
Dynamics and Control of Quasirational 
Systems 

Systems having transfer functions of the form 

where P,(s), P2(s) and Q(s) are polynomials, are called quasirational 
distributed systems (QRDS). They are encountered in processes mod- 
eled by hyperbolic partial differential equations. QRDS can have an 
infinity of right half-plane zeros which causes large phase lags and can 
result in poor performance of the closed-loop system with PID controll- 
ers. Theory on the asymptotic location of zeros of quasipolynomials is 
used to predict the nonminimum phase characteristics of QRDS and for- 
mulas are presented for factoring QRDS models into minimum and non- 
minimum phase elements. 

A generalized Smith predictor controller design procedure for QRDS, 
based on this factorization, is derived. It uses pole placement to obtain 
a controller parameterization that introduces free poles which are 
selected to satisfy robustness specifications. The use of pole place- 
ment allows for the design of robust control systems in a transparent 
manner. Controller selection is generally better, simpler and more direct 
with this procedure than searching for optimal PID controller settings. 
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Introduction 
This paper deals with the dynamics and control of a class of 

distributed processes that can be modeled by hyperbolic partial 
differential equations. Important industrial examples include 
heat exchangers, tubular and packed bed reactors, and particu- 
late systems with nucleation and growth. These systems, when 
linearized, yield transfer functions having the following form 

where PI (s), P2(s) and Q(s) are polynomials in s, with the order 
of P, (s) and P2(s) being less than or equal to the order of Q(s) .  

The numerator of Eq. 1 is a function called an exponential 
polynomial or quasipolynomial (Bellman and Cooke, 1963). 
Systems described by Eq. 1 are here given the name quasira- 
tional distributed systems (QRDS). The QRDS transfer func- 
tion represents a large class of processes with a wide range of 

dynamic behavior. Models for the dynamics of particle size dis- 
tribution in fluidized bed calciners and crystallizers are pre- 
sented here as examples. Further, quasipolynomials are also 
encountered in hereditary systems (Bellman and Cooke, 1963) 
and in multivariable systems where one or more elements of the 
transfer function matrix have time delays (Ray, 1980; Jerome 
and Ray, 1986). 

QRDS do not exhibit the simple delayed response character- 
istic of lumped parameter systems with time delays unless 
P l ( s )  = 0. Some QRDS exhibit nonminimum phase behavior 
and including them in a closed loop can yield1 oscillatory 
responses with poor performance and poor stability characteris- 
tics with PID controllers. Other QRDS exhibit minimum phase 
behavior and can be controlled satisfactorily using PI or PID 
controllers. The presence of large phase lags, similar to systems 
with dead time, motivates the use of predictive controllers simi- 
lar to the Smith predictor (SP) (Smith, 1957) for nionminimum 
phase QRDS. 

Quasipolynomials are known to have an infinity of zeros 
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Figure la. Structure of the Smith predictor control 

which could lie either in the left half-plane (LHP) or in the right 
half-plane (RHP) (Bellman and Cooke, 1963). This informa- 
tion, however, has received little attention in the chemical 
engineering literature even though transfer functions for many 
distributed processes contain quasipolynomial functions. A pre- 
dictive controller design procedure, called here the Generalized 
Smith Predictor (GSP) procedure, which uses information on 
the zeros, was first presented by the authors (1987). A similar 
procedure was recently reported by Jerome and Ray (1987) for 
quasirational functions arising from multivariable delay sys- 
tems. The present paper describes our general design proce- 

scheme. 
where G,(s) - G,(s)e-‘” 

dure. 
The SP control scheme with the structure shown in Figure l a  

is the oldest predictive controller (Smith, 1957). The SP scheme 
requires, for pure delay systems, a compensator with a transfer 
function that is the difference of the model transfer functions 
without and with the delay. This requires that the process model 
be factored into delay (nonminimum phase) and delay free 
(minimum phase) parts. The compensator removes the delay 
from the feedback signal, yielding a signal that contains a pre- 
diction of the response of the nondelayed plant. The main con- 
troller G,(s) was usually chosen to be of the PI or PID form. 
With a perfect model, the SP scheme is equivalent to controlling 
the nondelayed plant with the delay being left in open loop. This 
is illustrated by the equivalent block diagram in Figure 1 b. 

Past applications of the SP approach have suffered from poor 
robustness properties (see Laughlin and Morari, 1987). This 
was due to the following factors: 

i) Lack of a framework for robustness analysis in terms of 
model uncertainty before the 1980s. 

ii) In the past it was attempted to design C,(s) independent of 
(ignoring) the error level in the dead time. 

In addition, proposed extensions of the SP concept to general 
nonminimum phase systems were not based on an appropriate 
factorization of the transfer function (see Krishnan and Friedly, 
1980). 

The correct interpretation of the Smith predictor idea is that 
the parameterization of G,(s) should be based on the delay free 
or equivalent minimum phase part of the model, but the final 
design should be based on robustness and performance consider- 
ations for the overall system. These ideas are discussed in detail 
in subsequent sections. 

In this paper, a new Generalized Smith Predictor (GSP) 
design procedure is presented. It provides a correct extension of 
the SP concept to general nonminimum phase systems, with 
QRDS being used as examples. Further, the use of pole-place- 
ment to synthesize the main controller allows the GSP proce- 
dure to deal with robustness in a transparent manner. With 
these extensions, the GSP procedure can be used to design 
robust control systems and yields results equivalent to internal 
model control (IMC) (Garcia and Morari, 1982). 

