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Discrete-time nonlinear feedback control laws are derived for multivariable nonlinear 
processes, whose “delay-free” parts are minimum phase. These include mixed error- 
and state-feedback, error-feedback, and mixed error- and output-feedback laws, which 
can induce linear input - output closed-loop response. This study is carried out within 
the framework of the discrete-time globally linearizing control. The broader class of 
nonlinear processes, in which controlled outputs as well as some other process variables 
are measured, are also considered. A mixed error- and output-feedback control law is 
derived for this class of processes. The conditions under which the mixed error- and 
output-feedback can be applied to a process operating at or around an open-loop unsta- 
ble equilibrium point are determined. The application and performance of the derived 
control laws are illustrated by the numerical simulation of a chemical reactor. 

introduction 
Since the mid 198Os, the area of nonlinear process control 

has witnessed an exponential growth. The extent of the growth 
and the current status of the area have been discussed in 
several recent review articles (McLellan et al., 1990; Be- 
quette, 1991; Biegler and Rawlings, 1991; Kravaris and Arkun, 
1991). Among various research directions that have been pur- 
sued to study the problem of nonlinear controller synthesis, 
the most popular directions have been: the geometric or sys- 
tem-theoretic point of view with its foundation on nonlinear 
systems theory, formulated via differential geometric meth- 
ods; the model-predictive point of view that follows an opti- 
mization approach. Although these two points of view ini- 
tially appeared as disjointed research directions, intimate 
connections have been recently reported (Soroush and 
Kravaris, 1992a,b). 

For the nonlinear process, although input-output opera- 
tors have provided some significant theoretical insights into 
the problem of nonlinear controller synthesis (Economou, 
1985; Li et al., 1990; Daoutidis and Kravaris, 1994; Kravaris 
et al., ?994), a stand-alone general input-output synthesis 
approach cannot exist, and any input-output formulation 
must switch into state space at some point in the synthesis 
methodology. Because of this, both geometric and model- 
predictive approaches have been formulated primarily in a 
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state-space setting. A nonlinear controller synthesis ap- 
proach, geometric or model-predictive in nature, therefore 
involves two key steps: synthesis of a state-feedback law (on 
the basis of desirable closed-ioop input-output response 
characteristics or by minimizing a performance index); devel- 
opment of a state reconstruction technique for the case of 
incomplete state information. Then the overall control law 
arises from a combination of the state-feedback and state ob- 
server. 

While there are a variety of ways to calculate a state-feed- 
back, at the present time there is no general method of non- 
linear state-observer design. The available nonlinear state- 
observer design methods are either problem dependent or 
applicable to a very restricted class of nonlinear processes. 
For example, in the case of a nonlinear process operating 
only within the domain of attraction of an open-loop stable 
equilibrium point, one can use a full-order, open-loop ob- 
server to reconstruct the states. There are, however, several 
disadvantages associated with this type of observer: (a) the 
state estimates are normally very sensitive to model errors 
and unmeasurable disturbances; and (b) these observers are 
only applicable to the processes operating only within the do- 
main of attraction of an open-loop stable equilibrium point. 
To some extent, these deficiencies can be taken care of by 
using a reduced-order, open-loop observer driven by output 
measurements. It is an objective of this article to explore the 
advantages of these reduced-order observers. 
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Nonlinear control methods have been formulated both in 
continuous time in discrete time. The main advantage of the 
continuous-time formulation is that physical parameters are 
explicit in the process model and therefore in the control law. 
The main advantages of discrete-time formulation are that: 
the process model and control law are directly suitable for 
computer implementation; the presence of deadtime does not 
complicate the control problem; and system identification is, 
in a sense, more straightforward, for example, one can fit the 
data to a polynomial ARMA model (Hernandez and Arkun, 
1993). Because of these appealing features, the discrete-time 
formulation has been the recent trend in the literature. 

The nonlinear control study of this work will be carried out 
in a state-space synthesis framework and in discrete time. In 
particular, we employ the notion of input-output lineariza- 
tion and the globally linearizing control (GLC) design 
methodology (Kravaris and Soroush, 1990; Soroush and 
Kravaris, 1992b), wherein the control objective is to induce a 
linear, closed-loop, input-output dynamics with desirable 
performance characteristics. The present article is a continu- 
ation of previous work of the authors and coworkers in de- 
signing nonlinear controllers, in the following sense. It pro- 
vides (a) a multivariable generalization of the results in 
(Soroush and Kravaris, 1992b) on discrete-time single-input 
single-output (SISO) nonlinear feedback control, and (b) a 
discrete-time analog of the continuous-time multivariable re- 
sults in Kravaris and Soroush (1990) and Daoutidis and 
Kravaris (1994). In addition to providing a necessary exten- 
sion of previous results, the present article also proposes a 
new state-reconstruction method. The broader class of the 
nonlinear proccsses, in which controlled outputs as well as 
some other output variables are measured, are also consid- 
ered. A mixed error- and output-feedback control law is de- 
rived for this class of processes. 

