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I. Pressure-Volume-Temperature Behavior of Pure Gases and Liquids 
1 

More than a hundred equations 
of state relating the pressure, vol- 
ume, and temperature of gases 
have been proposed according to  
Dodge ( 7 ) ,  but only a very few of 
them have attained any practical 
importance as the majority do not 
represent the data with sufficient 
accuracy. In  this work the signifi- 
cant pressure-volume-temperature 
(hereafter referred to  as P V T )  
characteristics of pure gases have 
been examined in detail, and an 
equation has been developed to fit 
precisely the characteristics com- 
mon t o  different gases. 

PVT data may be plotted on dif- 
ferent types of graphs, of which 
probably the oldest is that of pres- 
sure vs. volume with temperature 
as a parameter, as shown in Fig- 
ure 1. From this graph van der 
Waals deduced two properties of 
the critical isotherm namely, that 
at  the critical point the slope is 
zero and an inflection occurs.' Van 
der Waals expressed these two 
properties algebraically in the fol- 
lowing well-known manner : 

(dP/dVl~  = 0 at the critical point 

(d2P/dV2), = 0 a t  the critical point 

(2) 

where P is pressure, V is volume, 
and T is temperature, as indicated 
above. Van der Waals employed 
these two conditions to evaluate 
the two arbitrary constants in the 
equation of state he proposed. 

A number of other two-constant 
(exclusive of the gas constant) 
equations of state have been pro- 
posed, the best known being those 
of Berthelot and Dieterici. None of 
them, however, actually represent 
the PVT data over a wide range 

*Some investinations ( 1 3 )  indicate that the 
critical isotherm- is not the smoothly inflected 
curve shown in Figure 1. This result seems to 
be attributed to the indefiniteness of the 
critical state and possibly to the lack of 
attainment of true equilibrium. 

with any great degree of precision 
and not one of them is considered 
suitable for  the calculation of ac- 
curate thermodynamic diagrams. 
This does not imply, however, that 
these two-constant equations have 
not been extremely useful. Van der 
Waals' equation was of the greatest 
value in leading to the principle of 
corresponding states. 

In one form the corresponding- 
state principle suggests that the 
compressibility factor, x = PVIRT,  
depends only on the reduced tem- 
perature and pressure, which are 
defined respectively as T ,  = T I T ,  
and P,= PIP,. On a generalized 
compressibility chart for many dif- 
ferent compounds single average 
lines are  drawn for  each isotherm; 
however, to  demonstrate that  the 
principle is approximate, Figure 2 
has been constructed to emphasize 
the differences which actually exist 
among compounds. 

From the compressibility chart 
it is noted that all gases follow the 
ideal-gas law as the pressure ap- 
proaches zero, regardless of the 
temperature. This may be expressed 
as 

Z = PV/RT= 1 at P = 0 for all 

temperatures (3) 

With any isotherm t,aken at 

Po = 0, 2, = 1.0, 

(dZ/dP,)  = lim (2 - 1) / (P,  - 0)  

as P, -+ 0 

= lim RT (Z - I)/RTP, 

as P, -+ 0 

= (P,/RT) Iim(ZRT/P-RT/P) (5) 

FIG. 1. PRESSURE-VOLUME DIAGRAM. 

~ 

A curious corollary of 
this is the seemingly 
contradictory fact that  
in general V does not 
equal RTIP at P=O. 
By definition of a de- 
rivative a t  any point 
(Po ,  2,) on the com- 
pressibility chart, 

---------- 

(dZ/dPr) Tr 
- co*coyYD I 

- - COY.OW0 2 = lim (2 - Z,>/(p, - P,) 

as P,  -b P. 
0 - Pr.10 

P I  

(4) FIG. 2. COMPRESSIBILITY CHART. 
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Since by definition Z = PV/RT, or 

ZRTIP = V ,  (dz /dP , )T ,  = 

(P,/R T )  lim (V - R T I P )  as P, --+ 0 

= - (Pc/BT) ( c x ) ~ , ~ - + O  (6) 

where a is defined as the residual 
volume, (RTIP-V) .  
If Equation (6) is rewritten, 

at 0 pressure (Y 

= - (RT/PJ (dZ/’d’r)zr (7) 

which relates a to the slope of an 
isotherm on the compressibility 
chart. Since in general this slope 
is not zero a t  zero pressure, a is a 
finite quantity. The one isotherm 
for which the slope is zero is known 
as the Boyle point. 

Most generalized compressibilty 
charts show the Boyle point occur- 
r ing a t  a T ,  of about 2.5. This is 
probably true only fo r  such com- 
pounds as nitrogen, carbon mon- 
oxide, and methane, which were 
considered in making the plots. 
‘These compounds all have critical 
temperatures of approximately the 
same magnitude. For hydrogen 
with a much lower critical tempera- 
ture the data indicate that  the 
Boyle point is around a T ,  of 3.3. 
For compounds with higher critical 
temperatures there are no experi- 
mental data at the required high 
temperatures. However, by extra- 
polation of the experimental data 
on isometric plots (see Figure 6),  
i t  appears that  the Boyle-point re- 
duced temperature goes down as  
the critical temperature goes up 
and that many compounds have 
Boyle points much lower than a 
T, of 2.5. Figure 3 is a plot of the 
Boyle point vs. critical tempera- 
ture, prepared by consideration of 
the measured points wherever pos- 
sible and utilization of extrapola- 
tians to higher temperatures where 
necessary, as just  mentioned. 

A characteristic’ of gas behavior 
noted on both the compressibility 
chart  and the pressure-volume plot 
is the straightness of the  critical 
.isotherm for a considerable range 
0n either side of the critical point. 
The length of the  straight portion 
indicates the possibility that  deriva- 
tives of pressure with respect t o  
volume higher than the two of van 
der Waals may be zero or at least 
very small. Examination of experi- 
mental data to  prove whether any 
derivatives higher than the second 
are  zero is difficult, since the data 
are often not too accurate. The 
higher derivatives cannot be as- 
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FIG. 3. T, AS FUNCTION OF T,. 

FIG. 4. PRESSURE-VOLUME DERIVATIVES 
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FIG. 5. FIT, AS FUNCTION OF 2,. 

