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The kinetics of fragmentation processes for batch systems 
have been studied in depth. In this note, we develop the formal 
solution of the breakup population balance equation for flow 
systems with inflow and removal. To allow explicit solutions, we 
approximate physical breakup mechanisms by simple breakup 
rates. We consider both continuous and discrete systems. 

The population balance equation PBE for continuous breakup 
processes, such as droplet breakup, have been considered often 
in connection with coagulation (Coulaloglou and Tavlarides, 
1977). Complex interaction kernels for both breakup and 
coalescence have been assumed generally, and thus most solu- 
tions were found numerically (Ramkrishna, 1985). For the spe- 
cial case where there is an immediate breakup event for every 
coalescence (detailed balance condition) and particles only co- 
alesce with, or breakup into, like size particles, Bajpai et al. 
(1976) have found an explicit solution. Curl (1963, 1967) has 
solved a similar model explicitly for mixing of reacting solutes 
dispersed in droplets. Ramkrishna (1 985) has done extensive 
work on the continuous breakup equation; for example, Singh 
and Ramkrishna (1977) and Randolf (1969) have considered 
the case of crystallization with flow and binary breakup. In con- 
sidering fragmentation in general, Fillopov (1961) has given a 
mathematical analysis for the case of multiple breakup while 
Goren (1968) and more recently Peterson (Peterson et al., 1985; 
Peterson, 1986) have discussed similarity (scaling) solutions. 

In the following sections, we describe how batch transient and 
steady-state solutions may be used to find transient solutions for 
flow systems. The transient solutions to the batch breakup PBE 
have been presented in detail elsewhere (Mark and Simha, 
1940; Fillipov, 1961; Kapur, 1970; McGrady and Ziff, 1987; 
Ziff and McGrady, 1985, 1986). To our knowledge, the steady- 
state problem has not been examined previously. Here we give 
the explicit solution to one physically important breakup ker- 
nel. 
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Continuous Breakup 
The PBE for breakup with inflow and removal is given by: 

- Bc(x, t )  + cfeed(x)  (1) 

Below we show that if a steady-state solution to Eq. 1 can be 
found and if the corresponding batch equations can be solved, 
the transient solution to Eq. I can also be found. In  the follow- 
ing, we assume that Eq. 1 has been put in dimensionless form. 

First, we write the general solution to Eq. 1 as: 

c (x ,  t) = css(x)  + e-”n(x ,  t) (2) 

Inserting Eq. 2 into Eq. 1, we find that the steady state compo- 
nent css satisfies: 

0 = - c ” ( x ) a ( x )  + $ m c “ ( y ) b ( x I y ) a ( y )  dy - BcsS + creed 

= q c ” )  - Bc” + creed ( 3 )  

and n(x, t) satisfies 

an 
- = @(n) 
at (4) 

with @(n) defined as the linear break up operator: 

Equation 4 is simply the batch fragmentation equation. Thus we 
have divided the solution into time-dependent (batch startup) 
and -independent (steady state) parts. To find c(x,  t), we need 
the solution to Eq. 4 and the steady-state solution to Eq. 3 sub- 
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ject to the arbitrary feed creed(x) and the initial condition 

Here we present a general development of the analytic stea- 
dy-state theory and give one special solution as an example. If 
we consider a monodisperse feed, c""(x) = 6 ( x  - +), the 
steady-state distribution c;k" is the solution to 

c(x,  0). 