Early attempts to extend the SP  compensator to QRDS were 
unsuccessful because the compensator was constructed to be the 
difference of the model transfer functions without and with the 
delay. Hence, the “delay free” or “minimum phase factor” was 
obtained by neglecting the delay from the model transfer func- 
tion. Such an approach does not correctly account for the non- 
minimum phase properties of quasipolynomials and can lead to 
the closed-loop system being unstable or, even when stable, to 
poor performance. Krishnan and Friedly (1980) demonstrated 
problems with this approach for an evaporator subject to flow 

oscillations. They suggested a particular form for the compensa- 
tor that worked for their system. 

The GSP control scheme, with the structure shown in Figure 
2a, extends the SP scheme to general nonminimum phase sys- 
tems. It requires a factorization of the process model into mini- 
mum and nonminimum phase factors (Smith, 1958). The GSP 
compensator transfer function should be the difference of the 
model transfer function without and with the nonminimum 
phase factor, where the latter is in the form of an all-pass. The 
compensator removes the excess phase lag due to the nonmini- 
mum phase factor from the feedback signal, yielding a signal 
that contains a prediction of the response of the corresponding 
minimum phase system. 

With a perfect model, the GSP scheme is equivalent to con- 
trolling the corresponding minimum phase system, which has 
the same magnitude response as the plant. This is illustrated by 
the block diagram in Figure 2b. The nonminimum phase compo- 
nent, which is responsible for the excess phase lag, is left in open- 

The GSP scheme is applicable to any nonminimum phase sys- 
tem provided that the minimum and nonminimum phase factors 
can be determined. Formulas are presented in this paper for per- 
forming the factorization for QRDS. For distributed systems 
that cannot be factored as easily, the GSP scheme may still be 
used by substituting an approximation for the factors. Vit 
( I  979) describes a procedure for approximating the behavior of 
the minimum and nonminimum phase factors in systems mod- 
eled by a parabolic partial differential equation using lag and 
delay terms. 

In the next section, QRDS models for particle size distribu- 
tion in terms of cumulative mass fraction are presented for a 
fluidized bed calciner and a mixed suspension, mixed product 
removal (MSMPR) crystallizer. The dynamics that QRDS can 
exhibit are demonstrated through these examples. This is fol- 
lowed by a summary of results from the literature, on the loca- 
tion of zeros of quasipolynomials, relevant to the developments 
in this paper. 

A controller design procedure for QRDS is then presented. It 
uses the GSP structure and pole placement to obtain a controller 
parameterization that includes adjustable parameters that are 
selected to satisfy robustness specifications. Robustness condi- 

loop. 

Figure lb. Block diagram equivalent to the Smith predic- 
tor control scheme. 
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Figure 2a. Structure of the generalized Smith predictor 
control scheme. 

I G,+ ( i w )  I = 1 

where G,(s) = C,+(s)*G,-(s) 
G,- (s) = minimum phase 

tions are established for a multiplicative-type uncertainty mod- 
el. 

The GSP design procedure is illustrated using examples deal- 
ing with the control of cumulative mass fraction in a fluidized 
bed calciner and a MSMPR crystallizer. The examples provide 
a comparison of the performance of GSP controllers with that of 
optimal PID controllers. A discussion on techniques for on-line 
implementation of the GSP controller is also included. 

Dynamics of QRDS 
Systems modeled by hyperbolic partial differential equations 

yield complicated transcendental transfer functions that can 
frequently be simplified or approximated to the form of Eq. 1 
(Friedly, 1972). Hyperbolic partial differential equations are 
used commonly to describe numerous engineering processes 
where convective transport dominates dispersive phenomena. 
Some examples include heat exchangers, tubular and packed 
bed reactors, fixed- and countercurrent moving-bed adsorption 
systems and particulate systems with nucleation and growth. 
The objective of this section is to introduce examples of QRDS: 
fluidized bed calciners and crystallizers. 

Fluidized bed calciners 
An example of a fluidized bed calciner is the Dorr-Oliver 

Fluo-Solids lime-mud reburning calciner (Moran and Wall, 
1965). It consists of a bed of heated particles, kept fluidized by 
air. The bed is kept a t  1,500°F (816OC) by in-bed combustion of 
fuel. Solid feed material, as a very fine powder, is sprayed into 
the bed where it is calcined and sticks to the bed particles lead- 
ing to their growth. Product particles are withdrawn from the 
bed a t  a controlled rate to maintain a constant bed mass. Seed 
particles, obtained by crushing part of the product, are intermit- 
tently added to the bed to maintain the cumulative mass fraction 
of +20 mesh (0.8 mm and larger) particles between 80% and 
90%. 

Control of particle size distribution can be achieved through 
control of a moment of the particle size distribution, a mean 
diameter, or the cumulative mass fraction above a cut-point size. 
However, the lack of on-line instrumentation for measuring par- 

Figure 2b. Block diagram equivalent to the generalized 
Smith predictor control scheme. 

ticle size distribution or low order moments suggests choosing 
the cumulative mass fraction, which can be measured fairly eas- 
ily. Unlike the moments, the cumulative mass fraction does not 
require the counting of particles within different size fractions. 
Measurement of cumulative mass fraction requires only separa- 
tion of a sample into two fractions with respect to a cut-point 
size and weighing them. This operation can be automated with 
existing solid handling equipment. In this paper, a control 
scheme based upon measuring the cumulative mass fraction 
above a cut-point size, and manipulating the seeding rate is pre- 
sented. 