A.1.Ch.E. Journal 

sumed indiscriminately either, or 
the essential inflection at the criti- 
cal point may not be preserved. 

In  Figure 4 the necessary impli- 
cations of the assumption that the 
third derivative is zero are con- 
sidered. In  Figure 4d four possible 
curves have been drawn, all of 
which go through zero according to 
the assumption. If the true situa- 
tion is similar to curve I,  the fourth 
derivative must be positive, as 
shown in Figure 4e; the second 
derivative will pass through a 
minimum, as shown in Figure 4e; 
the first derivative will have an 
inflection, as shown in Figure 4b; 
and the primary pressure vs. vol- 
ume curve will exhibit a minimum, 
as shown in Figure 4a. As the 
primary curve must show an in- 
flection, i t  is obvious that curve I 
cannot be correct. A similar analy- 
sis of curves I1 and 111, shows 
that they cannot be used; however, 
curve 111, does give the required 
character of the pressure vs. vol- 
ume curve and therefore one con- 
cludes that  if the third derivative 
is assumed to  vanish, then the 
fourth must also vanish, as shown 
in Figure 4e, and the fifth must be 
negative or zero, as shown in Fig- 
ure 4f. 

Another assumption which can 
be made is that  the fourth deriva- 
tive vanishes while the third re- 
mains. An analysis similar to that 
above shows that  for  this case the 
third derivative must be negative 
in order to preserve the correct 
inflection at the critical point. The 
hypothesis which is advanced here 
is that in addition to the vanishing 
of the first two derivatives, as sug- 
gested by van der Waals, the third 
derivative is either zero or a small 
negative number and the fourth 
derivative is zero. Assumptions re- 
garding the derivatives higher than 
the fourth might be made, but 
these derivatives would have much 
smaller effects. I n  current studies 
the fifth and sixth derivatives are  
being given some attention. 

Another characteristic of gas be- 
havior noted on the compressibility 
chart is that  for compounds with 
different values of 2, (PV/  RT at 
the critical point) lines which con- 
nect the critical point to  the point 
Z =  1.0, P,=O are tangent to  
isotherms whose reduced tempera- 
ture  is about 0.8. Algebraically 
this condition is 

(dZ/dP,)T,  = - (1 - 2,) 

at T’ Ei 0.8TC (8) 
The meager data available indi- 

cate that  T’ varies slightly frorr! 
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0.8 according to the value of 2,. 
Figure 5 is a plot of the relation 
between T and Z,, and it is seen 
that were i t  not for  the low 2, of 
water, i t  would be difficult to draw 
any curve. Of course, there are  
other compounds with low Zc)s, but 
their data a t  a T,. of 0.8 are  insuf- 
ficient to warrant their use. 

There are other characteristics 
of gas behavior indicated on the 
compressibility chart that  seem to  
5e of lesser importance than those 
nreviously mentioned. Some iso- 
herms not only go through a mini- 

mum point but also exhibit inflec- 
tions, notably those between a T,  
of 1.0 and about 1.3. Isotherms 
above the Eoyle point are almost 
straight. The compressibility fac- 
tor is approximately 1.1 to 1.2 for  
all isotherms a t  a reduced pressure 
of about 10. Although these con- 
ditions are not utilized in this pa- 
per for the obtaining of an equa- 
tion of state, they have been given 
some consideration. 

Another important diagram of 
PVT data is the pressure-tempera- 
'we (isometric) plot shown in 
Figure 6. The most important fact  
noted here is that  the isometrics 
are almost straight. I n  fact  there 
are three places where the lines 
can be considered straight:  one is 
for large volumes a t  low pressures, 
another is for  the critical volume, 
and the third is for all volumes at 
high temperatures. The) three con- 
ditions can be expressed as 

(d2P/dT2)V = 0 as P -+ 0 (9) 

(d2P/dT2) v = 0 for high T (1  1) 

Also the isometrics below the 
critical density curve down, and 
those above the critical density 
curve up.* These conditions a re  
given by the equations 

and 

(d2P/dT2)v > 0 at  V < V ,  (13) 

A final observation on the iso- 
metric chart is that  the slope of 
the vapor-pressure curve a t  the 
critical point is identical with the  
slope of the critical-density iso- 
metric. The experimental verifica- 
tion of this fact is difficult. because 
the slope of the vapor-pressure 
curve is changing very rapidly. 
Usually the slope obtained by dif- 
ferentiating a vapor-pressure equa- 
tion at the critical point is slightly 
less than the slope of the  critical 
isometric. This may be attributed 
to  the fact that  in many cases the 
vapor-pressure equation may not 
reflect the slight upward curvature 
of the vapor-pressure curve on a 
log P vs. 1JT plot in the region 
near the critical, as emphasized by 
Thodos (23). Also the critical vol- 
ume is difficult to  determine ac- 
curately, and any error in its value 

*Data on hydrogen indicate that the isometrics 
above the critical density may curve up  for a 
while, but a t  the highest reduced tem~era tures  
they start  tn curve down. Since these-high re- 
duced temperatures a r e  not encountered with 
nther compounds the negative curvature of all 
isometrics a t  s d h  high temperatures is not im- 
portant. Also a t  very high densities indications 
are that all isometrics curve down for all re- 
duced temperatures. This means that at some 
vri'y high density the isometrico for moderate 
temperatures are straight. 

would result in an error in its 
slope. From a thermodynamic point 
of view, the equality of the slope 
of the vapor-pressure curve and 
the critical isometric has been 
justified by the following analysis. 
From the Clapeyron equation the 
slope of the vapor-pressure curve 
is dP/dT = ASIAV a t  any tempera- 
ture. At  the critical point ASlAV 
becomes (dSldV)., but from the 
Maxwell relation this is ( d P / d T )  Y,. 
Therefore, the vapor pressure slope 
dPldT = ( d P l d T ) ~ , ,  which is the 
desired equality. 