This article begins with a brief review of the definitions of 
relative orders and characteristic matrix. The problem of di- 
agonal time-delay factorization of a class of nonlinear sys- 
tems is addressed, followed by the concept of minimum-phase 
behavior. A synthesis formula for input--output linearizing 
state feedbacks is then derived. Within the framework of the 
discrete-time GLC, mixed error- and state-feedback, error- 
feedback, and mixed error- and output-feedback control laws 
are derived. The stability of the closed-loop system under each 
derived control law is studied and the corresponding condi- 
tions for closed-loop stability are given. The closed-loop re- 
sponse as well as the control laws are simplified in a number 
of cases by choosing special closed-loop responses. Finally, 
the application and performance of the derived control laws 
are illustrated by a reactor example. 

Scope and Mathematical Preliminaries 
This work considers nonlinear, multiinput multioutput 

(MIMO) systems with equal number of inputs and outputs, 
described by a discrete-time state-space model of the form 

where x = [ x , . . . x , l T ,  u = [ u ~ - . . u , ] ~ ,  and y=[y,.. .y,lTde- 

note the vectors of state variables, manipulated inputs, and 
controlled outputs, respectively, all in the form of deviation 
variables. It is assumed that x E X c R” and u E U c R m ,  
where X and U are connected open sets that contain the 
origin (i.e., the nominal equilibrium point); @ ( x ,  u )  is an ana- 
lytic vector function on X X U ;  and h ( x )  = [ h , ( x ) - . .  h,,,(x)IT 
is an analytic vector function on X .  

The model described by Eq. 1 can be viewed as the sam- 
pled-data representation of a continuous-time process model 
of the form 

that is, x ( k  + 1) = Q,(x (k ) ,  u ( k ) )  equals the solution at time 
( k  + 1)At of the differential equations of Eq. 2 starting at 
time kAt  in i ( k A t )  = x ( k )  and with a constant G(t) = u(k ) ,  
where At is the sampling period. 

In regard to the general form of Eq. 1, the following points 
should be made: 

If time-delays are introduced in the inputs and/or out- 
puts of the delay-free system of Eq. 2, the corresponding 
sampled-data representation of the continuous-time model 
with time delays will still be in the general form of Eq. 1 
(addition of time delay to a system of the form of Eq. 1 sim- 
ply increases the dimension of the system). 

Unlike the continuous-time model of Eq. 2, the process 
description of Eq. 1 is not affine in u.  Consideration of a 
more general class of models in discrete time is necessary, 
because (a) the sampled-data representation of a process de- 
scribed by the continuous-time model of Eq. 2 is, in general, 
not affine in u,  and (b) even when a discrete-time model is 
affine in u,  the input-output linearizing state feedback will 
be, in general, not affine in the external input. 

In what follows, system-theoretic notions for MIMO dis- 
crete-time systems will be reviewed briefly. Refer to Nijmei- 
jer and van der Schaft (1990) for details. 

For a system of the form of Eq. 1, the rela- 
tive order of the output y ,  with respect to the manipulated 
input vector u is the smallest integer r, for which 

Dejinition 1. 

If such an integer does not exist, we say that r, =m. 

Definition 1 implies that if.the relative order r, = 1, then 
d ( h ,  0 Q,)/du + [0 ... 01, where “ 0 ” denotes composition of 
functions, that is, h ,  0 Q, A h,(Q,(x, u)). If the relative order 
r, = 2, then d(h, 0 Q,)/du = [O. . .O],  ( h ,  0 Q, is a function o f x  
only), but d(h, 0 Q, 0 Q,)/du f [O. . .O] . If the relative order r, = 
3, then d(h ,  0 Q,)/du = [O...O] and d ( h ,  0 Q, 0 Q,)/du = [O. . .O] ,  
(both h, 0 @ and h, 0 Q, 0 @ are functions of x only), but 
d ( h ,  0 Q, 0 @ 0 Q,)/du f [O...O] . Therefore, in the general case, 
the relative order r, is the smallest integer for which 

188 January 1996 Vol. 42, No. 1 AIChE Journal 



h ; o @ o .  . . o @  - 
r, times 

depends on a uj.  
In view of the definition and properties of the relative or- 

ders r , ,  . . . , r,, the following notation, which will be used in 
the subsequent sections, is defined: 

A 
h y x )  = h,(x) 

h p ( x )  A hf-'[~(x,u)~, I = I .  .. ., r, - 1. 