The dynamics of particle size distribution can be modeled 
using a population balance. The transfer function for the cumu- 
lative mass fraction above a cut-point size Z, for seed rate 
manipulation is presented below; the modeling assumptions and 
a detailed derivation is available in Ramanathan (1988, p. 22). 

where 

Pzc(s) = (s + l)’Zz + 3(s + 1)’Zf + 6 ( s  + l)Zc + 6 

PzC(O) = Z: + 3 Z f  + 62,  + 6 (3) 

The cumulative mass fraction has a transfer function of the 
QRDS form given in Eq. 1 .  A Z, of 2 was used for the example 
below (and in later sections) as it corresponds to a steady-state 
cumulative mass fraction of 85% above 20 mesh, a typical indus- 
trial choice (Moran and Wall, 1965). With this choice of cut- 
point size, the polynomials Pzc become 

P~,(s) = 8s’ + 36s2 + 60s + 38 

Pz,(O) = 38 (4) 

Figure 3 shows the response of the cumulative mass fraction 
to a step increase in seed rate. This system has negative gain 
with the final value tending to -0.1403. The response shown in 
Figure 3 has been normalized with respect to this value. It 
changes rapidly after an initial period of sluggish behavior and 
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Figure 3. Open-loop step response for the cumulative 
mass fraction (Z, = 2) in a fluidized bed calci- 
ner. 
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exhibits an overshoot with a discontinuous slope at dimension- 
less time equal to 2 before settling to the new steady state. The 
delayed term in Eq. 2 becomes active at  Z,  - 2, which corre- 
sponds to the time of crossing of the growth front of new seed 
particles into the size range of the cumulative mass fraction. The 
complicated dynamics of this system can be explained in terms 
of the interactions between particle size distribution, the growth 
rate and the distribution at the seed size (boundary condition) 
through an inherent feedback loop (Ramanthan, 1988). 

A Bode plot for the cumulative mass fraction is shown in Fig- 
ure 4. The amplitude has a high frequency asymptote with a 
slope of - 1 .O and an intermediate region (o - 3 to 5 )  with a 
noninteger slope. The phase lag increases proportionally at high 
frequency, which is characteristic of systems with dead-time. 
However, it is evident from the open-loop time response and the 
transfer function in Eq. 2 that this system is more complicated 
than a pure first-order lag plus dead-time system. 

MSMPR crystallizer 
Developments in modeling, steady-state design and simula- 

tion techniques for crystallizers are fairly advanced (Randolph, 
1984; Moyers and Randolph, 1973; Randolph and Larson, 
1971). However, developments on the dynamics and control of 
particle size distribution have been limited. 

Almost all the dynamic and stability studies on crystallizers 
have been in terms of the moments of the number size distribu- 
tion function. There have been very few studies on the dynamics 
of number or mass size distribution functions (Beckman and 
Randolph, 1977; Lei et al., 1971; Sherwin et al., 1969) and no 
published studies on dynamics of cumulative mass fraction. 

A model for the cumulative mass fraction (above a cut-point 
size 2,) in an isothermal, constant volume, MSMPR crystallizer 
is presented below for inlet concentration and residence time 
forcing; again the modeling details are available in Ramanathan 
(1988, p. SO). 

The second and third moments of the size distribution (M2(s)  
and M3(s ) ,  respectively) are given by 

1 

f - AmDlitude Ratio t 
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Figure 4. Bode plot for cumulative mass fraction (Z, - 2) 
in a fluidized bed calciner. 

where 

f i ( s )  - [c4 + (s + 1)2(s + 2) + i ( s  + I)] (10) 

and the Pze's are the same as those defined in Eq. 3. 
As expected, the crystallizer cumulative mass fraction trans- 

fer functions are more complicated than those of the fluidized 
bed calciner. However, their QRDS nature is apparent. Similar 
models can be developed for other crystallizer configurations 
though the algebra becomes very lengthy. 

The normalized open-loop response of cumulative mass frac- 
tion to a step increase in the residence time T is shown in Figure 
5 for three values of the nucleation to growth sensitivity parame- 
ter, i - 1 ,  5 and 15, with the secondary nucleation parameter, 
j - 1.  The remaining parameters were taken from the crystalli- 
zation literature (Zumstein and Rousseau, 1987). An abrupt 
change in the slope of the response can be seen in some cases, 
when the delayed term becomes active. With increasing i, the 
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Figure 5. Open-loop step response for the cumulative 
mass fraction (2, - 2) in a MSMPR crystallizer. 
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response becomes more oscillatory and is unstable for i > 19. 
Similar results for the moments have been reported in the crys- 
tallization literature. For i =- 19, the cumulative mass fraction 
transfer function has a pole in the RHP causing the system to be 
open-loop unstable. 

A Bode plot for the cumulative mass fraction transfer func- 
tion with respect to residence time is shown in Figure 6 for i = 1, 
5 and 15, with j = 1. All the amplitude plots show resonance, 
with the magnitude of the resonance peaks being dependent on 
the parameter i. At high frequency, the phase plot for i = 1 oscil- 
lates about a constant phase lag, while for i = 5 and 15 the phase 
lag tends to increase at a constant rate. 

Characteristics of QRDS 
The examples in the previous section illustrate the range of 

dynamic behavior that QRDS can exhibit. The following points 
can be noted: 

i )  Response to a step input is not delayed. However, in prac- 
tice it is difficult to differentiate between the initial sluggish 
response of a high-order nondelayed system and the response of 
a delayed system. 

ii) There may be abrupt change in slope when the delayed 
term becomes active. Sometimes the slope can switch signs. The 
abrupt change in slope is not always visible and, in practice, it 
would be difficult to detect, like the change from zero to nonzero 
output for systems with dead time. 

iii) Some QRDS exhibit large phase lags at high frequency, 

indicating nonminimum phase behavior. Others ex hibit mini- 
mum phase behavior. 

iv) Sometimes they exhibit continuous resonance at high fre- 
quency. 

v )  QRDS may occur in series with time delays, in which case 
the time delay introduces a nonminimum phase term. 

