
Synthesis of FeedforwardIState Feedback 
Controllers for Nonlinear Processes 

A systematic method for synthesizing feedforward/ state feedback 
controllers for a broad class of SISO nonlinear systems with measur- 
able disturbances is presented. Depending on the structural character- 
istics of the system, the control law can be static or dynamic. The 
closed-loop system is independent of the measurable disturbances and 
linear with respect to set point changes. The performance of the pro- 
posed control scheme is illustrated through an example of composition 
control in a system of three CSTR's in series. 

Introduction 
A major problem in the area of chemical process control is the 

nonlinear nature of the dynamic behavior of many processes. In 
the case of mild nonlinearities, linear control techniques, based 
on a linear approximation of the system, may provide satisfac- 
tory performance. There is an increasing demand, however, for 
nonlinear control strategies, which are able to deal with severe 
process nonlinearities. The purpose of the present work is to pose 
and analytically solve the problem of feedforward/feedback 
control of SISO (single input/single output) nonlinear systems 
with measurable disturbances. 

Recent trends in the area of nonlinear process control are 
dominated by attempts to calculate a control law that could 
force the system to follow a prescribed trajectory. From an 
input/output point of view, calculation of the appropriate ma- 
nipulated input involves solution of a nonlinear operator equa- 
tion. Economou et al. (1986) formulated a nonlinear version of 
I MC (internal model control) and proposed the use of numerical 
methods for calculating the model inverse on-line. In the same 
vein, Parrish and Brosilow (1 988) formulated a nonlinear ver- 
sion of inferential control. On the other hand, differential geom- 
etry has provided an extremely useful mathematical framework 
for dealing with nonlinear systems, taking into account their 
internal state-space structure. In this framework, two ap- 
proaches have prevailed. The Su-Hunt-Meyer method, origi- 
nally proposed by Su  (1982) and Hunt et al. (1983) and applied 
to chemical engineering systems by Hoo and Kantor (1985) and 
Kantor (1986), transforms the state-space description of the 
nonlinear system into a linear one. The inputloutput lineariza- 
tion method (Kravaris and Chung, 1987) develops a state feed- 
back control law that provides linearity of the closed-loop sys- 
tem in an input/output sense. 

The use of measurements of the disturbances in a feedfor- 
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ward/feedback control structure has been recognized as an 
important problem in nonlinear process control and received 
increasing attention recently. Bartusiak et al. (1988) provided 
analytical expressions for feedforward/feedback control laws 
that force first- and some second-order nonlinear systems to fol- 
low a prespecified trajectory. In the context of the Su-Hunt- 
Meyer method, Calvet and Arkun (1988) proposed a way of 
adding feedforward control action that eliminates the effect of 
measurable disturbances, where the disturbances and the ma- 
nipulated input enter the state-space model through the same 
scalar function. In addition to the restriction on the class of mea- 
surable disturbances, this approach is also limited by the 
extremely restrictive involutivity condition that has to be satis- 
fied for the disturbance-free part of the model. 

In this work, we will address the general feedforward/feed- 
back control problem for nonlinear SISO systems of arbitrary 
order, and we will calculate control laws that lead to elimination 
of the effect of measurable disturbances and a t  the same time 
provide linearity of the closed-loop system with respect to set 
point changes in an input/output sense. We will start with the 
problem formulation and we will then provide a characterization 
of the nonlinear system based on the dynamic effect of the dis- 
turbances on the process output. The development of the pro- 
posed feedforward/feedback control law will then follow. The 
stability of the closed-loop system will be discussed next, and the 
overall control structure will then be completed. Finally, the 
controller performance characteristics will be illustrated 
through an example of composition control in a system of three 
CSTR's (continuous stirred tank reactors) in series. 

Problem Formulation 
The purpose of the synthesis methodology to be presented is to 

provide a systematic control framework for a general class of 
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DISTURBANCES 

Figure 1. Desired control configuration. 

SET-POINT - CONTROLLER 

SISO nonlinear systems with measurable disturbances. More 
precisely, we will consider nonlinear systems with state-space 
representation of the form: 

INPUT NONLINEAR STATES OUTPUT OUTPUT 
PROCESS @ MAP 

. 

