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A complete analyticol solution i s  developed for the number of equilibrium stages in separa- 
tions processes for which operating and equilibrium lines are not necessarily straight. The re- 
sulting equations are solutions of a Riccati difference equation and are applied to liquid-liquid 
extraction and the distillation of a binary mixture where the liquid and vapor flows are not con- 
stant because of the variation of the saturated liquid and vapor enthalpies with concentration. 
A specific example is given for the separation of ethyl alcohol and water in which the equilib- 
rium curve is highly nonlinear and where a large number of plates are required in a pinch 
region. Another example is given for the extraction of methylcyclopentane from its solution in 
n-hexane using aniline as a selective solvent. 

Many problems in the design of equilibrium-stage 
equipment reduce to a solution of a finite difference equa- 
tion that is dependent upon a so-called operating line or 
function and an equilibrium curve. Outstanding examples 
are the separations operations such as absorption, strip- 
ping, rectification, leaching, and extraction, and chemical 
reactions in a series of plates or tanks. A major objective 
in these operations is to determine the number of stages 
required to accomplish a desired separation when given 
specific equilibrium and operating lines. In the most 
general case the functional forms of these lines may be so 
complex that the resulting difference equation can be 
solved only by tedious repetitive stage-to-stage calcula- 
tions. McCabe and Thiele ( 4 ) ,  Ponchon (6), and Savarit 
(8) presented ingenious graphical techniques to carry out 
repeated stepwise balances. Kremser ( 3 ) ,  Fenske (2 ) ,  
Smoker ( 9 ) ,  and Tiller and Tour ( I  0) developed analyti- 
cal solutions for certain specialized cases; however, no 
general solution has been presented yet. This study es- 
sentially generalizes and extends the work of Tiller and 
Tour and demonstrates how a broad class of stage-wise 
operations can be treated effectively. 

In this age of the electronic computer one might say 
that the stage-to-stage calculation is the proper one to use 
since the computer can do a multitude of these caIculations 
in a short time. However, even with the high-speed, large- 
storage computer, it may be time-consuming and costly to 
solve a many-stage problem for a wide range of the vari- 
ables. Consequently, an analytical solution of a stage-wise 
problem is highly desirable, as it can be programmed on 
the computer and then solved for many different values of 
the parameters. The following development yields a solu- 
tion that is of general applicability to a large number of 
separations problems. 

DEVELOPMENT OF THE ANALYTICAL SOLUTION 

In many instances of stage-wise operations, the operat- 
ing line that results from material and energy balances 

around a given stage can be represented by an equation 
of the form y n  = axn+l + bxn+i yn + c (1) 
Here y represents the concentration of a certain compo- 
nent in one phase, x is the concentration of that component 
in another phase, subscripts n or n + 1 refer to the num- 
ber of the stage, and a, b, and c are constants that depend 
upon variables, such as liquid and gas flow rates or en- 
thalpies, which are set by the conditions of the problem. 
The exceptional versatility of the functional form of Equa- 
tion (1) is worth emphasizing, for although the equation 
appears to be relatively simple, proper specialization of 
the constants permits representation of a linear operating 
line or one that is quite curved. Furthermore, in some 
cases it is possible to represent an unusually shaped oper- 
ating line by segmental application of Equation ( 1) , with 
the various segments having the same value and slope at 
their junction points. 

Corresponding to the operating line there is an equilib- 
rium curve which often may be expressed by an equation 
of form similar to Equation (1): 

Here the variables are defined as above and a,  p, and y 
are arbitrary constants necessary for proper representation 
of the equilibrium curve. The only difference between 
Equations (1) and ( 2 )  is that the former involves y at 
the nth stage and x at the n + 1 th stage, whereas the 
latter involves y and x at the same stage whether it be n, 
n + 1, or otherwise. Again Equation ( 2 )  has the same 
versatility as ( l) ,  and its constants may be set to repre- 
sent straight or curved lines or it may be applied piece- 
by-piece to fit a tortuous equilibrium curve as long as it is 
single-valued. A special case of the equation is the con- 
stant relative volatility function used in distillation. 

Since Equation ( 2 )  holds for any given stage, it may 
be applied in its bilinear or linear fractional transformation 
form to the n $- 1 th stage as 

tjn = a x n  + ~ 3 ~ n  yn + y ( 2 )  

y n + l -  y 
X n + l  = (3)  + B y n + l  
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Insertion of (3) into (1) yields 

( 8 -  b ) y n + l  y n -  (U + cji)yn+l + (01 + b y ) y n  + U Y -  ~a = 0 (4) 
or when new constants are defined 

and 

Equation (4)  becomes 

A = - ( a  i- c/3)/@-- b ) , B  = (a + b y ) / ( @ -  b )  

c =  ( u y - c a ) / ( j ? - b )  

yn+l yn + Ayn+l + Byn + C = 0 ( 5 )  

