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1 INTRODUCTION

Evaluating the expectation of a convex function ic a central require-
ment in utility theory (see, for example, Fishburn [1970]) and stochastic
programming (see, for example, Dempster [1980]). In general, these problems
involve optimizing the expectation of some function of certain random
variables and decision parameters. We assume that this function is convex
and that certain properties of the convex function and the underlying
probability measure are known. We show that new upper bounds on this
expectation are available when the information includes subgradient and
conjugate function information. This result is especially useful when the

original integral is not easily computable as we shovy below.

The most basic bound on expectations of convex functions is Jensen's
lower bound (Jensen [1906] which requires knowing only the finite means of
the random variables. Madansky [1959], following Edmundson [1956], gave an
upper bound based on the theory of moment spaces. This bound again requires
finite mean value information and a bounded n-dimensional rectangular
domain of stochastically independent random variables. Ben-Tal and
Hochman [1972] extended and refined the Edmundson-Madansky bound by
including information of the expected value of the absolute difference
between the random variable and its mean,Gassmann and Ziemba [1986]
provide a weaker bound that does not require independence {as in Dupacova
[1974]) or n-dimensional bounded regions. Frauerdorfer [1986] provides the
extension of the Edmundson-Madansky bound with dependencies and knovy-

ledge of the joint expectations of the random variables.
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The general process of obtaining these bounds as solutions of
moment problems is described in Birge and Wets [1986]. The solution of
linear approximations is given in Birge and Wets [1987]. Explicit solution
procedures also appear in Ermoliev, Gaivoranski and Nedeva [1987] and Cipra
[1986]. They are also used in Dula [1986] to provide bounds for the expecta-
tion of convex functions with additional properties given first and second

moment information.

Our results differ from the above results in our not requiring explicit
moment information but instead information regarding the conjugate
function and the expectation of the gradient and the inner product of the
gradient and the random vector. We first give a one-dimenstional result in
Section 2. Section 3 provides an extension in n-dimensions. Section 4

compares our bound with previous bounds in R and Section S provides the
comparison in R". Section 6 describes possible refinements, and Section 7

gives conclusions.

2. AN UPPER BOUND IN R

Let (Q, 2, F) be a probability measure space and let K. Q— (a,b) be

a random variable, where -oo¢a<bg +co, with distribution F.

Let ¢: [a,b) = R be a convex differentiable function. We dencte
expectation with respect to F by E and throughout this section we assume

that E¢(X), E¢ (%) and EX$ (¥) exist and are finite.



Theorem 21 Let ¢: (a,b)—F be a convex differentiable increasing function

and assurne that Erb'[:%]‘zc'. Then,

el ¢ o (E1218)) - g
dlRl ¢ $] E0' (%) ] (2.1)

Proof: For any convex differentiable function ¢ on (a,b), the following

inequality holds:

dls] - §lt) > (s-t] ¢' (t) forall s,t € (a,b) (2.2)

Set t=X [clearly in (a,b}],SJ—M .
Ed'(X)

Since ¢ is increasing and E¢'(X)>0, sela,b). Substituting s,t in (2.2)

we obtain

$(K)< 9 EQTX] EOTK) ] $K) (2.3)

Take expectation on both sides of (2.3) with respect to F and

observe that in the right hand side of (2.3) (with E¢'(K)>0):

EXQI[X]E '] - "R) =
EOTH) ¢'(K) - EX$'(X] = 0.

The result follows. a
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Remarks 2.1
(1) If ¢ is strictly increasing and cancave then inequality (2.1) is reversed.

[2) If ¢ is strictly decreasing, then assuming E'(K)<o, inequality (2.1) is

still valid.

(3] The differentiablity assumption on ¢ can be relaxed. For if ¢ is
convex its left and right derivatives ¢'(x) and ¢', [x) exist, and are
finite and non-decreasing. Moreover the subdifferential of ¢ is
given by, 26(x) = (zeR : ¢'(x)<z¢4'(x)) [see e.g Rockafellar |1970], pp.
228-229).