In this notation, 

d 

d U  
-h;-  1 [ @ ( x , u ) l  f [0.*.01, 

and the following relations hold: 

y,(k + I>  = h,P[x(k)I, 
y,(k + r , )  = h ? - ' { @ [ x ( k ) ,  u ( k ) l )  

I = 0, ..., r, -1 .  i 

(3) 

Consequently, the relative order rI is the smallest number of 
sampling periods after which a manipulated input move u, (k )  
affects the output y,. 

If a system output y ,  does not have a finite relative order 
(r ,  =m), this means that none of the manipulated inputs ul, 
. . . , u, affect the output y, ( y ,  is not controllable). In every 
well-formulated control problem, all the outputs y,, . . . , y, 
must possess finite relative orders. Throughout this article, it 
will be assumed that all the relative orders are finite and 
a[h:-'(@(x,u))]/au # [ O . . .  on x x U, i = 1, ..., m. 

In analogy to linear systems, it is straightforward to show 
that the exact sampled-data representation of a deadtime- 
free, MIMO, continuous-time system with finite relative or- 
ders ?,, i = 1, . . . , m, always has r, = 1, i = 1, . . . , m (Nijmeijer 
and van der Schaft, 1990). Thus, if a discrete-time nonlinear 
system of the form of Eq. 1 has r, > 1, (r ,  - 1)At represents 
the smallest plant deadtime between the manipulated inputs 
and the output y,, whereas the additional delay At  is the 
time delay due to the sampling. Since, in a discrete-time set- 
ting, introduction of time delays simply increases the dimen- 
sion and relative orders of the system, deadtime compensa- 
tion in discrete time is much easier than in continuous time 
(especially for multivariable systems). 

Consider a discrete-time, MIMO system of 
the form of Eq. 1 and assume that each output y, possesses a 
finite relative order r,. The matrix 

Definition 2. 

h e(x,u) = 
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is called the characteristic matrix of the system described by 
Eq. 1. 

Throughout this article, it will be assumed that e(x,u) is 
nonsingular on X X U. This assumption can always be guar- 
anteed, as long as det[C(O., 011 f 0, by appropriately defining 
the sets X and U. 

For a process of the form of Eq. 1 with finite relative or- 
ders and nonsingular characteristic matrix e[ x(k), u(k)] ,  Eq. 
3 implies that the set of algebraic equations 

is locally solvable for the manipulated input vector u. The 
corresponding implicit function will be denoted by 

where y* = [ y T  ...y;IT, and will be assumed to be well-de- 
fined and unique on X X h ( X ) .  

Time-Delay Factorization of Nonlinear Systems 
The definition and interpretation of the relative orders r , ,  

..., r, and the characteristic matrix e ( x ( k ) ,  u ( k ) )  can be 
used to decompose a dynamic system of the form of Eq. 1 
into two subsystems in seriei: (i) a "delay-free'' subsystem, 
and (ii) a pure delay subsystem. This is established in the 
following theorem and shown in Figure 1 (in which q repre- 
sents the forward shift operator). 

If the system of Eq. 1 possesses finite rela- 
tive orders and nonsingular characteristic matrix e(x, u )  on 
X X h ( X ) ,  then the system can be decomposed into the fol- 
lowing two subsystems in series: 
(a) the "delay-free'' subsystem (whose inverse is physically re- 
alizable) 

Proposition 1. 

Figure 1. Decomposition of a nonlinear system into a 
delay-free part and a diagonal, pure-delay 
part. 
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(b) the completely decoupled, pure-delay subsystem 

The proof was given by Soroush (1992). 
This decomposition is a generalization of the standard fac- 

torization of linear discrete-time systems into an invertible 
(delay-free) part and a decoupled pure-delay part (Garcia and 
Morari, 1985a,b). Note that in Theorem 1, the term “delay- 
free” was used in the context that the inverse of the system 
under  consideration is causal (physically realizable). 
Throughout the rest of this article the term “delay-free’’ will 
also be used in the same context. 

As given in Proposition I, because of the nonsingularity of 
the characteristic matrix, and therefore solvability of the al- 
gebraic equations in Eq. 4, an inverse to the delay-free sub- 
system (Eq. 6 )  can be constructed: 

In the case of a linear process with finite relative orders 
and with nz finite transmission zeros, the inverse system de- 
scribed by Eq. 8 will have n ,  poles at the process transmis- 
sion zeros and ( n  - n , )  poles at  the origin. Consequently, in 
this case, the inverse system of Eq. 8 will be stable, if all the 
finite transmission zeros of the process are inside the unit 
circle. This motivates the definitions given in the next subsec- 
tion, which are used to characterize minimum-phase behavior 
for nonlinear systems. 