Equation ( 5 )  is recognized as a Riccati nonlinear differ- 
ence equation whose solution (see Appendix) may be ob- 
tained in different ways. The summed or integrated forms 
for a total of N stages taken from yn = yo at n = 0 to 
y n  = LJN at n = N ,  are 

(YN + A - E z )  (go + A - E l )  

log ( Y N  + A -  E l )  (YO + A -  E z )  
N = .  (6) 

Ei 
E2 

log - 

E I ( y 0 - p )  
N =  ( 7 )  

( 8 )  

( Y N  + A - E l )  (YO + A - E l )  

8 2 -  81 N = - -  
6 

In these equations Ei and Ez are the roots of a discrimi- 
nant equation 

and 

or if b and j3 vanish and u = a 

(16) N = -  Y N - V  

7--c 
In summary, Equations (6), ( 7 ) ,  (8), (15), and (16) 

will give the number of stages in any process for which 
equilibrium and operating curves are of the form of Equa- 
tions (1) and (2) or any modification thereof. These 
summed or integrated forms have been obtained for the 
case of specifred values of yo and YN. If a special material 
or energy balance applies to the first and last stages, so 
that they are different from the others, it may be necessary 
to utilize yi and ~ N - I  instead of yo and YN. This is easily 
done by following exactly the same procedure as given in 
the Appendix, but introducing 91 at n = 1 and YN-I at 
N - 1. The solutions to the difference equations before 
introduction of the limits are precisely the same. 

Of the many possible applications of the equations 
which have been developed, two have been selected to 
illustrate the procedure and utility of the analytical method. 
The first is in the field of distillation and the second in 
liquid-liquid extraction. 

RECTIFICATION OF A N  ALCOHOL-WATER MIXTURE 

Problem 
A 61 wt. % ethyl a lcohol49 wt. % water mixture is 

to be enriched to 92 wt. % alcohol in a rectifying column 
operating at atmospheric pressure. The feed is a satu- 
rated vapor while the product (and reflux) removed from 
a total overhead condenser is to be saturated liquid. With 
a reflux ratio (defined as the ratio of liquid reflux re- 
turned to the top plate from the condenser to the vapor 
stream from the top plate to the condenser) of 0.6, cal- 
culate the number of equilibrium plates required for the 
separation. Take into account the variation of liquid and 
vapor flow from plate to plate owing to the enthalpy-com- 
position effects. The column may be assumed to operate 
adiabatically. 

Solution 

In the usual and well-known way, material and energy 
balances are taken around a section from just above the 
nth plate to and including the Nth plate at the top of the 
column. These are straightforward and are given here 
only to present the complete analysis. 

The overall material balance is 

V n  + L, = V N  + Ln+i 

where V is the vapor flow rate, L the liquid flow rate, 
subscripts n, n + 1, and N are plate numbers as defined 
earlier, and T refers to the reflux. The balance on the more 
volatile component is 

(17) 

V n y n  + L ~ X D  = V N X D  + Ln + 1 xn + 1 (18) 

where x and y refer to concentrations in mass fractions of 
the more volatile component in liquid and vapor streams, 
respectively, and subscript D refers to the distillate prod- 
uct. The enthalpy balance is 

VnHn + LrhD = VNHN + Ln+lhn+l 
where h and H are the specific enthalpies of the liquid and 
vapor, respectively. When v n / v N  is eliminated from (17) 
and (18) and the conventional reflux ratio is defined 

one obtains 

(19) 

R = LJVN (20) 

= E l ,  if the square root vanishes. 
If the roots are real and unequal, Equation (6) is to be 
used. If the roots are equal, Equation (7)  applies, and if 
the roots are complex, Equation (8) is required with 

(10) 

(11) 

2P 6 = arctan ~ 

A - B  

P 
Y N  + ( A  4- B ) / 2  

62 = arctan 

(12) 
P 

yo + ( A  -t B ) / 2  
81 = arctan 

and ip=d(7) A + B  - c  

One further special case needs to be noted. If in Equa- 
tion (4) the term, /3 - b, vanishes, such as if both /3 and 
b are either zero or equal, the resulting difference equa- 
tion will be of the form 

- ( a . + c S ) y n + l +  ( a + b y ) y n + a y - c a = O  (14) 

This is readily recognized as a first-order linear difference 
equation whose solution is obtained by similar procedures 
as 

y N ( a + c p - a - b y )  - a y + c a  

log -yo ( a  + CB - a - by) - ay + Ca 
N =  (15) . ,  f f+h  log - 

a 4- cS 
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0.702 - 0.408 x and when the same procedure is followed with Equations 
(17) and (19) 

L*+l - ( H n - h n t i )  + H n +  (ho-Hn) R = H N  (22) VN 

When Ln+l/VN is eliminated from (21) and (22) 

( X ~ - y n ) ( l - R ) ( H n - h n t i )  

= [ H N - H ~ -  ( h ~ - H n ) R ] ( y n - % n + l )  (23) 