Theorem 2.1 remains valid if we substitute any
z € 0 ¢lxl=1{d"_(x), ', (%] for ¢'(x].

0
Jensen's inequality for a convex function ¢ provides us with a lower
bound for E$(X)
S(ER)) ¢ EH(X) (2.4)

Combining inequality (2.4) with Theorem 2.1 allow us to derive a re-

arrangment type inequality

Corollary 2.1 Under the assumptions of Theorem 2.1, we have

EXO'(K) 3 E(X]E$'(R) (2.5)

Proof Simply follows from (2.1}, combined with (2.4), and using that ¢ is

increasing and E¢'(X) >o. 0



More generally, let g: {3,b]—=R be a given increasing function.
Since ¢ is convex, ¢' is increasing and so f(t)=4'(g(t)] is increasing. Then
inequality (2.5) implies

EqIXIfIX) 3 Eg(R] EFIX] (2.6)
Inequalities (2.5) or (2.6) can be used to obtain bounds on syster reliabil-
ity. For general results on rearrangement inequalities and applications

see Karlin and Rinotl [1981 j and the references therein.

3. AN UPPER BOUND IN RD

In this section we present a natural extension in R of the upper

bound derived in Theorem Z.1.

Let X be a random vector on the probability space (Q, Z, F) with

distribution function F and let $ C R" be the support of K.

Assume that S is convex and let ¢: S—R be a convex differen-
tiable function. The gradient of ¢ at x is denoted by V¢(x]. The conju-

gate convesx functinn af 4 is definerl b

$*(y)= sup (x'y - ${x))
bod

In the sequel we assume that E¢(X), EXTW)[XI and EV¢(K) exist
and are finite.

Thearem 3.1 E¢(X) ¢ EXRTZ4(K] - $*ETH(K)) (3.1)

Proof Since ¢. S—Ris convex and differentiable, the gradient inequality

holds, ie., $la)- ¢(p) 3 [a-p]TW[ﬁ] forall o, g € S. (3.2)



Setting =X in [3.2) and taking expectation with respect to F in inequality
(3.2) implies
EG(R) (ERTUHR) + blod) - TEVHIR) for all o &

Hence,

E(H) ¢ EX Tl + inf (dlodd- o EVHINI (3.3)

Mote that:

inf (¢la) - o EZGIX))=- sup la’ EVO(XI - dlad) = - &* [ETHX).
& (¢4

Inequality (3.1 follows immediately from (3.3). 0

Femark (31). An alternative proof of Theorem 3.1 may be derived using
the following useful relation: (see Rockafellar {1970/, p. 257)
* (V(2) )= 2T 0(2) - () (3.4)

Setting z=X and taking expectation in (3.4) we obtain

EQ(K) = EXTZ0(X) - E* (VoK) l

Ol
o

But since ¢ is convex so is ¢* and hence by Jensen's inequality

¢*(EVH(R]) < EH*(V(K]) (3.6)

Then (3.5) combined with (3.6) implied (3.1). This proof will be useful to
refine the upper bound; see Section 6. 0
Remarks 3.2

(11 If ¢ is concave Inequality 3.1is reversed.

(2) As mentioned in Remarks 2.1 (3], Theorem 3.1 remains

valid if instead of V¢(] we substitute any ze 9 ¢. a



The cne dimensional version of Theorem 3.1 (n=1, 3=(a,b]] provides
us with the upper bound E$(X) ¢ EXG'(K) - ¢* (E4'(K)): = C. The next result
shows that the bound Cis better hun the upper bound O derived in

Theorem Z.1.

