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PVT Analysis of a New Cubic-Perturbed, 
Hard-Sphere Equation of State 

The cubic-perturbed, hard-sphere equation of state proposed in 1980 by Ishikawa, 
Chung and Lu, has been analyzed by PVT criteria, as contrasted to the single 
component and multicomponent vapor-liquid equilibria to which it was applied. 
The analysis compares its representation of the PVT behavior of substances with 
that of a simpler equation. 

J. J. MARTIN 

Department of Chemical Engineering 
University of Michigan 

Ann Arbor, MI 48109 

There have been many different cubic equations of state 
proposed since van der Waals over a century ago. However, a 
form was suggested by Ishikawa, Chung and Lu (1980) that had 
never appeared before in the literature. Because of its novelty, 
it seemed worthwhile to study it in some detail from the point 
of view of its PVT behavior which had been examined only on 
a limited basis when it was presented. In this work it is com- 
pared with other cubic equations on seven basic counts: (1) 
prediction of the compressibility factor at the critical point; (2) 

comparison with the general volumecubic equation of state of 
Martin (1979); (3) its Zchart sum; (4) its critical isotherm and 
prediction of the critical pressure from the critical temperature 
and volume; (5) its prediction of a collection of PVT data for 
argon for reduced temperatures from 0.6 to 1.5 and up to twice 
the critical density; (6) its prediction of pressures from saturated 
liquid and vapor densities of argon; and (7) the same compari- 
sons for isopentane as for argon where the former has a Z, of 
only 0.270 compared to 0.291 for the latter. 

CONCLUSIONS AND SIGNIFICANCE 

The new equation is shown to predict a low critical pressure 
and an impossible critical isotherm. When compared to a sim- 
pler form of cubic equation of state, it is less satisfactory in 
representing PVT data up to twice the critical density or in 
predicting vapor pressure from saturated liquid density for two 

quite different fluids, argon and isopentane. Because it was 
originally utilized largely for its use in equilibrium comparisons, 
its PVT behavior was not examined. Only in the three-root re- 
gion is its prediction of a more constant pressure isotherm closer 
than a simpler equation, but this results from its greater devia- 
tion of pressure at smaller volumes. The analysis is useful be- 
cause it can be applied to evaluate the PVT performance of any 
equation of state. 

Thss paper is bemg published posthumously J J Martin died on December 31,1982 
ooO1-1541 83-6863-a369-$2 00 0 The Amerrcan Institute of Chemical Engineers, 1983 

AlChE Journal (Val. 29, No. 3) May, 1983 Page 369 



TABLE 1. CRITICAL COMPRESSIBILITY FACTORS FOR SEVERAL 
CUBIC EQUATIONS 

Equation Z C  

van der Waals 0.3750 
Redlich-Kwong 0.3333 
Ishikawa-Chung-Lu 0.3152 
Peng-Robinson 0.3074 
Martin (Set by Volume Translation) 0.25-0.375 

Recently, a new equation of state was suggested by Ishikawa, 
Chung and Lu (1980), which they termed a cubic perturbed, hard 
sphere equation of state. The proposed equation has the form, 

a P =  RT(2V + b )  - 
V(2V - b )  T0.5V(V + b)  

where the parameters, a and b, are both taken to be tempera- 
ture-dependent. In the development of van der Waals (1873) 
equation, P = RT/V(V - b)  - a / V 2 ,  with hard-spherical mole- 
cules subjected to an intermolecular attraction force, b may be 
thought of as a measure of the volume of the hard spheres. If b is 
allowed to vary with temperature, one can speak of a perturbed 
hard-sphere equation. In Eq. 1 ,  b can be considered similar to van 
der Waals b (even though it is in the attraction as well as the re- 
pulsion term), so that if it is allowed to vary with temperature, the 
equation may be termed a perturbed hard sphere equation. 

Other two-term cubic equations containing a hard-sphere pa- 
rameter b have been subjected to perturbation of b by previous 
writers, including the two senior authors, Chung and Lu (1977), 
of Eq. 1. The important thing here is that Eq. 1 is a form of cubic 
equation that has never appeared before, so it is worthwhile to 
examine it carefully to determine if it has any characteristics that 
make it better than any of the other cubic equations proposed 
during the century after van der Waals. Is the perturbation of the 
b term in Eq. 1 significantly different from perturbation of other 
two-term cubic equations so that it is “superior to all the other (12) 
variants of the van der Waals and the Redlich-Kwong equations,” 
studied by the authors? 