Linear expressions for the enthalpies as functions of com- 
position with arbitrary constants, b,, mu, bi, and mi, are 
now employed in the forms 

and 

When these are put into (23), the result is 

(XD- y n )  ( 1  - R )  (bv + mvyn- bi-mixn+l) 
= [ H N -  bv - mvyn - (ho - bv - mvyn)R] ( yn - xn+i )  

This is the equation of the operating curve which can be 
rearranged to 

(xDmv - RXDmu + bc - Rbi - H N  + Rho) y n  

(26) 

= (XDml- RXDml- H N  + bv - Rbv + Rho) Xn + 1 + (mu - Rmv- mi + Rmi)ynxn+1 

Comparison of (27) with Equation (1) shows the two 
forms are identical if 

+ xDbi - XDbu + RxDbv - RxDbt (27) 

xomt - RXDmi - H N  + bu - Rbv + RhD 

xomv - RXDmv + bi - Rbi - H N  + Rho 

mu - Rmu - mi + Rmi 

xDmv - RXDmu + bi - Rbi - H N  + Rho 

a =  (28) 

b =  (29) 

C =  (30)  

and 
%obi - xDbu 4- RXDbv - RXDbl 

xDmu - R X D ~  + bi - Rbi - H N  + Rho 

The curve represented by (27) is usually not straight 
unless mu = mi, as noted in (29), in which case the non- 
linear term, bynxn+i, of Equation (1) vanishes. This is 
the well-known McCabe and Thiele ( 4 )  assumption which 
results in a straight operating line. 

Analytical expressions that fit the enthalpy-composition 
data given by Brown (1) with excellent precision are 

and 
h = 156 - 6 6 ~  

where H is the enthalpy of the saturated vapor in British 
thermal units per pound, h is the saturated liquid enthalpy 
in British thermal units per pound, and x and y are mass 
fractions of alcohol in the liquid and vapor, respectively. 
Since the vapor-liquid equilibrium curve ( I ,  5, 7) inflects 
at about x = 0.5, the relative volatility equation 

H = 1,150 - 6929 (31) 

(32) 

(YX 

y =  I +  ( a - l ) x  (33) 

cannot be used. Two equations covering the respective 
ranges from x = 0 to 0.5 and x = 0.5 to 1.0 were ob- 
tained simply by passing them through two points, includ- 
ing the 0.5 point, and giving them equal slopes at  this 
point. The resulting equations are 

11.689 x 
for 0 < x < 0.5 (34) 

= 1 + 1 3 . 2 1 ~  

~ _._ 

for 0.5 < x < 1.0 
= 1 - 0.704 x ( 3 5 )  

Equation (35) for the uppel range predicts the azeotrope 
at  a composition of 0.9467, and both equations predict 
y = 0.76851 at the junction point, x = 0.5. 

The numerical calculations may now be made. The 
constants for Equations (28),  (29), and (30) must first 
be assembled. When one compares Equations (31) and 
(32) with (24) and (25), it is seen that bv = 1,150, 
mu = - 692, bi = 156, and mi = - 66. From the state- 
ment of the problem XD = 0.92, R = 0.6. When XD = 
0.92 is put into (24) and (25) one obtains H N  = 1,150 - 
692 (0.92) = 513.36, hD = 156 - 66(0.92) = 95.28. 
The a, b, and c may now be calculated from (28), (29), 
and (30). When Equation (34) is compared with (2) ,  
the equilibrium equation constants for the part of the 
column where y is less than the junction point y of 0.76851 
are 01 = 11.689, B = - 13.21, y = 0. The constants in 
Equation ( 5 )  are calculated from the relations preceding 
that equation, namely 

and 

The results are A = -0.5457594, B = -0.8597285, 
C = 0.4849761. These numbers are introduced into 
Equation (9)  to obtain the roots, E1,2 = 0.1569845 t 
0.0941962 so that Ei = 0.2511807 and E2 = 0.0627883. 
Since the roots are real and different, the number of plates 
in this section is given by Equation (6) .  When this equa- 
tion is applied, the limiting values of y are yo = 0.61 and 
Y N  = 0.76851. One can describe the feed composition of 
0.61 as yo only because the feed is saturated vapor which 
gives the first plate the same energy and mass balances as 
all the other plates that follow the general operating line. 
If the feed condition had been other than a saturated 
vapor, it would have been necessary to write a special 
balance around the first plate, calculate yi, and use that 
as a limit in the summed Equation (7A"). Equation (6)  
gives for the part of the column below y = 0.76851, N = 
4.75. For the part of the column above y = 0.76851, one 
uses the same values of a, b, and c calculated before from 
Equations (28) (29), and (30).  When (35) is compared 
with ( 2 ) ,  the equilibrium equation constants for the part 
of the column where y is greater than 0.76851 are a = - 
0.408, fl  = 0.704, y = 0.702. Equations (36), (37),  and 
(38) may now be used to obtain for the upper section of 
the column, A = -1.3488353, B = -0.4307754, C = 
0.7938584. When these numbers are inserted into Equa- 
tion (9)  one obtains the roots Ei = -0.4590300 + 
0.045879 i, E2 = -0.4590300 - 0.045879 i. Because 
these roots are complex the number of plates in this section 
is given by Equation (8) .  In order to calculate the angles, 
8, 81, and 82, it is noted that for this section of the column 
yo = 0.76851, Y N  = 0.92. From Equations (9)  and (13) 
it is seen that p = 0.045879. Thus, it is found from ( lo) ,  
( l l ) ,  and (12) that 8 = arctan (-0.0999477) = -5"- 
42', 02 = arctan (1.5194403) = 56"-39', 81 = arctan 
(-0.3782421) = 159"-17'. From Equation (8) the num- 