Theorem 3.2 Under assumptions of Theorem 2.1, we have

E¢(RI ¢ C <D (3.7
Proof For any convex functio ¢ and any € dom $, g € dom ¢* the
inequality

dlod + $*(B) ) P (3.9)

holds Suhstituting in (3R] . EXGH) € [ahl=dnarm & and

im’v

B=E¢'(K] € range ¢' c dom ¢*, the result (3.7) follows 0
4. COMPARISONS OF BOUNDS IN R

Throughout this section ¢: R—R is a given convex differentiable
convex function and X is random variable with distribution F and density f

with support (a,b). We compare the upper bounds

C=EXY'(X) - ¢*(E¢'(K) and D = ¢)[—XM—H] with the following

well known upper bounds:

Edmundson-Madansky [1956]

en. = bzl ¢ (3] + (x-b) ¢ (b) (4.1
b-a

where x: =E[X) < o, [a,b] is a finite interval.



Ber-Tal-Hochman [1972]

- d(m*ﬁ'-lwmlll _(bra) (42)
2 (b-%) (%-a)

l\'l

where ¥ = E(¥) < %0, [a,b] is a finite interval, and

d=E|R-%|=2 [ (%] dFix) = 2] (%) dF(x) s the

[=1] "“""'&Xl

>\|¢_._ o

expected absolute deviation about the mean. Using this
additional information on the random variable X, it is shown

that BH gets closer to E¢(X): = ¢ than EMie, ¢ ¢ BH ( EM

Remark 4.1 The upper bound BH can be obtained for an infinite interval
(a,b], - =0 ¢ a < b { + o0, under additionals assumptions on

$; see Ben-Tal and Hochman (1972]. 0

41 ¢lK)=xZ, x>0, ¥~U (0,1 Thenx =1/2, d=1/4, §=1/3.
Using (4.1) and (4.2) we obtain EM =1/2 and BH = 3/8.

Example

Here ¢* [y} =1/4 gz and then we compute C = 5/12,
D=4/9. Jensen's inequalitg yeilds the lower bound

=1/4andd ¢ ¢ ¢ $D¢EM a

The next example illustrates a situation where EX$'(X) and E¢'(X]
(and hence C and D) are easy to compute while E$(X) requires the
evaluation of a complicated integral. Moreover, in this example, the

upper bounds BH and EM are shown to be trivial, i.e., BH=EM= +o0,



xample 4.2 Let $(x)=-Ln (%) -1¢% ¢!, and let ¥ be a random variable

with densitu le]=3/2ﬂ-x21 for o¢xg!.

(W

Ther -E’-fu« JLn [1—>< ) dx (4.3)
i

To compute the integral (4.3) we use the following known

integrals (see e.g. Gradshteyn and Ryzhik (1980} pp. 557-558]:

[Tg xNLn (193 dw = A (Ln2-lA+1) (A=)

[Tg %ML () dx = 1A (Wl - ¢ A+ (A>-1)

where (1) =-¥, ¥ =0.52?215._Euler's constant and the functions
y, 8 satisfy

Plxe1)= i)+ L w[X+]}-\v[§]=2[3[x],x>D (see e.g. (12)p. 945).

After some algebraic manipulations one obtains ¢ = 5/3 - 2Ln2
~ 0.280372.

The conjugate function is given by
( 2
* =V 1?1+ Lni- [-‘—Luiﬁ .

EXQ'X) = 3[1g #dx =1, E¢'(K) =3[!y xdx = 3/2.

Hence, ¢' (E¢'(X)) = $*(3/2) = 0.4653 and thus C= 0.53468 and
D=¢(2/31=9/5 ~ 0.58778.

Jensen's inequality yields the lower bound J = ¢{x) = $(3/8) ~
0.1515. A rough estimate of ¢ could be obtained by averaging the upper
bound C and the Lower bound J to give 0.34309.

Finally we note that since here ¢(1) = +o0, EM=BH = +oo_ (It can

be venfied that d =0)) a



In Theorem 3.2 we show that C ¢ 0, and Ben-Tal and Hochman
prove that BH ¢ EM. Examples 4.1 and 4.2 illustrate situations where
C ¢ 0 ¢ EM. In fact we tested many other examples and found C ¢ EM.
This inequality is not, however, always valid as illustrated in our next

example.