Unfortunately, the above list does not provide a unique char- 
acteristic that would make identification of a system as a QRDS 
easy. Theoretical models of the process are required for this pur- 
pose. Further, it is possible for a QRDS to switch from mini- 
mum to nonminimum phase behavior and vice versa over a cer- 
tain range of parameter values making controller design very 
difficult. 

The observed range in phase behavior of QRDS can be. 
explained in terms of the location of the zeros of quasipolynom- 
ials. Quasipolynomials have been noted to have an infinity of 
zeros. A general theory for the asymptotic locations of zeros of 
quasipolynomials exists (Bellman and Cooke, 1963; Krall, 
1967). Only the results relevant to our work are outlined below. 

The zeros of quasipolynomial equations of the form 

are of interest. Equation 11, which is the numerator of the 
QRDS transfer function, can be written in the expanded form 

N ( s )  = (s" + a,sn-' + - - * + a") 

- K ( P  + b,s'"-' + - - - + b,,,)e-" = 0 (12) 

The coefficients of the dominant powers of the two polynomials 
in Eq. 12 have been reduced to unity, and K represents the ratio 
of the coefficients of the dominant powers of P2(s)  and PI (s). 
For Is1 large, Eq. 12 can be approximated by the cornparison 
function 

which has an infinity of zeros lying along a curve of the form 

Is"-"efYI = lKl (14) 

l ( T  The curve described by Eq. 14 has two symmetric branches 
with respect to the real axis. The roots of large modulus in this 
curve have the form 
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. [ { l n I K I + ( n - m ) I n t d - ( n - m ) I n 1 2 k ? r ~ ( n - n z ) r / 2 1 }  

+ i (2kr  T (n  - m)?r/2}] + c(k)  (15) 

where k = 0, 2 1, +2, . . . and c(k) -+ 0 as [ k (  .--c 00. The upper 
sign is used for K > 0 while the lower sign corresponds to K i 0. 
For Is1 large, all but a finite number of zeros of Eq. 1 1  will be 
asymptotic to the curve given in FQ. 14 and will be spaced at  an 
asymptotic distance of 2?r/td apart. The following cases can be 
distinguished: 

In case n = m, the formula in Eq. IS simplifies to 

s, = (l/td)[ln IKI + i(2kx)l + c(k),  k = 0, * 1, .  . . (16) 

The curve is in the form of a vertical line and the zeros of Eq. 1 1, 

Frequency 

Figure 6. Bode plot for cumulative mass fraction (2, = 2) 
in a MSMPR crystallizer. 
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excluding zeros a t  the origin, will be asymptotic to this vertical 
line. For J K J  > 1 the line will be in the RHP, while for I KI < 1 it 
will be in the LHP. 

In case n # m, Eq. 11 will have an infinity of roots asymptoti- 
cally given by Eq. 15 and the curve in Eq. 14. This curve is simi- 
lar to an exponential curve for large I s ! .  Further, if n > m the 
curve lies entirely in the LHP, while for n < m it lies entirely in 
the RHP. 

The existing theory on the zeros of quasipolynomials only pro- 
vides information on the asymptotic location of zeros. It does not 
yield information on the location of low modulus zeros, which 
have to be determined using a numerical root solving program. 

Summarizing these results, if n < m or n = m, K z I ,  then the 
QRDS will have a chain of infinite R H P  zeros. If n > m or n = 

m, K < 1, then the QRDS will have a chain of infinite L H P  zeros 
and a t  most a finite number of low modulus zeros in the RHP. 

A program to calculate a finite number of roots of Eq. 1 I was 
developed as a part of this investigation. It uses high-order Pad6 
approximation for the delay term to calculate accurate values 
for the low modulus zeros and Eq. 15 to obtain initial guesses for 
the large modulus roots and Newton’s method for refinement of 
the approxima tion. 

Figure 7 shows the location of zeros for the cumulative mass 
fraction transfer function of the fluidized bed calciner (Eq. 2) 
for a cut-point, Z ,  = 2. Figure 8 shows similar results for a 
MSMPR crystallizer for residence time changes (see Eq. 5), for 
three values of the nucleation to growth sensitivity parameter, 
i = 1, 5 and 15, with the secondary nucleation parameter, j = 1. 
The remaining parameters were taken from the crystallization 
literature (Zumstein and Rousseau, 1987). Only the upper half 
of the complex plane is shown. A symmetric branch of zeros 
located in the lower half plane has been omitted. 

The cumulative mass fraction for the fluidized bed calciner 
has an infinity of R H P  zeros and three low modulus L H P  zeros 
plus a zero at the origin. The asymptotic theory predicts an 
infinity of R H P  zeros for this system, as it corresponds to the 
case n < m (n = 0 and m = 3) .  The zeros predicted by Eq. 15 are 
also shown in Figure 7 by the solid line. The asymptotic theory 
predicts the location of zeros very accurately except for the low 
modulus zeros. 

The chain of zeros of the cumulative mass fraction transfer 
function for the MSMPR crystallizer, shown in Figure 8, goes 

FBC-CMF 

- 2  0 2 4 6 8 
Real s 

Figure 7. Zeros of the cumulative mass fraction (Z, = 2) 
transfer function for a fluidized bed calciner. 

1, j 
5, j 
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Figure 8. Zeros of the cumulative mass fraction (2, = 2) 
transfer function for residence time changes in 
a MSMPR crystallizer. 

from right to left (here n > m )  with increasing modulus. For i = 

1, there are no R H P  zeros; however, as i increases, the chain 
moves into the RHP. Hence for i = 5 and i = I5 there are a finite 
but large number of R H P  zeros. Further, this example illus- 
trates that certain design or operating variables can drastically 
shift the location of zeros and thus have a significant influence 
on controller design. 