Another important graph is the 
reduced-vapor-pressure plot of log 
P,. vs. l lT7 ,  as shown in Figure 7. 
The different curves are  for  a num- 
ber of different compounds. Im- 
plication of the plot is that  if two 
compounds fiall on the same curve 
at any point, they tend to lie to- 
gether over the whole range of 
temperature. The plot is extremely 
useful in filling in unexplored 
ranges of vapor pressure, provided 
that the critical temperature and 
pressure and one other point on 
khe vapor-pressure curve a re  
known. The plot is also useful for  
predicting the slope of the vapor- 
pressure curve a t  the critical point. 
Each curve approaches the critical 
point ( T ,  = 1, P ,  = 1) with a 
unique slope, d log Prld( lJTr) .  
This is called M and is designated 
on each curve. If a compound is 
known to follow one of the curves, 
then M is known. From this (dPl 
dT)v,  may be obtained as follows: 

dPr/Pv = - MdT,/T: (14) 
from the definition of M .  Since P, 
and T ,  are  both 1, 

dPr/dTr = - M (15) 
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or from the definitions of P ,  and T,, 

dP/dT = - MP,/T, = 

(16) 
This fact is of great value because 
i t  means that vapor pressure de- 
termines the PVT behavior along 
the critical isometric. 

A study of the interdependency 
of the characteristic properties of 
gases, as here presented, has led 
to a consideration of the minimum 
number of conditions or facts 
necessary to characterize the PVT 
behavior of any given compound. 
A new hypothesis is advanced that  
four properties are necessary to 
give the complete characterization 
for any compound. These are  the 
critical temperature, critical pres- 

sure, critical volume, and one point 
on the vapor-pressure curve. The 
one point on the vapor-pressure 
curve determines the slope m of 
the critical isometric, as given 
above. Mathematically this hypoth- 
esis is written as 

f ( P ,  V ,  T, P,, T,, Vc, m) = 0 (17) 

or in terms of Z,, 

If this hypothesis is compared with 
previous work, i t  i’s seen that i t  is 
not so simple as van der Waals’, 
which states that the compressi- 
bility is dependent only upon the 
critical temperature and pressure, 
or as that which says that the 

11. Derivation of the Equation 

Although there have been a num- 
ber of attempts to develop an equa- 
tion of state from kinetic theory 
and statistical mechanics, only 
token results have been obtained 
to date. The important practical 
equations which are in use tcday, 
such as the Benedict, Webb, and 
Rubin(5) and the Beattie and 
Bridgeman ( I ) ,  are empirical. The 
equation about to be developed is 
also empirical; howev&, i t  is be- 
lieved that this equation fits more 
of the known behavior characteris- 
tics of gases than does any previous 
equation. 

The form of equation represent- 
ing empirically the PVT behavior 
is chosen so that the data are rep- 
resented as nearly as possible with- 
in the precision of the experiment. 
The equation should also be reason- 
ably simple in order to be useful in 
thermodynamic calculations. Obvi- 
ously, more terms may be put into 
an equation to get better agree- 
ment with the data, but complexity 
is the penalty. In this study various 
polynomial and exponential equa- 
tions were considered. In  view of 
the fact that i t  is the derivatives 
of pressure which are given by the 
van der Waals analysis and that 
pressure is almost a linear func- 
tion of temperature at constant 
volume, equations explicit in pres- 
sure were preferred. 

Because of its symmetry and the 
ease of differentiation and integra- 
tion, the following equation was 

chosen over the others : 

where f’s are functions of tempera- 
ture and b is a constant. 

In  choosing the temperature 
functions for Equation (19), one 
first considers the character of the 
isometrics of Figure 6 .  Since these 
are straight at  the high-tempera- 
ture ends and curve only a t  the 
low ends near the saturation curve, 
any equation to represent the iso- 
metrics must become linear a t  high 
temperatures. Beattie and Bridge- 
man(1) suggested the form 

where A ,  B, and C are  functions 
of volume. Benedict, Webb, and 
Rubin employed the same form. 
The last term, which is the curva- 
ture term, was considered care- 
fully in the more general form 
ClTfi. It was found that to repre- 
sent the experimental data for  
many different compounds n varied 
from about 2 to 5, depending large- 
ly upon the critical temperature of 
the substance in question. For most 
compounds with critical tempera- 
tures near room temperature n was 
about 3, and for compounds with 
high critical temperatures, such as 
water, n was about 5. In  view of 

critical temperature, pressure, and 
volume determine the compressi- 
bility; however, accurate data show 
that  neither of these latter hypoth- 
eses is correct. 

It is the primary objective of 
this work to  develop an  equation 
which will represent the function 
implied by Equations (17) and 
(18). One might also develop 
graphical representations of those 
equations, which could be in the 
form of compressibility plots (2 
vs. P ,  with T ,  as a parameter) for 
various values of Z,, T,, and M .  
Probably a number of plots would 
be required to  cover the widest 
ranges, but such plots might prove 
sufficiently useful to justify their 
preparation. Part I1 considers only 
the equation and not the graphs. 

this variation, a different form of 
equation was selected : 

(21) 
- k T / T ,  P = A + B T +  Ce 

Equation (21) was fonnd to repre- 
sent the curvature of isometrics of 
many different compounds with 
only one value of k,  this value 
being 5.475. (This could be rounded 
off, but as  with other constants will 
be carried to preserve internal cm-  
sistency.) If Equation (21) is com- 
pared with Equation (19 ) ,  i t  is 
seen that the temperature func- 
tions, f, to  f5 ,  must be of the form 

- .5.475T/Tc 
f l  = A1 + BIT + Cle 

- 5 . 4 7 5 T / T C  
f z  = Az + B2T + Cze 

etc. (22) 
where A,, B1, C1, AP,  etc., are con- 
stants which may be finite or zero. 
Thus, with the selection of the 
complete form of the equation of 
state through Equations (19) and 
(22), the problem now is to  find 
a method of evaluating the con- 
stants. 