Then, because Eq. 3 is linear, the solution css(x)  for an arbitrary 
feed c'""(x) can be found from: 

c'"(x) = /" c;(x)c""(+) d+ (7) 
I 

TO develop the solution to Eq. 6, we note that a t  x = +, c;k" 
must have a contribution from the delta-function feed term. 
Thus we write: 

Inserting Eq. 8 into Eq. 6 we find p ( + )  = ] / ( a (+ )  + B )  and the 
following equation for q:: 

(9) 

for x < +. The last term in Eq. 9 results from integrating the 
delta function in Eq. 8. In terms of q;, Eq. 7 becomes: 

We now show how the general solution to the batch equation 
(Eq. 4) can be used to find n(x, t )  in Eq. 2.  To relate the initial 
condition of the system, c (x ,O)  to the initial condition for 
n(x, t ) .  we let t = 0 in Eq. 2 and find: 

n ( x ,  0 )  = c ( x ,  0 )  - C S " ( X )  (11) 

Let n,(x, t )  be the solution to Eq. 4 for a monodisperse initial 
condition, n(x, 0) = 6(x - A). Thus because of the linearity of 9, 
n(x, t )  follows from: 

n(x, t )  = j "  n,(x, t )  [c(X, 0 )  - c"(X)] dX (12 )  

We can write n, as 

It follows from Eq. 4 that r ( x ,  t )  = e-'(*)', and qh(x, t )  satisfies: 

where the last term results from the integration of the gain term 
in Eq. 4 across the delta function in Eq. 13. Thus, putting Eqs. 
12, 13 and 14 together, we find that n(x,  t )  is formally deter- 

mined by 

n(x,  t )  = e-'(x)'[cO(x) - c5'(x)] 

+ l - q A ( X ,  t )  [C0@) - C " " ( ~ ) ]  d h  (15) 

To write the general form of the solution, we substitute Eqs. 2 
and 10 into Eq. 15 and obtain: 

C'"d(X) 

+ ) + B  x 
c (x ,  t )  = ~ + 2$mqy(x )c feed ( z )  dz + e-(a(x)+s)' 

1 c ( z )  

4 z )  + B 
c(z, 0 )  - ___ - 2 $ m d y q ~ ( z ) c f e " ( y )  (16) 

As an example, we consider the multiple breakup model with 
a ( x )  = x a + ' ,  b ( x l y )  = ( p  + 2 ) / y y + ' x y  which has been discussed 
previously (Fillipov, 1961; Peterson, 1986; McGrady and Ziff, 
1987). For q;, we need to solve the steady-state equation (Eq. 9) 
which becomes: 

(u + 2 ) P X '  0 = -qfsxs+' , + 2 / ^  wa-"x"qy(w) dw - Bqy(x) + 
X Xa+' + B 

We find: 

and the solution to Eq. 14 gives: 

p + u + 3  , 2, (Aa+' - xs.')t])  (19) 

where M [ a ,  b, X I  is Kummer's confluent hypergeometric func- 
tion (Abramowitz and Stegun, 1964) and c(x,  0) is the initial 
condition. If we assume that P = u = 0 (equal reactivity model), 
no disperse phase is present initially [c(x,  0) = 0 for all XI, and a 
monodisperse feed [creed(x)  = 6(x - +)I ,  Eq. 19 becomes: 

and Eq. 16 yields: 

e-("+')'(+ + B )  
( x  + B)' [2t  - t 2 (x  + B )  (+ - x ) ]  (21)  - 

In this case we have found a completely explicit solution to the 
flow problem with fragmentation. 
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Discrete Breakup 
An analysis similar to that given for continuous breakup also 

holds for the discrete process. We can rewrite Eq. 1 in its dis- 
crete analog as: 

(22) 
- dck = -ckuk + x ciujbi - Bc, + c y d  
dt j >  k 

We write: 

where cy is the concentration of particles size k in the steady- 
state size distribution and n,(t) is the concentration of particles 
that size in the transient distribution. In principle, Eq. 22 can be 
solved for any u jb i  as the set of ordinary differential equations it 
describes are triangular as in the case with no feed or removal 
(Basedow et al., 1978). Compact solutions, expressed as series of 
simple functions are not as easily obtained, however. The 
steady-state size distribution, cr, satisfies: 