56" -39'-159" -17' 
-5 "-42' ber of plates in the upper section is N = 
-- 

* A refers to the Appendix to this paper. 
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N 8.N (5"- 4 2 ' )  H e , . =  i 5 g 0 - v 1  

Fig. 1. Vectors in complex plane for upper part of distillation 
problem. 

= 18.01 plates. The total number of equilibrium plates 
in the column is, therefore, N = 4.75 + 18.01 = 22.76. 

The calculation of the number of plates in the upper 
region of the complex solution requires further explanation 
because the arc tangent of a number is a multiple-valued 
angle. This will give those uninitiated in complex numbers 
considerable difficulty, and, indeed, a lack of full under- 
standing of this problem delayed the publication of this 
paper almost ten years. The angle 81 is determined by a 
vector in the complex plane as given by Equations (22A) 
and (23A). The position of this vector is shown in Figure 
1. Because the real part of the complex number is nega- 
tive, the vector must lie in the second quadrant rather 
than in the fourth, even though in both cases tan 81 = 
-0.3782421. This vector is called the lower limit vector 
because its position is specified by the lower limit of 
summation of the difference equations, yo. Correspond- 
ingly, the upper limit vector is determined by Y N  in Equa- 
tions (20A) and (21A). It is seen in Figure l that the 
positive value of the real part of the complex number here 
places the vector in the first quadrant rather than the 
third even though in both cases tan 62 = 1.5194403. 

Now the process of passing from the lower limit at 81 
to the upper limit at 82 merely involves rotation of a vector 
clockwise from 159"-39' back to 56"-31'. The incremental 
angle passed through for each stage in this rotation is 8 
which is determined by the stage modulus which is de- 
finedaslog (Ei /Ezorlog{[(A- B)/2+ip]/[A-?3)/  
2 - ip]}. Since the rotation is in a negative direction, it 
is necessary that the stage modulus be negative in order to 
end up with a positive number of stages, since a negative 
number would have no real significance. Consequently, B is 
taken as a negative angle in the fourth quadrant. If 
(A - B)/2, which is the real part of the vector in the 
stage modulus, is negative as it is in this example problem 
[ ( A  - B)/2 = - 0.459031, one would be tempted to 
argue that the stage modulus vector given as angle 6 must 
lie in the second quadrant. A simple device showing the 
alternate possibility that it may lie in the fourth quadrant 
is to multiply numerator and denominator of the stage 
modulus by -1, so that in Equation (42A) the lefthand 
side would be {[(B-A)/2--ipl/C(B-A)/2 ++]IN. 
The complex number may be defined as 

(39) 

It  will be seen that if one follows the procedure used in 
Equations ( 17A) through (25A), the resulting equation 
for N is 

reis = ( B - A ) / 2  + i p  

e2 - o1 Nz- (40) , ,  - 6  

where 0 is the positive angle 5'42'. Thus, the answer is 
the same as it would be if the angle 8 were -(So-42') in 
the first place; the negative sign arises automatically to 
account for negative rotation of the vector from the lower 
limit position to the upper limit position. 

The problem of handling the vectors in the complex 
solution has its exact counterpart in the real solution. In 
Equation ( 6 ) ,  log (EdE2) is the stage modulus, as be- 
fore, showing just how much advance will take place 

along the real axis per stage. The total range along the 
real axis to be covered is the range from the lower limit 
number, (yo + A - Ei)/(yo + A - E2), to the upper 
limit number, ( Y N  + A - E2) / ( Y N  + A - E l ) .  Handling 
these real numbers usually offers no difficulty, but ex- 
perience with many students has shown that the inter- 
pretation of complex numbers requires the above explana- 
tion. 