From the above results, it is evident that QRDS have a chain 
of infinite zeros lying either in the L H P  or RHP. From a control 
perspective, three cases can be distinguished corresponding to: 

i )  No R H P  zeros 
ii) A finite number of R H P  zeros (low modulus zeros) 
iii) An infinity of R H P  zeros 

The location of the chain determines the frequency response 
behavior. Open-loop stable QRDS with no R H P  zeros will be 
minimum phase and have phase plots that tend to a constant 
phase lag a t  high frequency. QRDS with an infinity or finite 
number of R H P  zeros will be nonminimum phase. The closeness 
of the chain to the imaginary axis determines the resonance 
behavior. 

A Generalized Smith Predictor Design Procedure 
Smith (1957) proposed the dead-time compensator or Smith 

predictor (SP) for improved control of SISO systems with a time 
delay. The SP, with the structure shown in Figure la ,  uses a 
model of the undelayed plant (G,(s)) and delay (e-I”) to cancel 
the plant delay, leaving the undelayed signal y* in the feedback 
path. Thus, controller parametrization can be based on the 
undelayed system. 

There have been many modifications and extensions of the 
original SP. Reviews of these are in Jerome and Ray (1 986), and 
Wong and Seborg (1 986). Other model-based predictive con- 
trollers with closely similar structures, such as the analytical 
predictor of Moore et al. (1970), the inferential controller of 
Brosilow (1979), internal model control (IMC) of Garcia and 
Morari (1 982), and the generalized analytical predictor of 
Wong and Seborg ( 1  986) and Wellons and Edgar ( 1  985) have 
been introduced recently. Further, the work of Doyle and Stein 
(1981) and Morari and coworkers (Mandler et al., 1986; Zafir- 
iou and Morari, 1986) have introduced a powerful framework 
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for designing robust controllers in the face of model uncertain- 
ties. 

The following extension of the SP, called the Generalized 
Smith Predictor (GSP) (see Figure 2), is proposed: given a fac- 
torization of the process transfer function 

where 

Gp- (s) = minimum phase, causal and proper 

Gp+ (s) - nonminimum phase, causal, proper 
and satisfies Gp+ (0) - 1 

one can obtain a feedback variable y* as if Gp- (s) were the pro- 
cess transfer function is 

Once y* is computed on-line, the error y,p - y* can be fed to a 
controller Gc(s), parameterized as if G,,-(s) were the process 
transfer function. 

For the predictor to be stable it is necessary and sufficient 
that the process be open-loop stable (assumed in this work). The 
GSP is equivalent to classical feedback (see Figure 9) with 

However, the GSP structure will make the control system’s 
design more transparent. The closed-loop response of the GSP 
is 

For ISE-optimal pole placement with respect to step changes 

i d  

Y 
%P 

Figure9. GSP structure and the equivalent unity teed- 
back structure. 

in y,p or d, the closed-loop transfer function must have poles at 
the LHP zeros of the open-loop transfer function and at the mir- 
ror images of its RHP zeros with respect to the imaginary axis; 
the remaining poles must be placed “far left” in the complex 
plane (Letov, 1960; Chang, 1961). This result is rigorously valid 
for systems with rational transfer functions only. However, it is 
known that for any arbitrary transfer function there exists a 
rational function arbitrarily close to it. Therefore, one intui- 
tively expects that such a placement will be optimal (or at least 
“nearly” optimal) for distributed systems as well. This suggests 
the following design procedure: 

i) Select the factorization of Gp(s) so that in addition to the 
previous requirements, Gp+ (s) is of the form 

where R(s )  is an entire function whose zeros are exactly the 
RHP zeros of G,(s), R* (s) is an entire function whose zeros are 
exactly at the mirror images of the RHP zeros of Gp(s) .  The fac- 
tor R*(O)/R(O) is included to make Gp+ (0) = + 1. 

ii) Parameterize C,(s) according to 

where W(s)  - IILI(p,s + 1) is the polynomial of the “free” 
poles, whose order r is such that Gc(s) is proper. This is the stan- 
dard zero-pole placement formula for minimum phase lumped 
parameter systems, where [ W(s) ]  -’ is the desired closed-loop 
transfer function; it has been referred to as the synthesis formula 
(Smith and Corripio, 1985). When there is more than one free 
pole, to facilitate the search for the pls, a reasonable require- 
ment is that the closed-loop response be critically damped. This 
is equivalent to selecting all the p l s  to be equal. 

iii) The free poles are understood to be placed “significantly 
far left” in the complex plane, but how far left will depend on 
robustness. This is addressed in the next section. 
With the above choice of factorization and parameterization of 
Cc(s), the equivalent unity feedback controller is given by 

and the closed-loop response (for a perfect model) becomes 

Equation 24 gives the optimal response when the free poles 
are placed at - - (p i  = 0), that is, when W(s)  = 1. Equations 22 
and 23 indicate that this would require infinite control action 
and is impossible to achieve. However, the response with pi  = 0 
provides an ideal performance that can be used to evaluate the 
performance of different designs. Further, Eq. 24 clearly shows 
that the achievable performance is limited by the presence of the 
nonminimum phase factor Gp+(s) .  This limit cannot be ex- 
ceeded by controller design. Improvement beyond this limit 
would require modification of the plant to eliminate the nonmin- 
imum phase terms. 
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Selection of C,, (s) 
Three cases were identified for QRDS that correspond to: I )  

no R H P  zeros; 2) finite number of R H P  zeros; and 3)  an infinite 
chain of R H P  zeros. 

Case I .  C,, = 1 and the GSP reduces to a unity feedback con- 
troller: C(s) = G,(s). The controller can be parameterized 
according to Eq. 22. 