3 = f ( x )  + g ( x ) u  + wi(x)di 
I 

wheref, g, wi are vector fields on R", h is a scalar field on R", u is 
the manipulated input, x is the n-vector of states, dls  are mea- 
surable disturbances and y is the process output. For the above 
general class of nonlinear systems, one can state the feedfor- 
ward/feedback control problem as follows: 

Calculate a feedforwardlfeedback control law 

where x,  y and di are measurements of the states, the output and 
the disturbances and Y , ~  is the set point, such that: 

The output y is completely unaffected by the measured dis- 
turbances dp 

The input/output behavior of the closed-loop system for 
changes in y ,  has desirable performance characteristics. 

Figure 1 shows the nonlinear system and the desired control 
configuration. In order to attack the feedforward/feedback 
problem, we propose the following two-step formulation, which 

will lead to a corresponding two-step control methodology: 
Step 1. Calculate a feedforward/state feedback control law 

that completely eliminates the effect of measured disturbances 
and provides linear input/output behavior. 

Step 2. Use an external linear controller with integral action 
so that the closed-loop system obtains desired servo and regula- 
tory behavior, despite the presence of unmeasured disturbances 
and/or modeling errors. 
In Step 1, which is the main synthesis problem, we will request 
the following input/output behavior of the closed-loop system: 

d'Y ED,- = u 
dt' 

where /?is are adjustable parameters and u is an external input. 
The solution of this synthesis problem will be developed in the 
following sections, resulting in a control law of the form: 

U = P ( X )  + q ( x ) [ v - W x , d i ) l  

where p and q are algebraic functions of the states, and D is in 
general a nonlinear operator applied on the states and the distur- 
bances that may include time derivatives. This means that the 
control law will consist of a pure state feedback element and a 
feedforward state-dependent element, allowing for either static 
or anticipatory control action. The overall control structure that 
results from the proposed two-step methodology is depicted in 
Figure 2. 

AIChE Journal 

Figure 2. Structure of the proposed control configuration. 
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Remark I. Note that the requirement of linear closed-loop 
behavior is by no means restrictive. As will be shown later, any 
nonlinear closed-loop response can be achieved. It is the linear 
dynamics, however, that we can better understand and for which 
we can more conveniently express performance specifications. 

Structural Characterization of a Nonlinear System 
with Disturbances 

In this section, we will propose an extension of the concept of 
relative order of the process output with respect to the manipu- 
lated input, to include disturbance inputs as well. This extension 
will allow for a characterization of the dynamic interactions 
between the process inputs and the output, and will also provide 
a key conceptual tool in addressing the synthesis problem posed 
in the previous section. In particular, for the system described by 
Eq. 1, we define: 

r, the relative order of the output with respect to the manipu- 
lated input, as the smallest integer for which: 

L&;-'h(x) # 0 (2) 

p i ,  the relative order of the output with respect to the distur- 
bance input di, as the smallest integer for which: 

(3) 

Remark 2. The definition of r is identical to the one originally 
suggested by Hirschorn ( 1979) for disturbance-free nonlinear 
systems. The definition of pi  is a natural extension of the concept 
to a disturbance input. 

In linear systems, the relative order is equal to the difference 
between the degrees of the denominator and the numerator 
polynomials of the transfer function. In general, the relative 
order of the output with respect to an input is equal to the low- 
est-order derivative of the output that explicitly depends on that 
input. Equivalently, it is equal to the number of integrations that 
the input has to go through before it affects the output. It there- 
fore provides a measure of how direct is the dynamic effect of 
the input on the output. Thus, by comparing the magnitudes of r 
and pi, one can determine which input, the manipulated u or the 
disturbance di, has more direct effect on the process output. 
Consequently, one should intuitively expect a different nature of 
the feedforward/feedback control problem, depending on the 
relation among the various relative orders. Based on the above 
arguments, the following classification of the disturbances 
seems meaningful: 