Example 4.3 Let (%)= 1- (1- (x- 192, 0¢x¢2 and

fix) = 2= (1-00- 13- 17", Deez

Then, =1, EM=1, BH = 0.7766, J = ${x) = Uand¢ Ed(K] = 0.447. The

conjugate ¢* is ¢* (y) =yl + LI (4.3)
\3 1+g / l+g

K= S . = 21065, and E¢'x) = 0.

Hence ¢* [E¢'(X)) = $*(0)= 0 and then C = 2.1065 > EM=1. a

Note that the bound D is not computable here since the
assumption of Theorem 2.1 E¢'(K)>0 is violated. The example not only
demonstrates that EM is better than C, but also that the bound C may be
a "bad" upper bound. However, we show in Section 6 that the bound C can
be considerably improved to be even sharper than BH; see Theorem 6.1
and Example 6.2.

We have already mentioned in the introduction, that the compu-
tation of the upper bounds EM and BH requires a finite mean x. This is not
the case for C. Further BH requires the value of d which may be difficult
to compute. In the last example of this section we consider the case
when x and d fail to exist and therefore the upper bounds EM and BH are

not available.
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Example 44 Let X be a random variable with density
2
i1 + %)

f(x) =

D<x< +wandlet¢b[x]=-2&.

. I |
Then¢=§jg° 1¥ > dx =242 ~-2.8284, and EXG'(H) = - V2,
1+ R

.
EX®'() = ~2 . Hencec=—ﬁ-¢*(—J§l=i‘;—2—=—2.1213. O

S COMPARISONS OF BOUNDS IN RM

Gassmann and Ziemba (1986) extend an idea of Edmundson and
Madansky (1956) to derive an upper bound on the expected value of a
convex function of a random vector. The bound is given as the solution

of the following linear program: (see Gassmann, Ziemba (1986), Thearem 1)

m m m -
GZ=max [Zo(vj)A; = Aj=1,Z Av=x,A;}0] (5.1)
A i =i i=t 11

where ¢: S—Ris a convex function, 5 C R" is convex, [v1, .., ¥ are the

extreme points of a bounded convex polyhedron containing S, and

¥ = (EXy, ., Exan is the finite mean of the random vector X. We compare

the bound 62 with the upper bound derived in Theorem 3.1
C=EXT Vlx) - O*EVHX)) .

Example 5.1 (Taken from Gassman-Ziemba [1986] p. 42))

2 2
X R )2 e L2
Blx %)= e ' flx,%,) = | W%, If % %, ¢

0 otherwise
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2 2
Then S={(><1,><2]: Ky M, 1} and

hY

o, 1o R X
¢=Ee‘l:—3— J I evi-¥, -X%, dx d><2=4=zl.0364 (52
I

Using (5.1 the best upper bound derived in [11] is shown to be
GZ = 1.54308. We now compute the hnund © The canjugate of

dlxy, %o) = €%1is ¢* (yy, Yo) = Yy Lny, -y; and EV$(X) = (Ee*s, 0)' =
F | 2
[ﬁ , 0] lusing 5.2], then ¢* (EV (R = ¢* %, U)= [;i ILn 3-2) = -U.Yy4s.

Now,
) bl 3 = x1 2 2 )
ERTH(R) =E(X, e ]-—Z—E f_1 | ~ X, € J b -, O, dx, =

2 -
3’5'2-;&1 = 0.2146 and then C = 120948 < 62 ~ 154308.