By virtue of the hypothesis given 
in Par t  I that the PVT behavior 
of a given compound depends only 
upon P,, T,, V, ,  and m, one must 
have recourse to the general proper- 
ties of gas behavior to see just 
how many arbitrary constants can 
be determined. The general proper- 
ties to be used are restated in the 
following summary : 
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If (d3P/dV3) in Equation (26) 
is assumed to be zero, Equations 
(35) through (38) may be substi- 
tuted into Equation (26) to de- 
termine b as" 

PV = R T a s  P-+O (23j 

( d p / d V ) ~  = 0 a t  critical (24) 

(d2P/dV2)T = 0 a t  critical (25) 

(d4P/dv4). = 0 a t  critical (27) 

i(dZ/dP,) ] = 0 a t  Boyle- 
T ,  P , = O  

point temperature TB (29) 

(dzPpldTz)v = 0 a t  V = V ,  (30) 

i(dP/dT)V = m = - MP,/T,  

at v = vc (3 1) 

By use of the foregoing nine 
Conditions plus the PVT relatian 
.at the critical point (since P,, T,, 
.and V, are to be given) determina- 
tion of an equation of state with 
ten arbitrary constants might be 
expected. Equation (26 )  however 
is not determinate as it stands, 
and so a total of only nine con- 
stants can be obtained from the 
conditions listed. 

Equation (23) is utilized by 
multiplying through Equation (19) 
by V-b and letting P approach zero 
while V, and therefore V-b, ap- 
proaches infinity.: 

PV = f i  as P+ 0 (32) 

and in the light of Equation (23),  

f i  = RT (33) 

The equation of state now becomes 

P = RT/(V-b) +fi/(V-b)'+ 

f3 /  ( - br + f 4  / ( v - b)  +fb/ ( v - b)  

(34)  
Next are employed the four de- 
rivative conditions, (24) to (27), 
and the condition that the equa- 
tion of state must be satisfied a t  
the critical point. There are five 
equations containing five unknowns, 

where f ( T , )  means the tempera- 
ture function evaluated a t  the criti- 
cal temperature. However, Equa- 
tion (26) cannot be used directly 
until the inequality is removed. 
The solution of the remaining four 
equations in terms of b is 

fi (TJ = 9 P,( Vc -  b )  '- 3.8RTc( Vc- b) 

fZ(T,) through f5(Tc),  and b, 

(35) 

17P, (V,-ZI)~ (36) 

f3(Te)  = 5.4RTc(Vc - b)'- 

f4(Te) = 12Pc (Vc-b)4-  

3.4RTC (VC-bl3 (37) 

f5(Tc) = 0.8RT, (Vc-b)4-  

3Pc (Vc-b)5 (38) 

b = Vc - 3RTc/15Pc (39) 

or in terms of Z,, 

b = V ,  - 3Vc/15Zc (40) 

The equation of state is now de- 
termined along the critical iso- 
therm; however, a comparison of 
the equation with the data for a 
number of different gases showed 
that the equation predicted pres- 
sures too high for volumes greater 
than the critical volume. Previous 
comparisons using only the two 
van der Waals derivatives and a 
correspondingly shorter equation 
of state (i.e., one terminating a t  
f 4  and with b = 0 )  showed that 
pressures in this region were pre- 
dicted too low. In another trial the 
third derivative condition was com- 
pletely neglected when an equatioln 
terminating with f4, but otherwise 
the same as Equation (19), was 
utilized. This implies that  f 5  is 
arbitrarily set equal to zero; there- 
fore, from Equation (38),  

This assumption predicted pres- 
sures too low; therefore, some in- 

*Sometime after working out the 
analysis of the derivatives at the 
critical point, it  was found that Plank 
and Joffe ( 2 0 , l l )  had studied equa- 
tions similar to  Equation (19 ) .  They 
assumed five equal roots at the criti- 
cal point, which is the same as  assum- 
ing the first four derivatives to be 
zero. This equality may be shown by 
considering the meaning of five equal 
roots a t  the critical point. Let P be a 
function of V ,  with five equal roots at  
the critical point. Then P = f ( V )  at 
T = T, and P-Po = f (V)-P,.  At 
P = P, the f ( V ) - P ,  must be zero, 
and because of the equality of five 
roots this must be equivalent to an- 
other function F ( V )  (V-V,) 5 set 
equal to zero o r  P-P, = F ( V )  (V- 
V ,  } 5, where F ( V , )  PO. Differentiating 
with respect to  V gives 

- 

d P / d V = 5 ( V - V J 4 F ( V )  + 
(V- VJ5 F' (V)  

Since V = V,, this is zero. Carrying 
on three more diffel-entiations will 
continue to give factors oT V-V,, 
which will came the derivatives to 
vanish, until me comes to the fifth 
derivative, where a t  least one term 
win not have tr,t",, i.e, €2W(V) .  
Thsp the deTivative is not zero. 
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termediate value between Equa- 
tions (40) and (41) is required. 
For this purpose let 

b = Vc - PVC/15Zc (42) 

where fi is a constant for a given 
compound. I t  can be shown that  p 
cannot be less than 3.0 or more 
than 4.0. 

By trial with the data of a num- 
ber of different compounds along 
the critical temperature line, it was 
found that 8 depended upon 2,. Use 
of the varying values of p permit- 
ted very accurate representation of 
the data up to densities about 1.5 
times the critical density. 

Figure S is a plot which gives 
as a function of Z,*. 

Since one of the original ten 
conditions was used to evaluate f l  
as K T  and since one condition was 
indeterminate but can be satisfied 
by setting the magnitude of the 
third pressure-volume derivative 
through the term p, there are eight 
conditions left to evaluate the tem- 
perature functions f, to f5. Each 
temperature function may contain 
a maximum of three constants, A, 
B, and C, and so  a total of twelve 
constants must be fixed. In  view of 
the eight conditions, four constants 
must be set equal to zero. As men- 
tioned earlier, more conditions 
might be utilized, in which case all 
twelve constants might be finite. 
However, i t  has been found that  
some constants are  much less im- 
portant than others and that  drop- 
ping four of them still leaves an  
equation which represents the data 
with a high order of accuracy. 

When the eight constants to  re- 
main in the temperature functions 
were chosen, it was felt that  the 
slope mnstants, B, and the inter- 
cept constants, A ,  were most im- 
portant, the curvature constants, C,  
being of less significance. In  order 
to apply Equation (30),  however, 
it is necessary that there be at 
least two C terms in the equation. 
The six constants left were divided 
equally between A’s and B’s. The 
followi,ng was decided upon as be- 
ing a t  least as good as any othw 
arrangement : 

f i  = RT (43) 

(44) 
- 5.475T7 

f 2  = Az + B2T + Cze 

*It will be noted on Figure 8 that f3 never 
exceeds a valire of 3.36 for the gases which 
have been studied so far. One might wonder 
about the nature of the five roots of the equa- 
tion at the critical point for i3 lying between 
3.0 and 3.35, since for 6 ~ 3 . 0 ,  it has been 
shown that the five roots are equal. Further 
analysis shows that there are three real equal 
roots and two complex roots for f3 greater 
than 3.0 and less than 3.6. 