A number of other important features of the method as 
illustrated by the alcohol-water problem should be men- 
tioned. Figure 2 shows the graphical solution. The operat- 
ing line is merely a plot of Equation (1) with the values 
of a, b, and c from the problem. The number of plates 
stepped off between the operating line and the equilibrium 
curve agrees well with the calculated number, but it re- 
quired a much larger graph and a sharp pencil to get this 
number precisely. Carrying eight or ten significant figures 
in the analytical solution is equivalent to using an ex- 
tremely large piece of graph paper. This problem is even 
worse on a Ponchon diagram. Consequently, the proposed 
analytical solution offers a considerable advantage when 
many plates are to be counted in a pinch region where the 
operating and equilibrium curves are close together. When 
the numbers in the problem that determine the discrimi- 
nant are studied, it may also be shown that it is necessary 
to carry several significant figures or one cannot ascertain 
correctly whether to use Equation (6 ) ,  (7)  or ( 8 ) .  The 
number of figures to use depends directly on the closeness 
of the equilibrium and operating lines. 

I t  is noted that the operating curve intersects the equi- 
librium curve at a point just below the inlet feed composi- 
tion. This point can easily be obtained by simultaneous 
solution of Equations (1) and (2)  by letting the x n + l  of 
( 1) be the same as the xn of (2 ) .  The point is also deter- 
mined by letting yo be a variable and solving for its value 
in the lower limit number that makes this number go to 
infinity. This happens when E2 - yo - A = 0, or for this 
problem 

YO = E2 - A = 0.0627883 + 0.5457594 = 0.6085477 

If yo is taken less than this value, a logarithm of a nega- 
tive number will appear in the solution to show that there 
is an impossible situation, for the plates cannot be counted 

Y 

X 

Fig. 2. Graphical solution of distillation problem. 

Vol. 9, No. 5 A.1.Ch.E. Journal Page 649 



in a pinch past an intersection point of the operating and 
equilibrium curves. 

If total reflux is used, it will be found that the roots of 
the discriminant equation are real and different. If the re- 
flux is left a variable in the discriminant and the square 
root term is set equal to zero, the special case will be 
determined where the roots are equal and the solution will 
be given by Equation (7) .  It will be found that R occurs 
in a quadratic equation at this condition and will take on 
two values. These values are R = 0.898 and R = 0.543. 
A t  the first value an operating line will be determined 
which is tangent to the equilibrium curve at a point out- 
side the range of interest (that is, for x >> 0.92), but at 
the second value the operating curve becomes tangent to 
the equilibrium curve at x = 0.83. This value of 0.543 is, 
therefore, the minimum reflux based on the upper portion 
of the diagram. If R = 0.543 is used, the operating line 
will intersect the equilibrium curve at a point above the 
feed concentration of 0.61. Therefore the minimum reflux 
for the case of a feed fixed at  0.61 is just a bit under the 
0.6 given in the problem, since the intersection point at 
0.61 is the limiting condition rather than the tangency 
point at  0.83. 

For reflux ratios between 0.898 and 1.0, the operating 
line intersects the equilibrium curve (when only the upper 
portion above 0.76351 is considered), the roots of the 
discriminant are real, and the solution is given by Equation 
(6) .  At R = 0.898, the solution is given by Equation ( 7 ) .  
Between R = 0.898 and 0.543, the equilibrium curve and 
the operating line never intersect, the roots are complex, 
and the solution is given by Equation (8) .  At R = 0.543, 
the solution is given by Equation (7 ) ,  but it will yield an 
infinite number of plates, since this is the point at which 
the equilibrium and operating curves are tangent at 0.83. 
For any R < 0.543, logarithms of negative numbers will 
occur and the solutions are meaningless. 

LIQUID-LIQUID EXTRACTION 

Problem* 

A mixture of 0.4 mole fraction methylcyclopentane and 
0.6 mole fraction n-hexane is to be contacted with an ani- 
line solvent in a liquid-liquid extraction battery to extract 
the methylcyclopentane. The extract is to be distilled to 
recover the solvent as 0.995 mole fraction aniline and 
0.005 mole fraction methylcyclopentane. This solution is 
combined with a small amount of makeup solvent of the 
same concentration and introduced into the first stage as 
the extracting solvent. The methylcyclopentane-rich stream 
from the distillation column is to contain 0.700 mole frac- 
tion methylcyclopentane, 0.184 mole fraction n-hexane, 
and 0.116 mole fraction aniline. A portion of this stream 
will be taken as the product and the rest returned to the 
extraction system as reflux. The ratio of reflux to product is 
to be 10 to 1. The raffinate stream is to contain 0.150 
mole fraction methylcyclopentane. Determine the number 
of ideal contact stages above and below the entry point 
for the feed. 

Solution 
It is simpler to solve this problem by converting all con- 

centrations from mole fractions to mole ratios. This has 
been done with the simple relations 

1 
x ~ , = 0 7 0 0 . X ~ ~ = 0  792 

x ~ = 0  184,Xep= 0 208 

xs,=O I16,Xsp=0.131Z 

- - - - - - - -- -- 7 

1 ,- --------~_CSYSTEM #I 

I ’  DISTILLATION ’ 
‘ * I  ! I  ] C O L U M N  h‘ 

x A F = 0 4 . x ,  = 0 4  

X S F . 0 , X  5 F  = o  

x , , = O 6 , X B F = O  6 

I L , : I  -i I I  

I “i 
I 
1 
I 
I 
I 1 L. 