Referring to the nonlinear system given by Eq. 1, we define 
three classes of disturbances, A, B, @, with the properties: 

d i e  B - p i = r  

d i g  @ - p i i r  

Development of the FeedforwardIFeedback 
Control Law 

In this section, we will provide the solution to the synthesis 
problem posed in Step 1 of the proposed methodology: the calcu- 

lation of a feedforward/feedback control law that eliminates the 
effect of measured disturbances on the process output and a t  the 
same time provides inputloutput linearity. The nature of the 
feedforward/feedback compensation term for each disturbance 
d, will depend on the class this disturbance belongs to. In partic- 
ular, in the special case of one disturbance with corresponding 
relative order equal to p, the necessary feedforward/feedback 
law will turn out to be: 

ifd E A 

i f d E  23 

It is clear that when d E A, the disturbance effect is less direct 
than the manipulated input effect on the process output. For this 
reason, no feedforward compensation is necessary. All the useful 
information on how the disturbance changes can be found in the 
process states. On the other hand, when d €23, both the distur- 
bance and the manipulated input affect the output in the same 
way. Therefore, a feedforward/state feedback element which is 
static in the disturbance is necessary in the control law in addi- 
tion to the pure state feedback element. Finally, when d E @, 
the disturbance affects the output more directly than the manip- 
ulated input. Consequently, effective control must involve antic- 
ipatory action for the disturbance. Indeed, the control law in this 
case has a dynamic feedforward/state feedback component 
which differentiates a state- and disturbance-dependent signal 
up to r - p times, in addition to the pure static state feedback 
component. The dynamic element can be implemented in the 
customary way, i.e., using a lead-lag type of approximation of 
appropriate order. 

In the general case of the system described by Eq. 1, under the 
combined effect of all the disturbances di, one must compensate 
for them in the control law in a way that depends on the relative 
magnitude of the corresponding relative orders. The general 
result is presented in the following theorem: 

Theorem. For the nonlinear system described by Eq. 1, let r ,  
p i  the relative orders as defined by Eq. 2, Eq. 3, and A, 8, @ the 
classes of disturbances defined by Eq. 4. Then, the feedforward/ 
feedback control law that 

Makes y independent of d;s 
Makes y linearly dependent on an external input u through 

dJy 
dtJ 

xpj- = u,  
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is given by: 

Proof: Let p* be the minimal relative order pi of the output 
with respect to the disturbances in class 6). Also, define the fol- 
lowing subclasses of class e: 

Then, we can calculate the derivatives of the output as follows: 

Y = h ( x )  

2 = L,h(x) 
dt 

d 
+ ~i ; (L ,L ; - ' h (x )d , ) ]  + . . . 

d'y = Ljh(x)  + L,L;-'h(x)u 
dt 

d + ~ ( L , , L ; - ~ h ( x ) d i ) ]  + * * 

Using the above expressions to form the sum 

and substituting u from Eq. 6, we easily find after some alge- 
braic manipulations: 

which completes the proof. 
It is clear from Eq. 6 that the feedforward/state feedback con- 
trol law is composed of 

A pure state feedback part, which is static in nature 

I 

vFB - 1 ~ , ~ j h ( x )  

P,LgLj- ' h ( x )  
(7) 

1-0 
U =  

A feedforward/state feedback part, which in general in- 
volves anticipatory action 

These two parts are clearly depicted as two separate compensa- 
tors in the control configuration of Figure 2. 

Remark 3. Under the proposed control law (Eq. 6), the order 
of the closed-loop input/output system is equal to r, i.e., the 
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input/output behavior of the v - y system is described by: 

(9) 

This arises as a natural consequence of the definition of the rela- 
tive order r; it is necessary to differentiate the output at least r 
times so that the manipulated variable can appear explicitly in a 
nonsingular fashion. 

Remark 4. Following the procedure outlined in the proof of 
the Theorem, it is possible to calculate the control law for any 
desired nonlinear disturbance-free closed-loop behavior of the 
form: 

Such an extension, however, does not seem particularly mean- 
ingful. 

Remark 5. Hirschorn (1981) and Isidori et al. (1981) formu- 
lated and solved the disturbance decoupling problem for nonlin- 
ear systems, i.e., the problem of calculating a static pure state 
feedback control law such that the output in the closed-loop sys- 
tem is not affected by the disturbances. They showed that the 
necessary and sufficient condition for solvability of this problem 
is: 

wi(x)  E kerdh(x) n . , . (7 kerdLj-'h(x). 