Note that Jensen's inequality yields the Lower bound J= ¢ [x) = ¢ (0,00 =1

and thus an estimate of ¢ could be obtained by
J+C

= 110474 giving an error of about ?%. 0

For a random vector K= (¥,, ... xan with independent components X;

the Edmundson-Madansky and Ben-Tal-Hochman upper Bounds are

aveglable where S is an n-dimensional rectangle of the form

5= iI-]l [6,, b.] . They are given by the following expressions [1]:
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' ‘ b = ¢
EM=2 ... 2 _‘ N ole. ..., c 'J where c =8 c =b, yﬂ
i1=0 i,f = Y N h cl
, R -
and )); = ;‘* K (5.3)
k%
_ m gk 1 n c
BH=2 (M P, )¢ lay,...a) (5.4)
Az k 1 n

where y is1or2or 3, A 3 is the set of 3N n-dimensional vectors whose

components are all I's and/or 2's and/or 3's,

% 4
1 zlxk-akl' 2 2[bk-2kl

k k k
ARTT AT AT L PR 3

1 2’1

As mentioned in [11), for the independent case the upper bound GZ is in

fact worse than EM (and therefore BH).

xample 5.2.

Sxf xg
Let¢[x x]- +?+x1><2 Ko,

1if o¢ X,, x 1
flx, %) ={ !
0 otherwlse



o

Then, ¢ = Ett)lx X, j-—. Using (5.3) and (S.4) we obtain
respectively EM——lfb[D 0) + ¢ (00) + ¢{1.0] + $l1.1) =%

and BH =2 (010.0) + 0. + 4010} + 0 1.0) + L1010, 1)+ oL+

(1, ]] + ¢[] 1]]*—¢[ l=% From (5.1) we have:

11
2’2

}\2 3?\3

2 2

G2 = max (-

. - -1

HCVEERERE RIS RERE
y = _‘ 3 - . l
At A, 2)=ma,<n Aoty <5

Now we compute the con jugate function at the point x* = (x*, xz*]T

¢*[x X, l'] (x*+e) Filx* +g], H-Z ] e= ll
andE v ¢[><1, ><2]= [Z,D]T, ExTvtb[x] = % Then ¢*(E V¢(x)) =

$* (2,0 = 1. This yields the upper bound C= —2— and we have
$<BH<C<EM<GZ

Finally Jensen's inequality yields the lower bound J = $(x) =
¢[— —] 0. (Note incidently that J ¢ C = =-I- }!

The bound C is in fact sharp (i.e., C = $) far many examples.
For example, consider a piecewise Linear function of the

form:



Mel=sup l:ﬂ]T n 1551
4k

where t13 fixed. This is the form of the recourse function in
stochastic linear programming lsee Wets [1966)] In thic case,

Koo |
swwhmf§N¢H%L£AfL§hyfv,a;m 5.6]
=

from Rockafellar (1970], Theorem 16.5, where

& (V)= sup (v~ (x-t) o) (5.7

St i =
{+ o gtherwise

From [5.7),

vt if ve co (1 [1=1 ..,k
d*lvl=

+ oo gtherwise. (5.9)



Let ) = (x-t) ) (7(x) not necessarily uniquel and let
V()= (), then E($(x) = !-Z[(x—t]T (%))

= £l 7)) - £ (' ()

=Ef’ V() - *E(THIR)),

where we note that EV¢(x)) € co (' |, .., k). Hence, ¢=C. (5.9

6. REFINING THE UPPER BOUNDS IN R AND R"

The upper bound C derived in Thearem 3.1 can be naturally sharpened in
the one dimensional case, when X is a continuous random variable with

density function f(x).

Theorem 6.1
Let ¢:. R —R be a convex differentialbe function and ¥ a random

variable with support (a,b) and density f(x). Then,
b

E0(R) ¢ (K (a,b)- [ %014 fix) d - 0* (EQ(K=C (6.1
3
where Kla,b): = b(bfIb) - aslalfal (6.2)
Moreover C~ is sharper thanC, i.e, C ¢ C (6.3]
Proof:
From Theorem 3.1in R, E¢(x) < C=EX ¢'(R) - ¢*(EP'(K)) (6.4)
b
Integrating by part EX ¢'(¥) =f x ¢'(x]) f (x) dx we obtain from (6.4):
3
b b