F 

YA~:O 005, YA,= I 

Y,,=O . Y S $ O  

Ys0= 0995.  Yso= 199 

,SYSTEM # 3 

F =  FEED 
L =  RAFFINATE STREAM 

P = EXTRACT PRODUCT 

R = RAFFINATE PRODUCT 

S =  MAKEUP SOLVENT 

V = EXTRPICT STREAM 

xA,=O 15 

S 

Fig. 3. Liquid-liquid extraction system with extract reflux. 

YS Ys = - 
Y* + YB (43) 

Y is the ratio in the extract phase of moles of a given 
component to the moles of two other components, A and 
B, where A refers to the methylcyclopentane, B to the 
n-hexane, and S to the solvent, aniline; the 9’s are mole 
fractions. The same relations hold for X’s and x’s which 
designate concentrations in the raffinate phase. Conse- 
quently, the specified concentrations of the problem may 
be converted to mole ratio units and the flows may be 
expressed in moles of A and B. Figure 3 shows the con- 
centrations specified by the problem in both mole frac- 
tions and mole ratios. 

It is also convenient to develop analytical expressions 
for the equilibrium data given by Brown, using the mole 
ratio units. In the extract phase it is desirable to relate 
the concentration of aniline to that of the methylcyclo- 
pentane. The data are correlated well over the range of 
concentrations of the problem by the linear equation 

Y s  = ~ Y Y A  + by = - 8 . 4 Y ~  + 11.6 (44) 
Correspondingly, in the raffinate phase another linear ex- 
pression relates the aniline concentration to that of the 
methylcyclopentane : 

Xs = WZXXA + bx = 0.09 X A  + 0.06 

The phase equilibrium data for the methylcyclopentane 
form a smooth uninflected curve and are fitted well over 
the desired concentration range by an equation of the 
form of Equation (2).  With the constants evaluated this is 

(45) 

C~XA + y 

1 - pXA 

1.42 XA + 0.033 

1 + 0.44 XA (46) - Y A  = - 

The usual ma,terial balances around portions of an ex- 
traction system are made as shown in Figure 3. Around 
system no. 1, the distillation column, the total material 
balance is 

VN = VD + L?‘ + P (47) 

Q This problem is taken from Brown ( 1 ) . where VN is the extract stream from the Nth stage, VD 
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is the recovered solvent from the distillation column, L r  
is the reflux, and P is the product, all in moles of A and 
B per unit time. A material balance for methylcyclopen- 
tane gives 

The material balance on the aniline is 
(48) 

(49) 

VNYAN = V D Y A D  + L r X A p  + P x A p  

VNYSN = VDYSD + L r X s p  + P X s p  

From the problem statement, Lr /P  = 10, X A P  = 0.792, 
X s p  = 0.1312, Y A D  = 1, and Ysp = 199, as shown in 
Figure 3, and one may combine (471, (48), and (49) and 
employ (44) to obtain VN/P = 11.27056, VD/P = 0.27056, 
YAN = 0.797, Y s N  = 4.905. Material balances around 
system no. 2 are 

(50)  Vn + Lr = VN + Ln+l 

VnYAn + L J A P  = V N Y A N  + Ln + l X A n  + 1 

VnYsn + L r X s p  = VNKSN + L n + l X S n + l  

(51 ) 

(52) 
and 

These three equations may be combined in the same 
manner as (17), (18), and (19). Also (44) and (45) 
may be utilized to eliminate the aniline concentration 
terms. The result is 

YAn = d A n +  1 + b Y A n X A n +  1 + C (53) 
where 

a =  (54) 

( r - l ) m x +  ( r - l ) m x  
b =  (55)  

C =  (56) 

YAnmx - T X A p W k  - YSN - ( T  - 1) by + rxsp 
myYAN - T X A p  - ( r  - 1) bx - Y S N  + T X S P  

myYAN - rXApmy - ( T  - 1) bx YSN f T x S p  

rxApby - bYYAN + bxYAN -rXapbx 

myYArJ - T x A p m y  - ( T  - 1) bx Y S N  f T x S p  

and the reflux ratio is defined as 
Lr 
V N  

T = -  (57) 

Equations (46) and (53) may be combined by elminat- 
ing Y A  to yield 

Xn+lXn  + A X n + l +  BXn  + C = 0 
with 

a + yb A=--- 
aj3 - ab 

(58) 

(59) 