It can be easily shown (Daoutidis and Kravaris, 1989) that, 
expressing the above condition in terms of relative orders, yields, 
as expected, the condition pi > r. The latter condition is, of 
course, much simpler and more transparent. Moreover, our 
feedforward/feedback formulation is more general than the dis- 
turbance decoupling formulation, and therefore leads to more 
general results, namely elimination of the effect of a larger class 
of measured disturbances (disturbances for which pi - r or 
pi c r )  on the process output. 

Stability of the Closed-Loop System 
The BIBO (bounded input/bounded output) stability charac- 

teristics of the closed-loop system under the proposed control 
law (Eq. 6 ) .  depend on the location of the roots of 

D o  + BJ + 8*s2 + - * ' +B,S = 0. 

Since the parameters 8;s are adjustable, they can always be 
chosen for closed-loop input/output stability and fast dy- 
namics. 

In addition to the input/output stability characterization, one 
must also obtain a characterization for the closed-loop asymp- 
totic stability of the states, under no external input. In the case 
of a disturbance-free system and in the context of the input/out- 
put linearizing control methodology (Kravaris and Chung, 
1987), this would be equivalent to characterizing the internal 
stability of the closed-loop system, i.e., the asymptotic stability 
of the states with respect to perturbations in the initial condi- 
tions. Such a characterization has been obtained (Kravaris, 
1988) by using the concept of zero dynamics of Byrnes and Isi- 
dori (1985). In the case of a nonlinear system with disturbances, 

a characterization of the asymptotic stability of thestates will be 
of more general nature, including stability with respect to the 
disturbance inputs, as well as internal stability of the system. 
Such a characterization will be obtained through a concept 
analogous to the zero dynamics of the disturbance-free system. 

At first, one must observe that when the system described by 
Eq. 1 is subject to the control law (Eq. 6), the output dynamics 
of the unforced closed-loop system is governed by: 

' dJy 
j - 0  dtl 
z p . - = 0 ,  

under appropriate initial conditions. Thus, by choosing the 
adjustable parameters @ i s  so that the closed-loop system is 
BIBO stable, any initial conditions of the states will generate 
exponentially decaying signals for the output y and its deriva- 
tives dyldt ,  . . . , ( d r - ' y ) / d f - ' .  Moreover, the output and its 
derivatives will get arbitrarily close to zero in finite time. Conse- 
quently, the asymptotic stability of the states (i.e., the stability 
as t - m) of the unforced closed-loop system will depend, for all 
practical purposes, on the asymptotic stability characteristics 
ofthe dynamical system resulting when y ( t )  = [ d y ( t ) ] /  
dt = - - - = [d'-'y(t)]/dt'-' = 0. In a disturbance-free system, 
this dynamical system is exactly the zero dynamics of Byrnes 
and Isidori, which conforms with the intuitive interpretation of 
the zeros in terms of the block transmission property. 

The above arguments motivate an extension of the concept of 
zero dynamics for systems with disturbances. In particular, the 
zero dynamics of the system described by Eq. 1 is defined as its 
dynamics when the output is constrained to be equal to zero for 
all times. The asymptotic stability properties of the zero 
dynamics, with respect to the disturbances and the initial condi- 
tions, will completely characterize the asymptotic stability of 
the states of the unforced closed-loop system. In what follows, 
we will introduce a normal form for a nonlinear system with dis- 
turbances through the Byrnes-Isidori coordinate transforma- 
tion, and we will use it to obtain a representation of the zero 
dynamics. 

For a nonlinear system with relative order of the output with 
respect to the manipulated input equal to r, Byrnes and Isidori 
(1985) introduced the following transformation 

where 

are linearly-independent scalar fields, 
i = 1, .  . , , (n - r )  

and used it to obtain a normal form for a disturbance-free non- 

t ' ( X ) ,  . . , , L ( X ) ,  h(x) ,  Lfh(X), . . . , Lj-*h(x), Lj-'h(x) 

* L g t i ( x )  = 0, 
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linear system, which is the nonlinear analog of the output con- 
trollability canonical form of disturbance-free linear systems. 

Consider first the case where only disturbances that belong to 
classes dl and B are present. Then, the system described by Eq. 
1 under the coordinate transformation (Eq. 10) becomes: 

L, = t" 
r, = L;h(t)  + L&-'h(f)u + E Lw,L;-'h(f)di 

d,E p1 

Y = {"-,+I (11) 

In this new system representation, it is clear how the various dis- 
turbances enter the system and affect the output. In particular, 

Disturbances of class .A enter the system only through the 
first n - r state equations. The first n - r state variables in turn 
affect the righthand side of the last state equation and finally 
through a chain of r integrations, the output y = fn-r+l. 

