work is decreased. As in [3], rank-one update can be
done by Fletcher and Powell [9].



5 Complexity of algorithm

Proposition 2 If computation of (AT(D*)2A)~! is done by LU factorization, then Algorithm 1
solves Problem (1) in no more than

mn? + O(m**(m —n)R)
arithmetic operations, where R is a measure of the problem’s size.

proof. The major operation work of the algorithm is:
LU factorization needs

mn? — (m 4+ n)n?/2 + n3/3 = O(mn?)

arithmetic operations [11].

Algorithm 1 finds an optimal solution to problem (1) in O(/nR) iterations [12] [13].

(m — n) rank-one updates need O(m?(m —n)R) arithmetic operations.

So algorithm 1 solves problem (1) at most mn? + O(n®3(m —n)R) arithmetic operations. This
completes the proof of the proposition.

In general, R is very large. So

O(m3R) >> m?n + O(m?*(m —n)R),

especially, when m — n is small.
Using approximation z*, v*, the complexity of algorithm 1 can be reduced [12] [13].
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