(61) C=- Y - C  

ab - ab 

Clearly Equation (58) is the same form as Equation (5) 
with X’s in place of 9’s. Consequently, the solution Equa- 
tions (6) ,  (7) ,  ( 8 ) ,  (15),  and (16) are directly applic- 
able. The following constants are readily noted from the 
data to be X A ~  = 0.792, X s p  = 0.1312, r = 0.88727, 
my = -8.4, b y  = 11.6, mx = 0.09, bx = 0.06, 01 = 1.42, 
P = -0.44, y = 0.033. From Equations (54),  (55), 
(56) ,  (59),  (BO),  and (61), the values of A, B, and C 
are found to be A = 1.21378, B = -2.57579, C = 
0.31315. Insertion of these values into Equation (9)  gives 
E i  = 2.28288, Ez = 1.50670. Since these roots are real 
and unequal, the solution is given by Equation (6)  in the 
form 

(62) 

XAN + A -  EZ X A l  + A - El  
1% ( XAN + A - EI >( X A l  + A - EZ 

N - l =  

This form is obtained from (6A) by taking the definite 
summation between X A  = Xal at n = 1, and X A  = XAN 
at n = N .  The value of X A N  is found from Equation 
(46) by putting in Y A N  = 0.797, so that X A N  = 0.11446. 
The value of Xal is just that of the feed or X A l  = 0.4. 
The upper and lower limit numbers may now be calcu- 
lated from (62) to give N = 5.83. This is the number of 
equilibrium stages above feed. 

To calculate the number of stages below the feed, the 
limiting conditions must be determined. Using Equation 
(41) in the X form and Equation (45) with X A R  = 0.15, 
one finds X A R  = 0.1612 and X S R  = 0.0745. When the 
same three material balances used for the other systems 
are formed around system no. 3, it is determined that 
F / P  = 2.63707, R/P = 1.63834, and V/P  = 0.27183. 
The same three material balances around system no. 4 
show that VM/P =7.18408, Li/P = 5.91352, YAM = 
0.47716. When Li/P and F / P  are combined one obtains 

LIF  = 8.55059 so that r = - = 1.190214. Since X a l  

and X A F  are both 0.4, X A ~ F  = 0.4 which inserted into 
(45) makes X S l F  = 0.06639. When YAM = 0.47716 is put 
into (44) one obtains Y s M  = 7.59184. The material bal- 
ances around system no. 5 yield the same difference equa- 
tion as (58) with 

(63) 

( r  - 1 ) m x  + ( r -  1 ) m y  
b =  (64) 

(65) 

LIF 
V M  

YAM - ?%Air - Y S M  - (1. - 1) by + T X S i F  

m Y Y A M  - rXAlFmY - ( T  - 1) bx - YSM + T X S l F  
a =  

mYYAM - r X A l f l Y  - ( r  - 1)  bx - Y S M  + T X S l F  

T X A l F b Y  - bYYAM + b d A M  - TxalFbx 
C =  

myYaM - rXAlFmY - ( r  - 1)  bx - Y S M  + T X S l F  

When these three equations are used with (59), (60), 
(61), and (9) and the previous values of mx, bx, my, by, 
a, 8, and y, as given for the upper section, one may cal- 
culate A = 4.873726, B = -5.396501, C = -0.13161, 
El = 5.58225, Ez = 4.68797. These values are put into 
(62) with M replacing N ,  and with X A  = X A R  = 0.1612 
at m = 1, and X A  = X A M  = 0.36706 at m = M ,  
where the latter value is obtained by insertion of YAM = 
0.47716 into (46),  to give M = 6.37. This is the number 
of equilibrium stages below the point of entry of the feed. 
The total number of stages in the whole system is N + 
M = 5.83 + 6.37 = 12.2. Brown (1) gives 12.7 stages 
as the result of a graphical analysis; however, a high pre- 
cision graph was drawn, and it appears that the answer 
is much closer to 12.2 as calculated. This points up one 
of the advantages of the analytical method: one obtains 
precise resuhs which can be obtained graphically only 
with large graph paper and a sharp pencil, which is 
actually comparable to carrying a number of figures in the 
calculation procedure. With either electronic computers 
or desk calculators, it is easy to carry six to ten figures in 
all the calculations so precise results are easily obtainable. 
Furthermore, if the variables are changed a little, it is 
simple to change the feed input to an electronic com- 
puter program and obtain a new answer in a very short 
time, whereas the graphical technique becomes very tedi- 
ous and difficult. If stage-to-stage calculations are carried 
out on the computer, far more storage and computer time 
will be required to solve a problem with many variations 
in the input parameters. 

SUMMARY 

The analytical method developed here for solving stage- 
to-stage operation problems should have broad applica- 
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bility. The real power of the method lies in the ability of 
Equations (1) and (2) to fit high1 nonlinear data either 

seemed to require graphical treatment or stage-to-stage 
calculations because of nonlinear equilibrium and operat- 
ing lines may now be handled in a direct analytical way. 
Examples have been given to demonstrate the versatility 
of the method. 