The effect of disturbances of class B is similar, except that 
they also affect the righthand side of the last state equation in a 
direct way. 
Referring to the new system representation given by Eq. 11, the 
conditions 

imply: 

Consequently, the zero dynamics of the system described by Eq. 
1 is given by: 

pletely characterize the asymptotic stability of the unforced 
closed-loop system. It is interesting to note that Eq. 12 reduces 
to the standard zero dynamics of Byrnes and Isidori, in a distur- 
bance-free situation (di - 0). 

In the general case where disturbances that belong to class 8 
are also present, the system (Eq. 1) under the coordinate trans- 
formation (Eq. 10) takes the form: 

L,+I = L r + *  

7 -I h (t) di 

Y = {"-,+I 

where p* and @ ( I ) ,  G'(2), . . . , are as defined in the proof of the 
Theorem. 

In this system representation, it is easy to see that the effect of 
disturbances of class 8 on the output y = is much more 
direct compared with that of the disturbances of classes .A and 
8. Disturbances of class 6 affect not only the last state equation 
but also some of the previous state equations and, therefore, 
have to go through a smaller number of integrations before they 
affect the output y .  Imposing the zero-output conditions in the 
above system representation, we obtain the zero dynamics of the 
system of Eq. 1 as the dynamical system: 

!L = L,t,_,(SI,. . . , L,, 0,. . . ,O) 

+ E ~w,t"-,(tl, . . . , t n - r ,  0, . * . , O M  (12) 
d, E A,¶ 

The asymptotic stability characteristics of this system with 
respect to the disturbances and the initial conditions, will com- 

(14) 
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subject to the constraints: 

f n - r + i  - 0 

L + Z  - 0 

i n - r + p .  = 0 

Obtaining algebraic expressions for the last r - p* state vari- 
ables in terms of j-,, . . . , Cn-,, di and the derivatives of di, may 
not always be possible. The order and the exact state-space real- 
ization of the zero dynamics will depend on the specific nonlin- 
ear system (Q. 1). When no disturbances di are present, the 
zero dynamics defined above reduces to the standard zero 
dynamics of Byrnes and Isidori, as expected. 

The External Controller 
After solving the main synthesis problem and obtaining a sta- 

bility characterization of the closed-loop system, the second step 
of the proposed methodology is the tuning of a linear controller 
with integral action around the linear u - y system, which will 
reject the effect of modeling errors and/or unmeasured distur- 
bances. For example, one can use a PI controller: 

In this case, the overall closed-loop BIB0 stability depends on 
the location of the roots of the characteristic equation: 

Kc 
( P o  + K , )  + - + @IS + &s2 + - * * + PP' = 0 

71 s 

The General FeedforwardlFeedback 
Synthesis Algorithm 

consisting of the following steps: 
Given the system model 

To summarize, we could describe the proposed algorithm as 

1 = f ( x )  + g(x)u + W i ( X ) d ,  

Y - 
1. Calculate L,L$h(x) and L,L?h(x)  until # 0, identifying 

2. (a) Compute the control law from Eq. 6; (b) select @ to 
thus the relative orders rand pi. 

place the roots of 

sufficiently far left in the complex plane. 
3. Tune an external linear controller which possesses integral 

action (e.g., a PI controller). 
Remark 6. In the case of no measurable disturbances or all 

measurable disturbances belonging to class A, the control law 
(Eq. 6) becomes 

The overall control configuration will be as in Figure 2, except 
that the feedforward/feedback compensator will be missing. In 
other words, the proposed control structure reduces to the Glob- 
ally Linearizing Control (GLC) structure (Kravaris and Chung, 
1987). 

Remark 7. Consider the class of nonlinear processes of the 
form: 

where +(x, u, d * ) is a scalar function solvable for u and d * is a 
vector of disturbances. This is a more general class of systems 
than the one described by Eq. 1. The proposed methodology can 
be applied by simply letting 4(x, u, d * )  = "u, calculating "u as 
proposed by Eq. 6 and solving for the actual manipulated input 
u. In this way, compensation for the disturbances d* is also pos- 
sible. 