(24) 0 = -0 k css k + a;bicj” - BC: f 6,-/ 
j>  k 

where the general feed cid has been replaced with a monodis- 
perse feed, ct* = 6k-,. To recover the general case we simply 
write: 

as a result of the linearity of Eq. 22. As in the case of continuous 
breakup, if we assume a steady-state solution of the form: 

we find p k  = l / (uk + B )  from Eq. 23. Substituting Eq. 25 into 
Eq. 22 also gives: 

0 = -ukqy  + f: uJbfq;s - Bq”’ k + 6k- /  (26) 
i - k + l  

for the function qr. 
As was the case for the continuous model, the solution for 

n k ( t )  in Eq. 23 is given by the transient, batch equation for dis- 
crete fragmentation. Again, if we have the solution ni, then the 
solution for a general initial condition can be found by convolut- 
ing the monodisperse solution with the general initial condition 
and steady-state solutions. In this case the initial distribution for 
nk is given by ~ ( 0 )  - c;, so we have: 

Thus we use solutions to the batch equation for monodisperse 
initial conditions n:(O) = 6k-2  to find the transient behavior. The 
development is analogous to the continuous problem as given in 
the previous section. 

Here we give an example of flow solution for a discrete prob- 
lem analogous to the continuous model whose solution is given 
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by Eq. 24. In this model, the product formation rate does not 
depend on particle size since ukbF = 2. Equation 24 becomes: 

Simple successive substitution with k = f - 1, f - 2, 
gives: 

C y  

if k =f; 

2 ( f  + B )  i f k c  f I ( k -  I + B ) ( k +  B ) ( k +  1 + B )  

for the steady-state solution. The solution to the batch equation 
is given by (Montroll and Simha, 1940): 

if k = Q; 
if k c Q; 

e - ( r - ” l  

(30) 
[2p + p2(P - k - I ) ]  - ( k  - I )z 

n: = 

Combining Eqs. 23,27, 29 and 30 and assuming a zero initial 
condition ck(0)  = 0, as we did for the continuous example, we 
find: 

( k  + B - 1 ) 2 ( f +  B )  
( k  + B )  ( k  + B + 1) 

- ( k + B -  I ) r  

/ - ( k + B ) ( k + B +  i f +  B ,  1) (2p  + p 2 ( k  + B ) )  

+ e - ( k + B - l ) r  p 2 i f k c f .  I 
This is the explicit solution of the model with a monodisperse 
feed at  sizef, in a system with no particles present initially. 

Conclusions 
We have thus given a recipe to find the solution to the PBE 

with inflow and outflow, and found explicit solutions for an 
important class of rate kernel. This rate expression applies to 
such widely diverse areas as aerosol breakup (Peterson, 1985, 
1986), depolymerization kinetics, and solids grinding (Austin, 
1976). 

Notation 
a ( x ) ,  ak = rate at which a particle size k or x breaks up 

B = dimensionless particle removal strength (constant) 
b ( x ) y ) ,  b i  = probability of producing a particle size x or k when one 

of j or y breaks up 
creed = particle size distribution of inflow stream 

c(x, f), c k ( t )  = continuous or discrete particle size distributions 
= discrete monodisperse feed size 

j ,  k = discrete particle size 
II = size of discrete, monodisperse initial condition 

n(x,  t )  = batch startup portion of the flow equation solution 
p ( 4 )  = feed contribution term to the steady-state solution 

q: = transient, startup term for the steady-state solution 
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t = time 
x, y = continuous particle size 

Greek letters 
6 = Dirac delta function (continuous), Krondecker delta 

X = continuous size of monodisperse initial condition 
@ = fragmentation equation operator, Eq. 5 
@ = particle size of monodisperse feed stream (discrete) 

function 

SubscriptsIsuperscripts 
@, f = particle size distribution given for monodisperse feed 

A, P = particle size distribution given for monodisperse initial 
size 6 orf 

condition X or I 
ss = steady-state particle size distribution 
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