(45) 
- 5.475T7 j 3  = A3 + B3T + C3e 

f4 = A4 (46) 

f 5  = B5T (47) 

The problem of evaluating these 
eight constants is now mathemati- 
cal manipulation of the eight con- 
ditions. From Equation (46) f, is 
a constant independent of tempera- 
ture and directly equal to A,. 
Therefore, from Equation (37), 

A 4  = f 4  (TJ = 12Pc(Vc-b)4-  

3.4RTc (Vc-b)3 (48) 

Since Equation (47) sets fs = 
B,T, f5 (T,) = B5T, and from Equa- 
tion (38),  

fz  (T’) = Az + B2T’ + 

[(RT’)2 (Zc- l ) / P C ]  - bRT’ (52) 
From Equation (29) 

and inserting this into Equation 
(51) gives 

c (dZ/dP, )  TI T =  T B ,  p,=o = 0, 

fz(TB)=Az + BzTB+ 

(53 1 

(54) 

-5 .475Tg/TC = - bRTB Cze 
Equations (52) and (53) with 

fz(T,) = A2 + B2Tc+C2e 
which is known by Equation (35) 
in  terms of P,,  T,, V,, and b, form 
a set of simultaneous equations 
with three unknowns, AB, B2, and 
C,. The solution of this set of 
simultaneous equations is 

- 5 . 4 7 5  

B5 = f 5  (Tc)/Tc = 0.8R (?‘c-b)4 - 

3Pc (Vc - b)5/T,  (49) 
The derivation of the remaining 

six constants is a little more in- 
volved. Starting with Equation 
(19),  one multiplies through by 
V -  b, substitutes PV =ZRT to  
eliminate variable V ,  and then dif- 
ferentiates partially with respect to 
pressure at constant temperature, 
to  obtain 

(d2ldP)TRT-b = (ZRT-bP) f i -  

f ZP [ (dZ /dP)  TR T - b] } / (ZR T - bP)’ 

+ { (ZRT-bP) f3P (2)  - 2f3P2 

{ 

[ (dZ /dP)  TRT- b] } / (ZR T- bP) 

+ { (ZRT-bP) f 4 P 2 ( 3 )  - 3f4P3 

[ (dz /dP)  TR T -  b] } /(ZR T - bP)4 

+ { (ZRT-bP) f5P3 (4) - 4f5P4 

[ (dZ /dP)  TRT - €4 } /ZRT-  bP)6 

(50) 
Since a t  P,  = 0, Z = 1.0, Equation 
(50) simplifies to 

-bRT (5 1) 
Combining Equations (28) and 
(51) a t  T, = TIT, gives 

(55) 
Bz=[-f2 (T,) - bRTB - C2 

(e e 11 / ( TB - TC) 
-5.475T3fTC- -5.475 

(56) 

(57) 

-5 .475  A 2 = f ~  (Tc)-B2Tc-Cze 

Substituting Equations (43) to 
(47) into Equation (19), rearrang- 
ing in the form of Equation (21),  
and differentiating twice with re- 
spect to volume give, by use of 
Equation (30), 

C3 = - Cz ( Vc- b )  (58) 
Applying Equations (31) and (58) 
gives 

B3=m (Vc-  b )  3 - R  (Vc-b)2 - 

Bz (Vc-b) - Bs/(Ve-b)’ (59) 
From Equation (45), with T = T,, 
one obtains 

- 5.475 A3 = f 3  (T,)  - B3 T ,  - C3e 
(60) 

This now completes the solution 
for all the constants in the equa- 
tion of state. If the critical tem- 
perature, critical pressure, critical 
volume, and one point on the vapor- 
pressure curve a re  known for  a 
given compound, appropriate 
graphs will give slope m of the 
critical isometric; the  Boyle point, 
TB; the  T’ point (about 0.8Tc); 
and p, the determinant of the  value 
of the third derivative of pressure 
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with respect to volume at the fairly complete and accurate, and, sufficiently broad to test the versa- 
critical point. second, the gases had t o  be as tility of the equation. The applica- 

When gases were chosen to test different as possible. Seven gases tion of this new equation of state 
the new equation, two conqldera- have been studied so far, and it is will be discussed and the calculated 
tions were paramount: first, the felt that  the selection of C02, HzO, results f o r  the seven gases studied 
PVT data for any gas had to be CsH6, N2, C3H6, H2S, and C3Hs is will be presented in Par t  111. 

111. Application and Discussion of the Equation 
In the two foregoing parts of 

this paper PVT behavior of gases 
is considered in some detail and 
appropriate algebraic equations are  
given to represent that behavior. 
A new hypothesis is stated concern- 
ing the minimum amount of in- 
formation necessary to  characterize 
any given gas and an equation of 
state with nine constants is de- 
veloped which requires only the 
minimum information according to  
the hypothesis for evaluation of 
the constants. This equation has 
been applied to seven different 

The points which are compared 
in these tables have been selected 
at places where the equation would 
represent the data least well. It is 
probable that the average deviation 
for  the equation if compared at 
regularly spaced intervals over all 
ranges of temperature and pressure 
would be less than the average of 
the deviations listed in the tables. 
which is about 0.4%. 

The precision of experimental 
data was important in the equation 
of state a t  almost every turn in its 
development. It was mecessary in 

The critical volume is the most un- 
reliable measurement, and i t  is not 
uncommon to find differences of 5% 
in this value. Naturally slope m in- 
herits any error in the determina- 
tion of critical volume when fitting 
the equation to  specific data is at- 
tempted. 