Evaluation of the Controller Performance: 
Simulations 

The efficacy of the proposed algorithm will be demonstrated 
through an example of composition control of a system of 3 
CSTRs in series, where a second-order reaction A - B is taking 
place. Figure 3 provides a schematic description of the system. It 
is desired to maintain the composition of the stream leaving the 

October 1989 Vol. 35, No. 10 AIChE Journal 1608 



Figure 3. System of three CSTR's in series. 

last reactor constant, despite fluctuations in the feed tempera- 
ture and /or composition. 

Three cases are examined: 
Case I .  The major disturbances are the inlet concentration 

and temperature, and the manipulated input is the heat input in 
the third vessel. 

Case 2. The major disturbance is the inlet temperature, and 
the manipulated input is the heat input in the first vessel. 

Case 3. The major disturbance is the inlet concentration, and 
the manipulated input is the heat input in the first vessel. 

The purpose of this example is to illustrate the proposed con- 
trol methodology for the various cases and explain the nature of 
the necessary feedforward compensations rather than to propose 
the best choice of manipulated input. Although Cases 2 and 3 
could be examined together, we choose to examine them sepa- 
rately for methodological reasons. 

We assume that both heating and cooling of the reactors are 
possible. We also assume that the inlet and intermediate flow 
rates, as well as the reactor volumes, are equal and remain con- 
stant during the operation. The dynamic equations of the system 
are the mass and energy balances for each reactor, and the form 
they take under the previous assumptions is: 

dCA 1 V -  = F(cA0 - c A l )  - Vk,c:l 
dt 

dCA3 v- = F ( C A ,  - C A 3 )  - Vk3Ci3 
dt 

The following typical values were given to the process param- 
eters: 

F - 54, V = 9, E = 76,480, ko - 1.25 x lOI4, 
A H  - -500 x lo3, pc, - 30,000 

The steady-state values of the process variables were: 

To - 298.13, 

cA0 = 2.1641, c,,, - 1.1216, cA, = 0.7071, cA3, * 0.5 

TI ,  - T, - T3, = 298.13, 

These conditions correspond to a stable steady state as it was 
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t 
Figure 4. Interaction paths among process variables: 

Case 1. 

verified by the simulations. The states of the system are chosen 
to be the concentrations and temperatures in each reactor, 

all assumed measurable. 
Figures 4, 5 and 6 describe the interactions among the process 
variables and the properties of each structure for the following 
cases: 

0 Case 1 ,  As shown in Figure 4 and can be easily seen from the 
system dynamic equations, the disturbances and the manipu- 
lated input affect the output through different paths. A change 
at To has to go through three more states before affecting the 
output (e.g., To - T ,  - T2 - T, - y). The path is shorter for 
cAo, for which only two states are affected before the output 
(cAo - c,, - cA2 - y). The manipulated input, on the other 
hand, causes the change of only one state (T,) before the output. 
Moreover, since both the manipulated and the controlled vari- 
ables are in the third tank, the effect of any of the disturbances is 
actually transferred to the states cA2 and T2. Therefore, no mea- 
surement of the disturbances is required provided that the states 
are measured. 

1 
u= Q I  

Figure 6. Interaction paths among process variables: 
Case 3. 

Case 2. Figure 5 shows clearly that both inputs (the distur- 
bance To and the manipulated input Q , )  immediately affect TI 
and then two more states before they affect the output. Physi- 
cally, the effects of To and QI are very similar and a change A To 
can be eliminated by a change AQ, - - Fpc,A T,. 

Case 3. Figure 6 reveals a very interesting property of this 
system. The shortest path, that a change at the disturbance cA0 
must follow in order to reach the output, involves two interme- 
diate states (cAi and cAz),  while the one for the manipulated 
input QI involves three (e.g., T,, c,,, and cA2).  Therefore, the dis- 
turbance has a more direct effect on the output than the manip- 
ulated input, and it is expected that predictive action will be nec- 
essary to eliminate the effect of the disturbance. 

All the above arguments are based mostly on intuition and a 
physical understanding of the process. The mathematical ap- 
proach, using the defined concepts of relative order, results in 
exactly the same conclusions about the nature of the control law. 
In addition, we will see that the relative order with respect to an 
input is equal to the number of intermediate states affected by 
this input, including the output. 