Case 2. The process has a finite number of R H P  zeros. Given 
their location, say z I + ,  . . . , zi+, . . . , then 

and 

Case 3. The process has an infinity of R H P  zeros and possibly 
a finite number of LHP zeros ( -z,-) .  Then 

PI (s) - P2(s)e-‘ds 
I I i ( Z i -  + s) R ( s )  = 

and Eq. 21 defines C,, (s). Equation 28 was obtained from Eq. 
27 by substituting -s for s and by multiplying e-‘”, which is 
required for rea li za bi 1 it y . 

The expressions for R(s)  and R* (s) given by Eqs. 27 and 28 
represent the quotient of the perfect division of a quasipolynom- 
ial by a polynomial with roots a t  its own zeros. This quotient 
cannot be written in closed form; one can write it as an infinite 
product but not with a finite formula in terms of elementary 
functions. It is more compact and easier to write it as a fraction 
with the perfect division being implied. 

Remarks 
The key issue in the control of QRDS is how to cope with the 

transcendental nature of the transfer function, which in general 
will produce an infinity of zeros; it is not the choice of predictive 
control framework. Alternative predictive control frameworks 
like the IMC would in principle yield equivalent results. The 
proposed framework seems to be the most appealing for the fol- 
lowing reasons: 

i) The Smith predictor idea provides a nice way to “decouple” 
the minimum phase part of the process, which will be controlled, 
from the nonminimum phase part, which will stay in open loop. 
This “decoupling,” is particularly convenient in delay and gen- 
eral distributed systems. 

ii) The pole placement philosophy leads to a natural split of 
G,(s) into a minimum phase and a nonminimum phase part. At 
the same time, it provides a natural parameterization of the 
controller C(s) that guarantees closed-loop stability. The ad- 
justable parameters p;s are interpreted as free poles, to be 
placed significantly “far left,” rather than time constants of an 
ad-hoc filter. 

Robust Design 
The results of the previous section are under the assumption 

of a perfect model. This assumption is of course unrealistic and 
one would wish to guarantee stability and “high performance” 
for any process model within a specified uncertainty band. 

The most popular way to specify model uncertainty bounds 
has been in the frequency domain in terms of a multiplicative or 
“percent” uncertainty. According to Doyle and Stein (1981), 
one can represent the “true” process transfer function CZ(s) as 

where G,(s) is the process model and L,(s) the multiplicative 
uncertainty. However, L, (s) is seldom known exactly. Usually 
only an upper bound I ( w )  defined according to 

I Ln(io) I < [ ( w )  (30) 

can be estimated. G%(s) therefore represents a family of plants 
that includes the process model. 

The ISE-optimal pole placement will be applicable to the spe- 
cific c:(~)  = G,(s) and not to the entire family of GFs. 
Although in principle it is possible to reformulate the optimiza- 
tion problem to optimize the “worst” performance over the fam- 
ily of G ~ s  (Doyle, 1984), the following two step procedure is 
more practical: 

Step I .  Design a controller assuming perfect model, using the 
framework described in the previous section. 

Step 2. Select the free poles (p,’s)  so as to meet robust stabil- 
ity and performance specifications. 

The same two-step idea is central in the robust design of IMC 
controllers (Mandler et al., 1986; Zafiriou and Morari, 1986; 
Morari and Doyle, 1986). The difference is of course the origin 
of the controller parameterization (Q-parameterization vs. 
closed-loop pole parameterization). It should be stressed that 
the robust design should be based on an overall uncertainty 
bound between the plant and model. A design based on a partial 
uncertainty bound or considering only uncertainties in Gp- (s), 
for example, could lead to closed-loop systems with poor robust- 
ness. 

The robust stability condition for the GSP, following the 
approach of Doyle and Stein (1981), simplifies to 

The robust performance condition, usually imposed over a cer- 
tain low frequency band, is 

where the performance function Pr ( w )  is a priori determined by 
the designer and is associated to the ability of the closed-loop 
system to attenuate disturbances within the specified frequency 
band. 

One of the major difficulties hindering application of the 
above theory is the determination of an overall uncertainty 
bound f ( w )  in an actual process. When it is too difficult or too 
costly to estimate Z(w), the free parameters (pi’s)  will have to be 
tuned on-line. 
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Examples: Control of Cumulative Mass Fraction 
Fluidized bed calciner 

The transfer function for the cumulative mass fraction in a 
fluidized bed calcincer is reproduced below from Eq. 2 for a cut- 
point size Z, = 2 

(8s’ + 36s2 + 60s + 38) 
38 

e-2r - 1 
(33) Gp(s) - 

s(s + l)(s2 + 3s + 3) 

The numerator quasipolynomial can be written as 

(8s3 + 36s’ + 60s + 38) 
38 

e - l -  1 (34) N ( s )  - 
while the corresponding image quasi-polynomial is 

(35) - e-2” ( -8s3 + 36s’ - 60s + 38) 
38 N,(s)  = 

The zeros of Eq. 34 are plotted in Figure 7. This system has 
three LHP zeros, a zero at the origin and an infinity of RHP 
zeros. The LHP factors are (s + 1.545) and (s’ + 2.319s + 
1.73). 