In the usual way at the critical point the derivatives, (dP/dV)T 
and (d2P/dV2)T,  may be set to 0 to solve for the constants in Eq. 
1 ,  

a = 0.467123 R2T: 5 / P ,  at T,  

b = 0.108762 RT,/P, at T ,  

( 2 )  

( 3 )  
Substituting these values a t  the critical point gives the critical 
compressibility factor, 

2, = P,V,/RT, = 0.315206 (4) 

Unfortunately, the authors did not give the values in Eqs. 2 , 3  and 
4 even though they implied using the critical point derivatives. The 
last value, Z,, may be compared with several other two-term cubics 
in Table 1 .  Since the experimental values of Z ,  for most substances 
normally encountered are less than 0.3,  the proposed equation is 
better than the Redlich-Kwong (1949), but not as good as the 
Peng-Robinson (1976), or the Martin (1967, 1979), when a suitable 
volume translation is selected. 

It is desirable first to show that Eq. 1 is just a special case of the 
all-inclusive volume-cubic equation of state presented in 1979, 

(5 )  

and 

RT a 6 

With temperature included in a, Eq. 1 may be rearranged to 

p = - -  v (V + P I P  + Y) + V(V + P)(V + Y) 

a P =  RT(V + b / 2 )  - RTb/2  + RTbI2 - 
V ( V  - b / 2 )  V ( V  + b)  

or 

(6 )  
RT 
V 

RTb(V + b)  - a(V - b / 2 )  
V(V - b / 2 ) ( V  + b)  

P = - +  

TABLE 2. &CHART SUMS FOR SEVERAL CUBIC EQUATIONS 
Equation 2,Z-Chart Sum 

van der Waals 
Redlich-Kwong 
Ishikawa-Chung-Lu 
Peng-Robinson 
Martin (For All Translations) 

0.6719 
0.6742 
0.6736 
0.6868 
0.6719 

The last term may be split so that 

(7) 
RT RTb - a RTb2 + a b / 2  
V p = -  + (V - b / 2 ) ( V  + b)’ V ( V  - b /2 ) (V  + b) 

Now in Eq. 5set p = -b /2 ,  y = b, a = a  - RTb, and 6 = RTb2 + 
ab /2 .  With these values Eqs. 5 and 7 are quickly seen to be iden- 
tical, so that Eq. 1 is simply a form of Eq. 5 with suitable special- 
ization of constants. 

Returning to Eq. 1 another test of its behavior is its Z-chart sum, 
2 = 2c - (dZ/dPR)T, = l ,PR = 0, where (dz/dPR)T, = 1,P, = 0 
is the generalized second virial coefficient. Using the constants a 
and b, and carrying out the necessary differentiation to obtain the 
second virial coefficient gives 

C = 0.673567 (8) 

This may be compared with the Z-chart sum for several other 
equations in Table 2. The differences of Z are small, but significant. 
It is 1 0  be recalled from Martin (1979), that Z is about 0.62 for 
practically all substances, so the lowest value in Table 2 is prefer- 
able, other characteristics being the same. This makes the Ishi- 
kawa-Chung-Lu equation second in the listing and slightly better 
than the Redlich-Kwong. 

The actual PVT behavior of Eq. 1 will now be examined for two 
substances out of 22 presented in the article. These are argon and 
isopentane which have been chosen because of their range of Z ,  
values from 0.291 for argon to 0.270 for isopentane. It is convenient 
to put Eq. 1 into generalized form by multiplying through by the 
critical constants, 

- aT:5 V,RT,P, 
T0.5T,0.5 PcVV,R2T~ (Z,V,)(V + b)  

or 

(9) 
Now the generalized a and b for temperatures other than T ,  have 
been presented as moderately long power series expansions of TR,  
as follows: 

3 

i =O 
aP,/R2TF5 = C a.T’ r R  

and 
3 

i=O 
bP,/RT, = C biTk ( 1 1 )  

Value!; of ai and hi have been given for the 22 substances, which 
include argon and isopentane. 

The behavior along the critical isotherm will be studied first for 
argon. Two possibilities exist, for the numbers in Eqs. 2 and 3 may 
be used or the values that come from the correlating Eqs. 10 and 
1 1  at Tfi = 1 may also be used. The latter are 

(12) a = 0.45345R2T:5/P, at Tc 
From Eqs. 10 
and 1 1  

b = 0.10425RTC/P, at T ,  (13) 
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The required constants to be employed for argon are T, = 150.86 
K, Pc = 48.34 atm, V, = 1113.41 L/gmol, R = 0.0820535 L.atm/ 
gmol-K, and Z, = 0.29121. Comparison with the data of the Na- 
tional Bureau of Standards (1969) shows pressure predictions are 
from 10 to 50% low for reduced densities from 1.6 to 2.0 for either 
possible equation. (All comparisons referred to in this paper have 
been filed with the National Auxiliary Publication Service, 214-13 
Jamaica Ave., Queens Village, NY 11428.) 