Edlx) € (xo(x) f [x]}: - f $lx) flx) dx - I x$(xIf (x)dx-¢*(E¢'(X))

a a



co

b
=K [ab) - E4IX - | xlx] Flx) dx - P*(EHTR) (6.5)

3

and then [6.1) follows. To show that Cig C, cbserve that

o

=%[EH¢'[><] + EG(R] - ¢*(EY'(X)) =% (C +Ed (X)) and that E¢(X) ¢ C,
implying (6.3) 0

Example 6.1
We reconsider Example 4.3 given in Section 4.

2
K(a,b)=K(0,2) = f}— andof XY (%) dx = —33['2—:% This yields the

upper bound C E‘f’ﬂ ~ 12766 < C = 2.1065. Note that we

still have EM=1 < C; but see Example 6.2. 0

It is interesting to note that when ¥ ~ U (a,b] then the upper
bound C is better than EM. For if X ~ U (a,b) then EM =9-@;--¢-59]

and E =%[b &+ ¢(a)-¢* () where & =-Q(—bbt_‘gﬂ e (¢'al, ¢'(b)

(since ¢ is convex).
Hence, from the inequality ¢(b) + $*(£) 3 b, it follows
immediately thatC ¢ EM.

Following Remark 3.1 of Section 3, we can further sharpen the upper
bound C by using a lower bound established by Ben-Tal and Hochman
(1972) which is better than Jensen's lower bound. Let g: R—R be a convex

function, and Y a random variable with support (a,b) then:



EglY) > pal@ + ..E) + (Bl glg- —61] =L_[pd) (6.6)

and Lq (p.d) 3 qlElY)), where G =ElY) < oo, d=E|Y -u|and p: =Pri\su).

From (3.5) we have E¢(H] = EXO'(K) - E4*(¢'(K) (6.7]

Appluing (6.6) with g:=¢* and Y: = ¢' (X} one obtain: (we denote
' = EO'(R))

Ed*(¢'(R * ¢+ + (1) ¢* *(E¢'(K (6.8)
S*('(R)) 3 po* (§ fi) (-p) ¢* (¢'- 2(_(3] y (6" (E4'RN)

and hence from (6.?] this implies

EQ(A) ¢ EX 1K) -L (dp): =cf¢cC (¢.9)

whereg=Pr (¢'() > ¢') andd =E|$'(R)- §'|
Furthermore, if ¥ is a random variable with density f(x], even sharper
bounds are possible. Following the proof of Theorem 6.1 together with

(6.9) we obtain
b
~p

- -LKah- - [ %0lx)f (x)dx - BNCRS) (6.10)
-]

Clearlg C? E? . R natural question is whether

E’: orC? is better than BH? It seems difficult (if not impossible}

to prove such aresult in general. However in our worst
examples (4.3 and 6.1) this appears to be true as demonstrated

below.



Ezample 6.2

We now turn to the problem of refining the bound C in R". For a random

We have already computedin Example 4.3.and 61 § = 0.447

8 [ fulfiuldu 374
BH = 0.7766, EX$'(K] = 2107, K [0,2) = ——, |xdIxIf (x)dx=
v o SFONIF e
For the random variable ¢'(X) we compute g=— > L andd- —T

Then using the con jugate ¢* given in (4.3) we obtain

Ly 6,61~ (67(0) + * ) = 15354, Using (6.9) and (610
it follows that ¢ ~ 05711 and C"= 0.5088. Thus,

<O CBHCEM <L

vector ¥ = [%y,....K,) with independent companents X; the Ben-Tal

Hochman Lower bound is available when S is an n dimensional rectangle

of the form§ = ﬂ [a ] and is given by
1

Zmﬁ" nt), . d)
) e

2k1 ! n

where h: K" =R is a convex function, 6k istor 2, A2 is the

set of 2" n-dimensional vectors whose components are all

4 4.
26,2 % zuﬂl

's or/and 2's, ﬁ] ﬁ =Hg . a '1‘ =% *

andd, B R' denote the corresponding parameters of .