To evaluate the controller performance, we tested: 
1. The ability of the closed-loop system to reject disturbances 

(regulatory behavior). 
2. The ability of the closed-loop system to follow set point 

changes (servo behavior). 
For the two disturbances considered, step changes and random 
noise were applied. In the simulated noise, we used a standard 
deviation of 0.5 for the concentration and 20 for the tempera- 
ture. The step inputs were 2.5 and 308 respectively, and they 
were applied at TIME = 0.5. Since no model uncertainty or 
unmeasured disturbances were considered, the external PI loop 
of the control scheme remained inactive. The performance of the 
FF/FB (feedforward/feedback) control scheme was compared 
with that of GLC, which does not use measurements of the dis- 
turbances in the control law. 

Case I 
Defining 

Figure 5. Interaction paths among process variables: 
Case 2. 
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the state equations can be put in the form of Q. 1, where 

- 
I - 

VPCp 

0 

0 

0 

0 

0 

Case 2 
Defining 

, w ( x )  = 

'F AH 

PCP 

, ( - X I )  - - k k , x i  + - 

- 
F 
V 

0 

0 

0 

0 

- 

0, 

u = QI 
d -  To 

the newf; g and w functions are: 

F AH 
- ( - X I )  - - k l x ;  
V PCP 

J 
F AH Q3 - (x3 - XJ - - k3x: + - 
V PCP VPCp 

F 
- ( ~ 4  - x S )  - k3x: 
V 

h ( x )  = X 6  

Following the steps of the proposed algorithm: 

1. (a) L,h(x)  = 0 
L,L/h(X) f 0 

L, ,Ljh(x)  f 0 

L, ,Ljh(x)  f 0 

(b) L,,h(x) = L,,L/h(x)  = L,,Ljh(x) = 0 

(c) L,h(x) = L,Lfh(X) = 0 

So, r = 2, pI  = 4, p 2  = 3 

and h ( x )  remains the same. In this case, one proceeds as fol- 
lows: 

1. (a) L,h(x)  - L,L,h(x) = L,Ljh(x) = 0 
L,LpI(x) # 0 

L,Ljh(x)  z 0 
(b) L,h(x) - L,L/h(x)  = L,L jh(x )  = 0 

So, r - p = 4 
2. (a) 

2 

u - PjLjh(X) 
i-0 

(b) We choose B0 = 30,000, - 9,500,& = 1,100,8, = 
55,  p4 = 1 to place the closed loop poles at - 10, - 10, 
-15, -20. 

(b) We choose Po = 100, PI = 20, Pz = 1 
to place the closed-loop poles at - 10, - 10. 

Because of the relation among the three relative orders, no 
feedforward compensation is used in the control law. The behav- 
ior of the closed-loop system under this control law is shown in 
Figures 7 and 8. In Figure 7, the output is not affected under 
step and noise disturbances, both in cAo and To. In Figure 8, the 
servo behavior of the closed-loop system is shown under random 
noise disturbance in cAo and T,. The response is identical with 
the one obtained when the disturbances are not present. 

Figures 9 and 10 illustrate the performance of this static feed- 
forward/feedback control law, comparing it with the perfor- 
mance of GLC, where pure state feedback action is applied and 
an external PI controller is responsible for the disturbance rejec- 
tion. In Figure 9, under a step change in the inlet temperature, 
the open-loop, the FF/FB and the GLC responses are compared. 
The PI settings in the GLC case were K, - 50,000 and 7, - 0.5. 
The feedforward compensation improves considerably the regu- 
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Figure 7. Output response under random or step disturbances: Case 1. 
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Figure 8. Set point tracking under random noise at the disturbances: Case 1. 
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Figure 9. Output response under step change at the disturbance: Case 2. 
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Figure 10. Set point tracking under random noise at the disturbance: Case 2. 
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Figure 11. Output response for a step change at the disturbance: Case 3. 
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Figure 12. Set point tracking under random noise at the disturbance: Case 3. 
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latory behavior of the system. In Figure 10 the system is forced 
to track a set-point change a t  TIME = 0.5, under noise a t  the 
inlet temperature. The response under the feedforward/feed- 
back action is identical to the one under GLC in the case where 
no disturbance is present. Under the presence of the distur- 
bance, however, the feedforward action improves considerably 
the system behavior, as expected. For the PI controller in the 
GLC structure, we used K,  = 5,000 and ri = I .  