The procedures used in develop- 
ing the equation of state might 
well be of value in helping to  de- 
termine a better value of critical 
volume. Usually this value is not 
measured experimentally but is de- 
termined by a rectilinear diameter 

TABLE l.-CONSTANTS EVALUATED FOR THE EQUATION 

coz HzO CaHs N2 C3Ha H S  C3Hs 
T ,  547.5%. 1165.1"R. 562.66"K. 126.1'K. 364.92"K. 672.4"R. 666"R. 

1b. - - 1,306.0 lb. 618 
sq. in, sq. in. sq. in. sq. m. 

lh. 1b. O.lgl g .  mole Ib. mole i b . e  g .  mole 

45.61 atm. 
Pi 1069.4 lb. 32062 lb. 48.7 atm. 
V ,  0.03454 cu. tt 0.0503 cu. ft. 

33.5 atm. 

liter/ 1.565 cu. f t .  3.22% cu. f t .  - 90.1 sc*f cc./ - 3.36 g. 

2, 0.27671 0.23246 0.27683 0.29171 0.290932 0.28329 0.278465 
m 14.0 22.6 0.625 1.647 0.81 12.8 6.47 
/3 3.25 3.05 3.25 3.30* 3.25 3.25 3.25 
T B / T ,  2.3 2.1 2.15 2.5 2.3 2.3 2.3 
T ' / T ,  0.80 0.83 0.80 0.79 0.791 0.794 0.799 
b 0.007495 0.00631 01 0.730231 22.1466* 0.0487575 0.368095 
R 0.24381 0.59545 1.05052 82.055 0.082055 10.73 10.73 

B2 0,005262476 0.0312961744 2.62510 3.221.616 0.0081804454 9.7631723 21.127023 

Aa 0.18907819 3.09248249 8553.304 89,845,367 1.219453756 21133.013- 88,025.6002 

Cs +0.0831424 113.95968 156032.7 1,518,82 1,653 2 1.7717909 381,344.629 1,846,304.2 

Bg 1.9565593 X 4.2388378 X lo-' 7.53651 244,915,183 5.0385878X 3.3036675 63.416365 

0.714598 

At - 8.9273631 -85.7394396 -4104.138 - 1592238.2 - 10.2233898 -21206.0776 -44105.1544 

C* - 150.97587 -2590.5815 - 59333.234 - 22,350,930 - 153.061055 - 318,608.803 - 736,929.32 1 

Ba -0.oooO704617 -0.00082418321 -3.89165685 -134.024.05 0.00074168283 -7.41557245 -28.1649342 

Ac -0.002112459 -0 0567185967 -8599.2791 -2,467,297,480 -0.068940713 -9897.9772 - 89,907.6635 

All the constants for the equation of state are given in units of T,, P,, and I/' ,for that compound. 
* /3 for NZ could be 3.25 depending upon the manner by which the checked points on the critical isotherm are interpolated from exper- 

mental data reported. 

gases within a maximum error of 
176, and usually much less, for 
densities up to  about 1.5 times the 
critical density." Table 1 gives the 
constants that were calculated from 
the required P,, T, Vc, and m in- 
formation for each of the gases. 
Tables have been made of compari- 
sons of the pressures predicted 
from the equation of state with the 
experimentally measured pressures 
reported in the literature. 

*Calculations performed after the writing 
of this paper indicate that a t  about one and 
one half times the critical density the equa- 
tion predicts too much curvature of the iso- 
metrics. It has been found that this may be 
improved by adding a CS term to the equation 
and utilizing the condition stated in the first 
paper, that at some very high density (approxi- 
mately twice the critical density) the iso- 
metric is straight. With this condition the only 

many cases to  decide which data 
points of different investigators 
and which data points in different 
ranges were th.e most reliable, an 
especially necessary decision be- 
cause of the desire to hold the 
maximum deviation under 1%. 
Data taken in the region of the 
critical point are more inconsistent 
than those from anywhere else. 
This reflects the inherent experi- 
mental difficulties in this region. 

plot, whereh the mean saturated 
liquid and vapor density is extra- 
polated to the critical temperature, 
which has been determined by dis- 
appearance of the meniscus. An- 
other procedure which has been 
used is to determine the critical 
temperature as the lowest tempera- 
ture at which a measured pressure- 
volume line undergoes a smooth in- 
flection, the point of the inflection 
being the critical volume. These 

3 c5= -C2(Vc-b) -c3(vc-b)z 

TTere 17 is aplrroxiinately 2. 
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procedures do not agree too well 
in many cases, and two alternatives 
a re  suggested here. First, one can 
plot the vapor-pressure data on 
Figure 7 to  determine slope m. 
Then referring to  the experimental 
data, he can establish the critical 
volume as that volume whose slope 
agrees with the m so selected. This, 
of course, means that he is relying 
on the inherent accuracy of the 
slopes of the generalized vapor- 
pressure curves. An alternative to 
this is to  differentiate the vapor- 
pressure curve directly for  the 
compound and use that slope m as 
the determining factor in picking 
the critical volume. However, as 
mentioned in the first paper, this 
must be done with care for often 
the slight increase in the slope of 
the vapor-pressure curve near the 
critical is overlooked. Second, one 
may fix the critical volume by fit- 
t ing the data points on the critical 
isotherm as in step 5 in the pro- 
cedure, which will be described 
later, for obtaining an equation of 
state to fit data. When the best 
possible fit of the critical isotherm 
has been obtained by adjusting the 
critical volume and p, one may say 
that  the critical volume has been 
determined by analytical means. 
This is equivalent to fixing the 
critical volume by a study of 
graphs of the isotherms and noting 
the lowest temperature and point 
at which a pressure-volume line 
undergoes a smooth inflection. 

The Boyle-point temperature is 
worthy of further discussion in 
this work. In  the estimation of 
Boyle points for  most compounds, 
the procedure was simply to  ex- 
trapolate a large volume isometric 
t o  the point where Z =PV/RT = 1. 
This has two drawbacks: first, the  
extrapolated isometric instead of 
being straight may have a slight 
negative curvature, which will be 
important when the extrapolation 
is carried over a wide range of 
temperature; second, the Boyle 
point should be determined at zero 
pressure. It is seen on the com- 
pressibility chart, however, that  
the Boyle-point isotherm follows 
Z = 1 up to fairly appreciable pres- 
sures, so that the procedure seems 
justified. Furthermore, as the equa- 
tion is not very sensitive to  the 
Boyle point except at high tempera- 
tures, i t  seems that Figure 3, which 
correlates these extrapolated Boyle 
points with the critical tempera- 
ture, is sufficiently accurate for 
most purposes. 