To apply (6.1 as in (6.7) and (6.8 requires showing that the random

vector



7 I Hnl has independent components, and computing

the carresponding pararmeters B and dk. This fairly

complicated task can be avoided by characterizing the
class of functions for which the function Y(J=¢*(Ve(-))
is convex. Mareaver this allows us to express the new

upper bound explicitly in terms of the problem's data
[without requiring knowledge of ¢*J; see Theorem 6.2.

The following result gives a sufficient condition for g
to be convex for a large class of functions arising in

applications.

Lemma 6.1

Let ¢: Scﬁ’l — R be a given twice continuously differentiable
function. If g: IHr: - R glz): =7 &lz)is convex, then

Ylz) = ¢*(P$(z]) is convex.

Y is a convex function if and only if it satisfies the gradient
inequality,ie., for anyx and yin$S

Wix) - ply) 3 (e-g)" vl (6.12)

By definition, ¢ () = ¢* [V $ly)) ard thus ¥ ¢ly) -7 oYV oV oly)



where 7 Myl denates the Hessian of ¢ UsingV ¢* = (V (13]",

it follows that 2yly) =V 2 $yly. Inequality (6.12] then

becomes:

&% (V 9lx))- 0% (7 olyl) » eyl v ° dlyly (6.13)
Now, since ¢* is convex, applying the gradient inequality to

¢* and using 7 ¢* = ( V¢)", we obtain

* (T $lx))- 0* (7 lyl) 3 (7 61 - Voly)y.

Thus to prove (6.13) it is sufficient to show

(THRFIHINT y> (x-u) W2 oly) y (6.14)
Since g(x): = V¢(x) is assumed convex, we have.
Volx) - 7olY) 5 [x-y) 72 4l (6.15)

Multiplying (6.15) by y3o (recall that ScR™,)yields (6.14]) .

a

We can now derive a refined upper bound for a random vector ¥ with
independent components X;. We make the following assumptions:

il S=i=ﬂl (@ b)c K

(11 V¢l is convex
Theorem 6.2

Suppose (1) and (11) hold. Then,

EG(K) SERT V() - L, = C7 where (6.16)

- 1 n 1 ny_ 1 n
Ly 2 e iy 3 Tty o) )- 0 0 e



Proof

From (6.7) lin ™) we have
EQ(R) = EXTT(1) - EG*T ()

Under Assumptions (1) and [11), Lemma 6.1 is applicable and thus
Ep(X) = E¢*(V(K)) ;Lw as defined in (6.11). Moreover,

using (z) = zTV¢lzl - ¢(z], the expression (6.17) follows.
Example 6.3

We reconsider Example 5.2 where we already computed
$=0.25, EM= 0.75,C=050,BH=0375,6Z=1, EXTW)[H) =15 and
d = d2 Z' % 22=%. The assurmptions (1) and (I1) are clearly
aatISﬁE'd and thus Theorem 6.2 is applicable.

UWe compute [31 =B, =—;- and thus using (6.17)

‘3 +;3_l+ .l_é -Lx—-
Lot 2@ heud 2 v (4 )

with ll;[21,22]=(zl,221T Vrb(z i ] ¢[z Z, )=

N Ic.n

Then L, =11875 which yields the upper bound ch = 0.3125 <BH-0.375.

0



2. CONCLUSIONS

We have given new upper bounds for the exportatins af coms
function using gradient and convex conjugate function information. We
have shown that these bounds and their extensions can be better than
previous bounds in several examples. We also dermonstrated how our
bounds are especially uzeful when the original integral is complicated
but has a gradient that can be easily integrated or when the information
required for other bounds (e.g., moments] is not available. The new
bounds are then applicable in a variety of applications with these

characteristics.
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