directly or piece by piece. Prob r ems which previously 

NOTATION 

a =  
A =  
b =  

B =  

c =  
e =  
Ei,z = 
F =  
h =  
H =  
i =  
L =  
m =  
M =  
N =  

c =  

constant in operating line equation 
constant in Riccati equation 
constant in operating line equation and in con- 
centration equations 
constant in Riccati equation 
constant in operating line equation 
constant in Riccati equation 
base of natural logarithms, 2.71828 
roots of discriminant equation 
feed stream rate 
specific enthalpy of liquid 
specific enthalpy of vapor 

liquid flow rate 
constant in concentration or enthalpy equations 
number of stages 
number of stages 

$=i 

P = extract product 
R = reflux ratio, L,/VN in distillation, raffinate in ex- 

traction 
S = makeup solvent 
V = vapor flow rate or extract stream 
x = concentration as mole or mass fraction 
X = mole ratio in n-hexane layer 
y = concentration as mole or mass fraction 
Y = mole ratio in aniline layer 
0,&, 82 = angles in complex root solution 
(Y = constant in equilibrium equation 
B = constant in equilibrium equation 
y = constant in equilibrium equation 

Subscripts 
A 
B 
D 
F 
1 
M 
71.9 n 
N 
0 
P 

R 
S 

X 
Y 

T 

U 

= methylcyclopentane 
= n-hexane 
= distillate or overhead product 
= feed 
= liquid 
= top or last stage + 1 = nth or n + 1 th stage 
= top or last stage 
= condition just before first stage 
= extract product 
= reflux stream 
= reflux stream 
= solvent, aniline 
= vapor 
= raffinate phase 
= extract phase 
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APPENDIX 

Solution, of Riccati Equation 
The solution of the Riccati Equation ( 5 )  

may be obtained by the usual procedures as 

where 

and c is the constant of summation. If the two roots Ei,z are 
equal, the solution is 

where El is the single root. 
Equations ( 2 A )  and ( 4 A )  are solutions to ( 1 A )  for the 

cases of unequal roots and equal roots, respectively, of ( 3 A ) .  
Usually one wishes to solve for the number of steps, n, rather 
than for a concentration, yn, so these equations are rearranged 
accordingly. If the roots are real (that is, not complex), the 
rearrangement is straightforward. For example, Equation ( 2 A )  
may be written 

(yn + A ) ( c E l R  + Ezn) cEln+' + E P + l  
= CEiEi" + EzEzrL ( 5 A )  

When the E's are factored out one obtains 

from which 
E 2 - y n - A  

n = l o g c ( y n + ~ - ~ l )  ( 7 A )  

1% ( S )  
If y. is known as yo at n = 0, Equation ( 6 A )  yields 

When this is put into ( 7 A )  and yn = YN at n = N ,  the total 
number of stages 

( Y N + A - & ) ( ~ O + A - E I )  

( 9 A )  
log ( y N  + A - ~ 1 )  (yo + A - ~ z )  

N =  . _  . 

For the case of equal roots, Equation ( 4 A )  may be solved 
for n as 

- c  ( 10A 1 E i  
n =  

y n  + A - El 

From yn = yo at n = 0 

(11'4)  

When (10A)  and ( 1 1 A )  are combined with n = N at y n  = 
Y N  

E i  
y o + A - E l  

C =  
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If the roots of the discriminant (3A)  are complex, a case 
which often arises in practical applications, one may write 
(3A)  in two forms: 

and 

where 

When (6A)  and ( 8 A )  are combined 

( 16A) 
(&-yyn-A)(yo + A - E I )  (% = (Ez - yo - A )  ( yn + A - El)  

When (13A)  and (14A) are inserted, the equation may be 
rearranged to obtain, at n = N and yn = Y N  

A-B N + iP 

The complex numbers may then be represented as follows: 

where k 

When these are inserted into (17A)  one obtains 

When logarithms are taken 

arctan = el ( 23A 1 
YO + ( A  + B ) / 2  

( 24A ) 

( 25A 1 

e2iNt7 = eZi02 . e--2i01 

e2 - el N=- 
0 

Thermal Diffusion of Liquids in Columns 
DAVID T. HOFFMAN, JR., and ALDEN H. EMERY, JR. 

Purdue University, Lafayette, Indiana 

A number of studies of the operating variables of the 
thermal diffusion column have been made since the war. 
Most of these show that the early theory is essentially 
correct, but that certain irregularities may prevail. The 
purpose of the present work is to continue the study of 
the theory of the column in transient batchwise operation 
and in continuous flow. The work was limited to liquids in 
annular columns without end reservoirs. 

David T. Hoffman, Jr., is with the du Pont Company, Buffalo, New 
Yotk. 

PREVIOUS WORK 

The early studies of thermal diffusion were made in the 
single-stage, convection-free apparatus in which separations are 
very small. In 1938 Clusius and Dickel ( I  ) devised the ther- 
mal diffusion column which acts as a multistage device and 
thus greatly magnifies the possible separations. In 1939 Furry, 
Jones, and Onsager (2 )  and, independently, Debye (3) pub- 
lished theories to explain the behavior of the column. A num- 
ber of investigations followed which demonstrated the ap- 
proximate validity of the theory of the column for gases. 
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