Selection of Cp+ (s). This system corresponds to case 3. The 
nonminimum phase factor, Gp+ (s) defined by eqs. 21,27 and 28, 
is 

N ( s ) ( - s  + 1.545)(s2 - 2.319s + 1.73) 
(s + 1.545)(s2 + 2.319s + 1.73)N,(s) (36) G,+(s) - - 

while the minimum phase factor is given by 

Gp- (s )  = 

N,(s)(s + 1.545)(s2 + 2.319s + 1.73) 
s(s + l)(sz + 3s + 3)(-s + 1.545)(s2 - 2.319s + 1.73) 

- 

(37) 

Controller Synthesis. The desired closed-loop transfer func- 
tion, [ W(s)] - ’ ,  has to be selected in order to use Eq. 22 for the 
synthesis of G,(s). In this case, a first order polynomial 

W(s)  = p , s  + 1 (38) 

makes the controller proper. As pointed out earlier, the 
righthand side of Eqs. 36 and 37 involve pole-zero cancellations. 
For this reason, special care must be taken when simulating 
G,(s) and the predictor (1 - Gp+ (s))G,- (s) on-line. 

Using a 10% uncertainty in the cut-point size, for illustrative 
purposes, the uncertainty bound is 

This bound is shown in Figure 10 together with I W(iw) I forp, = 

0.2 and 0.3. The robust stability condition in E!q. 31 is satisfied 

.1 1 10 100 

Frequency 

Figure 10. Uncertainty bound for cumulative mass frac- 
tion in a fluidized bed calciner for a 10% 
uncertainty in the cut-point (ZJ. 

for all p ,  2 0.2. A value of 0.3 was chosen to limit the over- 
shoot. 

The closed-loop cumulative mass fraction response of a plant 
at the nominal cut-point (Z, = 2) and plants at the extreme cut- 
points (Z, = 1.8 and 2.2) are given in Figure 1 1  for a unit step 
change in the set-point. For comparison, the closed-loop 
responses of the cumulative mass fraction at the nominal cut- 
point are shown in Figure 12 for PID controllers at the Ziegler- 
Nichols (K, = -5.3, ri = 1.48 and T d  = 0.37) and optimal set- 
tings (K, - -4.5, T~ = 0.8 and ?d = 0.37). The optimal PID 
settings were determined from simulations using the Ziegler- 
Nichols settings as a starting point for the parameter search. 
Many trials were required to arrive at the optimal settings. 

The performance and robustness of the PID controller at the 
optimal settings are comparable to that of the GSP controller 
for this system. As expected, the PID controller at the Ziegler- 
Nichols settings is considerably poorer. The time histories of the 

1.6 I 1 

1.4 1 h 
2 1.0 

m 
0.6 

0.4 I - ZC-1.8 - z c = 2  
zc = 2.2 I - 0.2 F B 

0 

Figure 11. 
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Fluidized bed calciner, response of tlhe cumu- 
lative mass fraction for the nominal (Z, = 2) 
and extreme (Z, = 1.8 or 2.2) plants ,to a step 
change in set-point using a GSP c.ontroiler 
@, = 0.3). 
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Figure 12. Fluidized bed calclner, response of the cumu- 
lative mass fraction for the nominal (2, = 2) 
plant to a step change In set-point using a PID 
controller at the optimal and Ziegler-Nichols 
settings. 

manipulated variable corresponding to the simulations for the 
nominal cut-point are shown in Figure 13 for the GSP and opti- 
mal PID controllers. The GSP controller requires larger initial 
control action. This will limit the magnitude of the set-point or 
disturbance inputs that the controller can tolerate without satu- 
ration. 

MSMPR crystallizer 
This example presents results for the control of a MSMPR 

crystallizer, with i - 5 and j - 1, using residence time as the 
manipulated variable. Figure 8 shows that this system has a fin- 
ite number of (nine) RHP zeros. Hence, this system corresponds 
to case 2. The nonminimum phase factor, Gp+ (s), can be calcu- 
lated using Eqs. 21,25 and 26, while the controller is defined by 
Fiq. 23. Here also a first order polynomial, W(s)  = p,s  + 1, 
would make the controller proper. Assuming an uncertainty 
bound of 10% in the cut-point size and using a procedure similar 
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Figure 13. 
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Fluidlted bed calciner, comparison of the ma- 
nipulated variable response for the GSP and 
optimal PiD controllers for a step change in 
set-point. 

to that for the fluidized bed calciner, a p ,  2 0.3 was found to 
satisfy the robust stability condition. 

The closed-loop responses of the cumulative mass fraction for 
the nominal and extreme cut-points are given in Figure 14 for a 
unit step change in set-point with pi = 0.3. For comparison, the 
responses with an optimally tuned (K, = 0.9, T~ = 0.85, and T~ = 

0.37) PID control system are shown in Figure 15. Here the per- 
formance of the GSP controller is much better than that of the 
optimal PID controller. 

The difference between the performance of GSP and optimal 
PID controllers for the fluidized bed calciner and MSMPR 
crystallizer examples can be attributed to the number and loca- 
tion of the RHP zeros with respect to the imaginary axis. 

Controller Implementation Aspects 
As noted earlier, the expressions for R(s) ,  R*(s)  and there- 

fore those for Gp+ (s) and Gp- (s) (see e.g., Eqs. 36 and 37) can 
involve the quotient of the perfect division of a quasipolynomial 
by a polynomial with roots at some of the RHP zeros of the qua- 
sipolynomial. The immediate question that arises is how can it 
be simulated on-line when those zeros are only known approxi- 
mately (since they can only be calculated numerically.) There 
are two major techniques for the on-line simulation of transcen- 
dental transfer functions 

i )  Off-line calculation of the controller’s impulse response by 
numerical inversion of the Laplace transform and implementa- 
tion as a time-discretized convolution integral. 

ii) Use of a sufficiently high-order Pad6 approximation of the 
exponential term to obtain a rational approximation of the con- 
troller transfer function. 