A more fundamental defect occurs where the correlating Eqs. 
10 and 11 leading to Eqs. 12 and 13 give an impossible critical 
isotherm with the pressure exceeding the critical pressure for 
volumes greater than the critical volume and being less than the 
critical pressure for volumes less than the critical volume, meaning 
pressure decreases for increasing density which is not possible and 
violates equilibrium state conditions. This defect extends to tem- 
peratures a little above the critical temperature and was not de- 
tected by Ishikawa, Chung and Lu in focusing their attention on 
developing correlating equations for a and b to yield low-tem- 
perature (TR < 1) predictions of vapor pressures. Using the usual 
derivatives of pressure with respect to volume at the critical giving 
Eqs. 2 and 3, the expected horizontal inflection results with no 
violation of equilibrium. 

It is instructive to look at the behavior of the Martin equation 
with two different values of the translation, the first as given in the 
paper and the second with the translation reduced by 0.022 and 
the temperature exponent increased by 0.25; thus, 

and 

The predictions along the critical isotherm above the critical density 
can be made similar to those of the ICL equation by proper selec- 
tion of the translation and this has been done in Eq. 15; however, 
as with the ICL equation, the fit of the NBS data is good at VR N 

1/1.5, but very poor at '12 while the reverse is true for Eq. 14, a 
dilemma which is true for all cubics. The main reason that Eq. 15 
is similar to the ICL is because its calculated Z, is 0.25 + 0.06 or 0.31 
which is close to that given in Eq. 4. Both Eqs. 14 and 15 give the 
proper inflection to the critical isotherm. 

The next comparison is over the whole plateau of NBS argon data 
up to twice the critical density and for reduced temperatures from 
0.5 to 1.5. Below the critical density the differences between Eq. 
9 with constants from Eqs. 10 and 11, and Eqs. 14 and 15 are small. 
Above the critical density Eq. 14 or 15 is generally better except 
for one region which is, as expected, at temperatures below the 
critical temperature. This is a near-liquid region where pertur- 
bation has its powerful beneficial effect, and it will be seen shortly 
how perturbation can be applied to Eq. 15, or Eq. 14 for that 
matter, to make it just as good as the ICL for saturated liquid. 

To show how the ICL equation has been fitted to the saturated 
liquid, a series of temperatures have been selected down to a re- 
duced temperature of about 0.65 for comparison. As anticipated 
from the low-temperature high-density results, the ICL equation 
does a fair job of predicting pressures from saturated liquid den- 
sities, while Eq. 15 is extremely poor, giving large negative pres- 
sures as the temperature decreases. To make a fair comparison, 
however, one must allow the b term of Eq. 15 to be perturbed in 
the same manner as the ICL equation by letting it vary with tem- 
perature. The generalized form of Eq. 15 is 

For reduced temperatures between 1 and 1.5 good results are ob- 
tained if 

(17) 

which is precisely Eq. 15; however, pressure predictions of Eq. 15 
at TR < 1 are on the low side. To raise pressures it is necessary that 
bP,/RT, be increased (as much as 50% or so over the 0.06 of Eq. 

bP/RT, = 0.06 for TR 1 1.0 

17). A number of temperature functions were examined and after 
a little trial a simple expression was developed that gives results 
generally better than the ICL equation. The expression is 

bP,/RT, = 0.09406 - 0.03406T;4for TR I 1.0 (18) 

where at TR = 1, it merges identically into Eq. 17. The only place 
where the ICL equation is better is for a saturated liquid density 
point just below the critical. This is largely due to the fact that the 
ICL equation was designed to misfit at the critical (thereby giving 
the impossible critical isotherm), whereas Eq. 16 with its b per- 
turbed as in Eq. 18 fits the critical point almost perfectly and yields 
a logical critical isotherm. The two equations do not differ a lot for 
prediction of pressures using saturated vapor densities. 

The conclusion to be reached for argon is that the ICL Eqs. 9, 
10 and 11 with its eight constants is no better in predicting PVT 
data than the much simpler set of Eqs. 16,17 and 18 with just three 
constants. Around the critical point and along the critical isotherm 
the ICL equation is inferior as it also is for vapor pressures from 
saturated liquid densities. Since the predictions for the gas at low 
pressure are about alike for the two equations, the second virial 
coefficients will be practically the same. 