F 
,(-x2> - k , x :  

F AH Q2 y ( ~ ,  - x3) - - k2x: + - 
VPCP 

F - (x2  - x3) - k& 
V 

PCP 
f(x) = 

F AH Q 3  

PCP VPCP 
7 (x3 - x5) - - k3xi  + - 

Case 3 
Defining 

-0 
- 

F 
V 
- 

, W ( X )  = 0 (30) 
0 

0 

0 

Q i  

d = cA0 

the new f and w functions are: 

J 
where g and h remain the same as in Case 2. Again, following 
the algorithm steps: 

1. (a) ~ , h ( x )  = ~ , L , h ( x )  = L,Ljh(x)  = O 
L,Ljh(x)  f 0 

L,Ljh(x)  # 0 
(b) L,h(x)  = L,,,L/h(x) = 0 

So, r = 4 and p = 3 
2. (a) 

(b) We choose 13, = 30,000, PI = 9,500, P 2  = 1,100, P3 = 

55, P4 = 1 to place the closed-loop poles a t  -10, -10, -15, 
- 20. 

In this case, the control law (Eq. 31) involves the first derivative 
of the disturbance: i.e., it is dynamic with respect to the distur- 
bance. This is consistent with the intuitive argument made ear- 
lier, and its mathematical justification is based on the relation 
between the two relative orders. The derivative action was 
implemented using a first-order lead-lag approximation with the 
filter parameter equal to 0.01. Figures 11 and 12 illustrate the 

behavior of the system under the same conditions described in 
Case 2. As expected, the feedforward action improves signifi- 
cantly the servo and regulatory behavior of the closed-loop sys- 
tem. 

Remark 8. In all three cases presented in the example, the 
corresponding figures do not show any effect of the disturbances 
on the process output. This happens because the model and mea- 
surements are assumed to be perfect, there are no active con- 
straints on the input, and there is not any time lag in the control 
action. 

Conclusions 
The present work addressed a broad class of nonlinear SISO 

systems with measurable disturbances. The concept of relative 
order, extended to disturbance inputs, was proven to be a very 
useful tool in characterizing the dynamic structure of the non- 
linear system. Analytical expressions for the feedforward/state 
feedback control law were developed and applied to the control 
of a reaction system of three CSTR's in series. The proposed 
methodology was proven to be a very powerful technique in com- 
pletely eliminating the effect of measured disturbances and pro- 
viding satisfactory servo behavior. 

Notation 
A, B = reactant and product 

A, B, B = classes of disturbances 
C,, = concentration of species A in the ith reactor, gmol/L 

d, = disturbance input 
E = activation energy, J/gmol 
F = volumetric feed rate, L/h 
3 = control law 

g, w, = vector fields 
h, r ,  = scalar fields 
K, = proportional gain 
k, = specific rate constant, L/gmol . h 

Q, = heat input in ith reactor, J/h 
R = ideal gas constant, J/gmol . K 
R = real line 

R" = n-dimensional Euclidian space 

k , ,  k,, k ,  = rate constants, L/gmol - h 

r = relative order of the output with respect to the manipulated 

s = Laplace domain variable 
input 

T, = temperature in the ith reactor, K 
'U = generalized manipulated input 
u = manipulated input 
V = reactor volume, L 
v = external input to the inner loop of the control structure 
x - vector of state variables 
y = output 

ysp = set point 

Greek letters 
@, = parameters of the feedfonvardlstate feedback law 

A H  = heat of reaction, J/gmol 
{ - transformed state variables 

T ,  = reset time 
p, = relative order of the output with respect to the disturbance 

4 
p* = minimal relative order p, for disturbances in class @ 
pc,, = thermal capacity, J/L . K 

Math symbols - = implies 
c- = is equivalent to 
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E - belongs to 
n = intersection 
U - union 

ker - kernel of a linear operator 
dh - gradient of the scalar field h 

L,h - Lie derivative of the scalar field h with respect to the vector 

L;h - kth-order Lie derivative of the scalar field h with respect to 
field f 

the vector field f 
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