Our experience with numerical inversion techniques of the 
Laplace transform has indicated that they are completely insen- 
sitive to small zero-pole mismatch. The reason is that any such 
small mismatch will only affect the very-high- 1s 1 values of the 
transfer function on the Bromwich contour. Consequently, this 
effect will not be sensed after numerical truncation. 

In the case where Pad6 approximations are used, it has been 
shown by Takahashi et al. (1987) that the low modulus zeros of 
a quasipolynomial can be calculated to any desired degree of 
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MSMPR Crystallizer, response of the cumuia- 
tive mass fraction for the nominal (2, = 2) and 
extreme (2, = 1.8 or 2.2) plants to a step 
change in set-point using a GSP controller 
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Further, the cumulative mass fraction examples are signifi- 
cant in that they provide an implementable scheme for control- 
ling particle size distribution in particulate systems. The advan- 
tage of controlling cumulative mass fraction is that it can be 
measured fairly easily on-line compared to the size distribution 
or its moments. In the past, the lack of instrumentation and suit- 
able controller design techniques coupled with complicated dy- 
namics have prevented the automatic control of particle size dis- 
tribution. 

0.2 - zc-2.2 

0.0 I I I * 

0 2 4 6 8 
Residence Time Units 

Figure 15. MSMPR crystallizer, response of the cumuia- 
tlve mass fraction for the nominal (Z, - 2) and 
extreme (2, - 1.8 or 2.2) plants to a step 
change in set-polnt uslng an optimal PID con- 
troller. 

accuracy by using a sufficiently high-order Pad6 approximation. 
As only low modulus roots participate in zero-pole cancellations, 
the use of Pad6 approximation for the delay terms yields a stable 
rational approximation for the quotient of the transcendental 
transfer function after the zero-pole cancellation is performed. 
This allows approximation of a transcendental controller trans- 
fer function as a stable rational transfer function. 

The use of high-order Pad6 approximation is further sup- 
ported by the fact that the mismatch between the transcenden- 
tal and rational (Pad6 approximation) transfer functions occurs 
at large 1s I. Therefore the relative contribution of the mismatch, 
introduced by Pad6 approximation, to the overall dynamics is 
insignificant. The disadvantages with using Pad6 approximation 
are: 

i )  The Pad6 coefficients tend to increase very rapidly with 
Pad6 order, leading to numerical problems. 

i i)  The minimum Pad6 order required to yield satisfactory 
accuracy will depend on the system transfer function. Hence, 
simulations are required. 

Conclusions 
The literature on the design of model-based predictive con- 

trollers for time delay and finite dimensional nonminimum 
phase systems is quite extensive. However, extensions to distrib- 
uted systems have been limited. In this paper, a class of distrib- 
uted systems modeled by hyperbolic PDEs is identified. This 
class, called QRDS, has an infinity of zeros lying in the LHP or 
RHP. Formulas for factoring QRDS into minimum and non- 
minimum phase factors and a genrealized Smith predictor 
(GSP) controller design procedure were presented. 

The GSP design procedure uses pole-placement to obtain a 
controller parameterization that guarantees closed-loop stabil- 
ity. The free parameters are selected to satisfy robustness and 
performance specifications. The examples on control of the 
cumulative mass fraction demonstrates the advantages of the 
GSP design procedure. A robust design is obtained in a rather 
straightforward manner without having to perform many simu- 
lations to search for the best settings. 

Notation 
c - solute concentration in crystallizer, based on clear liquor 
cj - solute concentration in crystallizer feed 
c, - solute saturation concentration 
c, - crystallizer parameter, (+) 
cz - crystallizer parameter, (1 - k S 2 ?  - (1 - p/Z)kOgm,?/ 

c3 - crystallizer parameter, ( ( i  - 1)/(1 - C,)) 
c, - crystallizer parameter, ( j  - k p r 3 / l  - kn,) 
C - dimensionless solute concentration, c/Z 
C, .. dimensionless saturation concentration, c,/Z 

C(s) - unity feedback controller transfer function 
d(s) - process disturbance 

(1 - CAI 

g - linear particle growth rate 
G - dimensionless particle growth rate 

G&) - controller transfer function 
C&) - process transfer function 
G,, (s) - nonminimum phase, allpass component of plant model 
G,- (s) - minimum phase component of plant model 

i - nucleation to growth rate kinetic sensitivity parameter, or 

j - solid concentration dependent nucleation kinetics exponent 
\I-1 

k. - area shape factor 
kt - growth rate kinetic constant 
k, - nucleation rate kinetic constant 
k. - volume shape factor 
K - process gain, or ratio of coefficient of dominant power of 

K, - controller gain 
Pz(s) by coefficient of dominant of power of P, (s) 

I(w) - upper bound for multiplicative uncertainty 
LJs) - multiplicative uncertainty 

m - order of polynomial Pz (s) 
mz, m3 - second, third moment of the number distribution function 

M, - cumulative mass fraction normalized with respect to the ini- 
tial steady-state value 

Mz, M3 - dimensionless second, third moment 
n - order of polynomial PI (s) 

N ( s )  - QRDS numerator quasi polynomial 
N&) - QRDS image quasi polynomial 
P,(w) - performance function 
R(s)  - an entire function containing all the RHP zeros of G p ( s )  

R*(s)  - an entire function whose zeros are exactly at  the mirror 
image of the RHP zeros of Gp(s) 

s - Laplace variable 
t - time 

t, - time delay 
T - dimensionless residence time 

W(s)  - polynomial of “free” poles 
y(s )  - controlled variable 

y,,,(s) - set-point 
2 - dimensionless particle size 
2, - dimensionless cut-point size 

Greek letters 
p - density 
6 - liquid fraction in crystallizer 
T - time constant or residence time 
T, - Integral time of PID controller 
sd - Derivative time of PID controller 
w - frequency 
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