It is desirable next to look at isopentane where Z, is much less 
than for argon. The ICL equation is again the combination of Eqs. 
9, 10 and 11, with the a4 and bi for isopentane. By trying several 
values for the constants, Eqs. 16, 17, and 18 become for isopen- 
tane 

(19) 
TR - 27/64Tk2 

Z,VR - bPc/RTc (Z,V, + '18 - bPC/RTc)'' 
P R  

bP,/RT, = 0.045 for TR L 1.0 (20) 
and 

bP,/RT, = 0.0852 - 0.0402TA0 for TR I 1.0 (21) 

The required constants for isopentane are T, = 460.39 K, P,  = 
33.37 atm, V, = 306 cm3/gmol, R = 82.05606 cm3.atm/gmol-K, 
Z, = 0.270297. Comparison with the data of Das, Reed, and Eu- 
bank (1977) shows that the ICL equation is generally not as good 
up to twice the critical density and reduced temperatures from 0.67 
to 1.3. Since the predictions at low pressure are similar, the second 
virial coefficients will be about alike, as with argon. For pressures 
predicted from saturated liquid densities the ICL equation is in- 
ferior, as it predicts negative pressures at the lowest temperatures. 
Also, the ICL equation misses the critical point, as expected from 
its development. Along the critical isotherm the ICL equation has 
the same defect for isopentane as it does for argon, in that it predicts 
an impossible maximum and minimum. 

Since vapor pressures for both argon and isopentane have been 
computed for true saturated liquid and vapor volumes directly 
from the equations of state, the conditions of equilibrium have been 
accounted for only approximately. If fugacities are calculated at 
these points, neither the ICL nor Martin equations will give the 
identical values expected for equilibrium between the saturated 
liquid and saturated vapor. This is simply because the usual 
three-root oscillation of a cubic isotherm on pressure-volume 
coordinates under the saturation dome does not in general give 
JVdP = 0, as would occur if a horizontal line at the vapor pressure 
joined the true saturated liquid and vapor volumes. It is, of course, 
easy to find a pressure for a cubic isotherm under the dome such 
that the JVdP does vanish, but this will not occur at the true sat- 
urated liquid and vapor volumes. 

However, this pressure and the saturated liquid and vapor vol- 
umes determined by its outer intersections with the isotherm will 
be closer to the true values for the ICL equation than for the Martin 
equation, which is its only advantageous representation. The reason 
for this is because the ICL equation does not give as deep a dip 
below this pressure as the Martin equation as shown in Figure 1. 
This smaller dip under the dome, however, leads to problems 
outside the dome because it causes the isotherm to rise too slowly 
for volumes less than the saturated liquid volume, which results 
in calculated pressures considerably less than those measured ex- 
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Figure 1. Isotherms of cublc equations of state in the three-root region when 
correct pressure given at the saturated liquid and vapor volumes or 

densities. 

primentally. The Martin equation with its greater dip under the 
dome rises more rapidly outside the dome and predicts pressures 
much closer to the experimental values. 

For example, for isopentane at 398.15 K the saturated liquid 
volume is 147 cm3/gmol and the vapor pressure is 11.8 atm. If the 
pressure is computed for a volume of 142.27 cm3/gmol, the ICL 
equation gives 17.865 atm and the Martin equation gives 30.612 
atm while the measured pressure of Isaac, Li and Canjar (1954) is 
35.563 atm. This difference between the two equations is damped 
out as the critical temperature is approached, but is more pro- 
nounced at lower temperatures. In general ICL isotherms under 
the dome (three-root regime) are better because they do not rise 
and fall so severely, but they are not as good outside the dome be- 
cause they do not rise steeply enough for volumes less than the 
saturated liquid volume. 

The conclusion to be reached in this study is that for PVT be- 
havior of two quite different substances, argon and isopentane, 
except in the three-root region, the ICL equation is not as good as 
another. A simpler equation has been shown to be equal to or better 
when considering the critical point prediction, the critical isotherm, 
the 2-chart sum, the super-heated or saturated vapor phase be- 
havior, and the vapor pressure for true saturated liquid volumes. 
Equation 1 is an interesting form of cubic equation, but the PVT 
analysis shows it has little to recommend it by comparison with Eq. 
16 or 19 with their associated perturbed equations. It is probable 
that the ICL equation is better than the Redlich-Kwong because 
of its smaller value of Z,, but on that score the Peng-Robinson 
would be better. If an equation such as Eq. 1 is to be useful, in the 
calculation of PVT behavior it should outperform a much simpler 
equation such as Eq. 16 or 19, and this is not demonstrated here. 

NOTATION 

a 
b 
P = pressure 
R = gas constant 
t = translation in volume 
T = absolute temperature 
V = specific volume 
2 -- compressibility factor 
CY 

,6 
y 
6 
2 = 2-chart sum 
Subscripts 

c == at critical point 
i 
R 

== constant or temperature function in equations of state 
= constant or temperature function in equations of state 

= constant in equation of state 
== constant in equation of state 
== constant in equation of state 
= constant in equation of state 

= sequence of constants in series expansions 
-- reduced property meaning that property divided by its 

value at the critical point 
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