As better critical data become 
available, it is expected that some 
of the correlations will change. 

Possibly new ones will be devel- 
oped; for example, even now there 
is a tendency for  the reduced slope 
M of the critical isometric to be a 
function of 2,. Several compounds 
seem to  fall out of line, but if 
future experimental work were to  
change some of the critical values 
for  these compounds the correla- 
tion might be good. 

In  general it is claimed that the 
equation reproduces the experi- 
mental data within 1% up to densi- 
ties of about 1.5 times the critical 
density and up to temperatures of 
about 1.5 times the critical tem- 
perature. At  about 1.5 times the 
critical density the  isotherms be- 
come so steep tha t  a 1% error in 
volume may cause 5% or more 
error in pressure. Therefore, it is 
not to be expected that the equa- 
tion will predict closely above 1.5 
times the critical density. This 
region, which is really the com- 
pressed-liquid region, has been 
given some consideration, and it is 
believed that  to represent i t  proper- 
ly either the term b in the equation 
will have to become a function of 
volume or more terms will have to  
be added to the equation. That b 
might change with volume seems 
reasonable when one recalls that  
the b in van der Waals’ equation 
accounts for the effective volume 
of the molecules themselves, and 
the effective volume of the mole- 
cules might become smaller as the 
gas is compressed. This is, in fact, 
the direction of the necessary 
change in b to  get agreement at 
very high densities, for the equa- 
tion at present tends to predict 
pressures too high. Decreasing b 
will increase the denominators of 
the higher power positive terms 
and thus decrease the pressure. 

An interesting application of the 
question is contemplated for mix- 
tures. Ordinarily when one wishes 
to get an equation of state for  mix- 
tures, he averages the constants in 
the equation of state for the pure 
gases involved according to some 
method of averaging such as arith- 
metical mean or geometrical mean. 
This process may be applied to the 
proposed equation ; however, an 
alternate process is permitted here. 
The fundamental constants that  de- 
termine the equation, P,, T,, V,, 
and m, may be averaged at the 
start and the equation of state for  
the mixture determined by the 
same process as would be used for  
a pure component. It is expected 
to  t ry  this out in the near future. 

Comparison of this equation with 
other equations has been deliberate- 
ly avoided, largely because of the 

misinterpretation of the term aver- 
age deviation. Although i t  may be 
generally accepted that  the average 
deviation of the Beattie-Bridgeman 
and Benedict-Webb-Rubin equa- 
tions is 0.18 and 0.34% respectively 
(7, l o ) ,  experience in applying the 
equations within the density limits 
claimed showed these values to be 
misleading, because deviations over 
1% were found in certain places. 
Therefore, this work did not try 
to compare different equations but 
tried t o  determine maximum errors 
between the equation proposed and 
the data. 

This new equation is valuable 
when applied to a compound whose 
experimental data are limited to 
only the critical temperature, pres- 
sure, and volume and one point on 
the vapor-pressure curve. Table 2 
gives a summary of the formulas 
for evaluation of the constants in 
the equation of state, together with 
the procedure for application to  any 
gas for  which the P,, T,, V,, and 
m can be obtained. 

Another situation often arises 
when i t  is desired to  fit an equation 
of state to a rather complete set of 
PVT data for a specific compound. 
The procedure of application can 
be modified. Of course, to  start, 
one may obtain the equation by 
using only the P,, T,, V,, and m; 
however, i t  is possible that a better 
fit may be obtained by utilizing all 
the data in the following procedure: 

1. Select the best values of P,, T,, 
V,, as would be done when the gen- 
eralized equation, is developed. 

Calculate 2, and read off from 
Figure 8 a value of B/Z, o r  p =  

3. Calculate the temperature func- 
tions along the critical isotherm, i.e., 

2. 

- 31.8832ze + 20.5332,. 

fz(T,), f s ? T , ) ,  etc- 
4. With the eauation established 

from 3, at the ciitical temperature 
calculate a series of pressures for dif- 
ferent densities along this isotherm. 
The maximum density t o  which this 
calculation should be carried should 
not exceed about 1.5 times the critical 
density, as  above this density it is 
known that the error becomes large. 

5. If the agreement of the calcu- 
lated and experimentally measured 
pressures is not considered satisfac- 
tory in step 4 (it ought to be within 
1% if the data are reliable), it is 
likely that an improvement can be 
made by adjusting V, and P. This 
may not seem quite right to adjust a 
data point such as  V ,  to get an  equa- 
tion of state; however, usually V ,  
cannot be determined experimentally 
with a very high degree of accuracy 
and it is quite possible that the value 
first chosen is somewhat in error. As 
usually the critical temperature and 
pressure are known with greater 
precision than the critical volume, it 
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TABLE 2.-sUMMARY OF THE FORMULAS AND PROCEDURES FOR EVALUATING THE 
ARBITRARY CONSTANTS IN THE EQUATION OF STATE 

Equation of state 

- 5.475T j T ,  - 5.47.52'/TC 
RT Az+BzT+Cze A3 + B3 T+ Cse 
V-b p=---+ +- 

(V-b)2 (V-b)3 

B5 T + A4 + 
(V - b)4 

Formulas ( i n  order o f  evaluation) 

P, v, 
152, R Tc 

where 2, = ~ 

b = V - - -  P V ,  

fz ( Tc)  = 9Pc( V ,  - b )  2_ 3.8R Tc( V ,  - b)  

(3 5)  

f4(Tc) = 12Pc (Vc-b)4 

-3.4RTc (Vc-b)3 (37) 

f5(Tc) = 0.8RTc (Vc-b)4 

- 3P, (Vc-bI5 (38) 

( V  - b)5  

C3 = - (V ,  - b)  Cz (58) 

- 5.475 Az = f 2  (T,) - BzT, - Cze 
(57) 

BI = m (V,-b)3- R (V,-b)* 

-B2 (V,-b) - -- B5 (59) (Vc- b ) z  

- Ii.475 
A I  = f 3  (T,) - B3T, - C3e 

(60) 

(56) - e - 5.475) 
-5,475 T B I T ,  

-fz (T,) - bRTe - Cz(e Bz = 

T B  - T ,  

Procedure f o r  application of the fore- 
going formulas t o  obtain the equation 
of state for a given compound 

1. Select the best values of T,, P ,  
and V,. In case any of these are not 
known or are in doubt, refer to Hou- 
gen and Watson(l0) for procedures 
for estimating. 

2.  Calculate 2, = P,V ,IRT,. 
3. Read off the Boyle temperature 

T ,  from Figure 3. 
4. Read off the T' temperature from 

Figure 5, o r 3  = - 0.67512, + 
T' 

0.9869. 
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5. Read off the third derivative 
characteristic (3 from Figure 8, or 
(3 zz - 31.8832,' + 20.5332,. 

6. Calculate the reduced tempera- 
ture and pressure of a vapor-pressure 
point and place on Figure 7. By in- 
terpolation estimate the value of M .  
and from this calculate dpldT = rn = 
- MP,/  T,. 

7. With P,, T,, V,, rn, T,, T', and B 
now fixed, substitute in the foregoing 
formulas. 

A.1.Ch.E. Journal 

i s  not recommended that these be 
changed unless the experimental 
values have been determined or pre- 
sented with a considerable lack of 
precision. Also as V ,  is changed, the 
value of 2, will change and a dif- 
ferent (3 will be predicted from Figure 
8. One need not limit the values of B 
to this graph, however, for if the 
selection of another (3 value which 
does not fit the graph will give a bet- 
ter  fit of the data, that  is the one to 
use. From the nature of the equation 
(3 must lie between 3 and 4 to retain 
the correct inflection a t  the critical 
point. As a guide in predicting the 
effects of adjusting (3 and V,, i t  has 
been found by trial that  increasing B 
tends to decrease all pressures on the 
critical isotherm except at the critical 
point itself; whereas, increasing V, 
tends to increase all pressures on the 
critical isotherm. 

6. When the critical isotherm is 
represented accurately by the equa- 
tion, read off a value of T ,  and T ' / T ,  
from Figures 3 and 5, or 

T'1 T ,  - 0.67512, + 0.9869 
7. Obtain slope m by reference to 

the data for the critical isometric. 
Usually this can be done easily by 
reading off one high temperature 
point on the critical isometric and 
calculating m = (P-P,) / (T-T,)  . 

8. Evaluate all the constants in the 
temperature functions so that  the 
equation is completely determined. 

9. Calculate a few points at high 
temperatures and low temperatures 
(near the saturation curve) for sev- 
eral isometrics, the latter being taken 
for example at densities about 2570 
greater than the critical density, 
about two thirds the critical density, 
about one quarter the critical density, 
and about one tenth o r  one twentieth 
the critical density. Of course, the 
exact densities will be those avail- 
able from the data. 

10. If the calculated points do not 
agree with the data with the desired 
degree of precision, the values of m, 
T,, and T' may be adjusted. The ef- 
fect of changing these values is ap- 
proximately as  follows. Increasing m 
increases the pressure a t  higher tem- 
peratures for densities near the criti- 
cal. Increasing the Boyle temperature 
T, decreases the pressure at higher 
temperatures for low densities. In- 
creasing T' increases the pressure a t  
higher temperature for medium densi- 
ties a t  about half the critical density 
while it decreases the pressure for 
temperatures near the saturation 
curve. There is  one other parameter 
which may be changed in the equa- 
tion, the constant in the exponential 
term, which is given as  5.475, but it 
might be shifted a little in a particu- 
lar case. In  general increasing this 
constant has about the same effect a s  
increasing T'. 

11. I t  is good practice to check on 
the calculation of the constants by 
substituting V ,  into the equation 
obtained a t  the end of step 3 to see 
whether i t  produces the critical pres- 
sure. The procedure should be re- 
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peated a t  the end of step 8. These are 
not considered complete checks on the 
work, but they reveal most of the 
errors which might be introduced into 
the calculations. 

In conclusion the new equation 
should have some value where one 
wishes accurate PVT representa- 
tion from a minimum of data or 
where one wishes t o  represent some 
data with an empirical equation, 
Even at this time the equation is 
being employed t o  calculate the 
thermodynamic properties of a 
compound for which the PVT data 
are meager. The equation permits 
all the usual differentiations and 
integrations required for  such 
thermodynamic treatment. For ex- 
ample, the changes in enthalpy and 
entropy may be given in terms of 
the ideal-gas heat capacities and 
the equation of state. 

and 

+ c2 

(V-b 
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NOTATION 

A, B, and C = functions of specific 
volume 

4, B,, (32, -43, B3, C3, A,, and B5 = 
characteristic constants 

C, = heat capacity at constant pres- 
sure 

H = enthalpy 
M = slope of reduced vapor pres- 

sure curve at critical Doint = 

P = pressure 
R = universal gas constant 
S = entropy 
T =temperature in absolute scale 
T, = absolute temperature at  Boyle 

point 
T’ = absolute temperature for  

which the slope at P,=O of 
the isotherm on the com- 
pressibility chart equals the 
slope of the line joining the 
critical point and (Z= 1, 
P, = 0) 

V=specific volume o r  mole vol- 
ume 

PV 2 = compressibility factor = - 
RT 

b = a characteristic constant for a 

e = base of natural logarithm, 

fl, f2, f3, f 4 ,  f5 = temperature func- 
tions 

f l ( T c > ,  f z ( T c > ,  f 3 ( T c ) ,  f4(T,), and 
f5 (T,) = temperature functions 

evaluated a t  T = T, 
m = slope of the critical isometric 

on pressure-temperature dia- 
gram 

given substance 

2.71828 

(g) = - M -  PC 
v=vc TC 

Greek Letters 

ct = residual volume = - RT - v 
P 

P = a characteristic constalnt in 

p = Joule-Thompson coefficient = 

Wf1 
Subscripts 

c = the value at critical point, e.g., 
T,, P,, V,, and 2, 

A.1.Ch.E. Journal 

T 
T = reduced property, T ,  z7, f c  

D 
P - A, etc. ,-- Y ,  
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