Minimum-phase behavior 
For a linear system, the delay-free part of the system is 

said to be minimum phase, if all the finite transmission zeros 
of the system lie inside the unit circle. For a nonlinear sys- 
tem, notions of transmission zero and pole, however, cannot 
be used, and therefore minimum-phase behavior must be 
characterized in terms of the stability of the inverse dynam- 
ics. 

Given a discrete-time nonlinear system of the 
form of Eq. 1, its delay-free part is said to be locally mini- 
mum phase, if the dynamics 

Definition 3. 

is locally asymptotically stable. Otherwise, we will say that it 
is locally nonminimum phase. 

The local asymptotic stability of the system described by 
Eq. 9 can be checked, for example, via Lyapunov’s first 
method, by calculating the eigenvalues of the Jacobian of the 
system evaluated at the equilibrium point. Using the defini- 
tion of To (Eqs. 4 and 5 )  and the implicit function theorem, 
one can easily see that the Jacobian of the system of Eq. 9 at 
(x,,, y o )  = (0,O) is equal to  
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evaluated at (x, u )  = (0,O). If all the eigenvalues of the Jaco- 
bian matrix ~ , , ( X , U )  are in the interior of the unit circle, the 
dynamics of Eq. 9 will be locally asymptotically stable in a 
neighborhood of the origin. 

Given a discrete-time nonlinear system of the 
form of Eq. 1, its delay-free part is said to be locally hyperbol- 
ically minimum phase, if all the eigenvalues of the Jacobian 
matrix &,(x, u )  evaluated at  the equilibrium point, are in the 
interior of the unit circle. 

Note that a locally hyperbolically minimum-phase delay- 
frcc part is also locally minimum phase. However, the con- 
verse may not hold: the delay-free part of a system, whose 
corresponding Jacobian matrix &(0, 0) possesses some 
eigenvalues on the unit circle, can be locally minimum phase. 

In the systems theory literature (see, e.g., Monaco and 
Normand-Cyrot, 1988), the notion of minimum phaseness is 
defined via the notion of zero dynamics, which tries to gener- 
alize the continuous-time notion of zero dynamics of Byrnes 
and lsidori (1985). Note, however, that the associated normal 
form of discrete-time systems is built on the manifold 

Definition 4 .  

i = l ,  ..., m} 

rather than the entire state space X .  Consequently, the nor- 
mal form of Monaco and Normand-Cyrot is not connected 
with the (forced) inverse dynamics. 

Input-Output Linearizing State Feedback 
A static state-feedback law of the form 

with det[d(V[x(k), u ( k ) ] } / d u ]  f 0, which induces linear 
closed-loop input-output behavior, is sought. Here u = [ u *.- 

umIT is the vector of reference inputs. 
In particular, if linear closed-loop input-output dynamics 

of minimal order is desirable, this has the general form 

(11) 

where p i e  = [ pile ...P,;fIT is an m-vector adjustable constant 
parameter and is a constant nonsingular m X m matrix. 
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The input-output dynamics of Eq. 11, in the z-domain, is 
given by y(z)=[Q(z)I-'~B,,u(z), where 

(12) 

The matrix transfer function G,(z)  A [Q(z)]-'@, has (rl 
+ ... + rmj poles at the roots of det[Q(z)] = 0 and no zeros: 
the determinantal degree of Gi(z) is ( r l  + ... + rm),  which is 
the order of the closed-loop system. 

The necessary static state feedback, which induces the in- 
put-output dynamics of Eq. 11, is easily calculated by using 
the definition and properties of the relative orders rl, . . . , rm 
and the characteristic matrix. It is the implicit function de- 
fined as the solution for u ( k )  of the set of algebraic equa- 
tions 

control is known for its poor robustness properties, and 
therefore it is of little practical importance. 

The response of Eq. 15 is the fastest achieuable closed-loop 
response in terms of tracking the reference inputs u I ,  . . . , urn. 
On the other hand, the closed-loop response under the dead- 
beat controller (Eq. 14) is exactly the dynamics of pure-delay 
subsystem (Eq. 71, which is in agreement with Proposition 1. 
Thus, the closed-loop dynamics arising from the controller of 
Eq. 14 

is also identical to the dynamics of the inverse of the delay- 
free part of the process (cf. Eq. 8). Therefore, a system of the 
form of Eq. 1 is locally minimum phase if and only if the 
closed-loop dynamics associated with the output deadbeat re- 
sponse is locally asymptotically stable (Monaco and Nor- 
mand-Cyrot, 1988). 

For practical purposes, we must use Bi # [O ... 0IT to ob- 
tain a sufficiently robust response. For this reason, one must 
analyze the closed-loop system arising from the general 
state-feedback law of Eq. 13: 

which can be written as (using the definition of the function 
To, given by Eqs. 4 and 5): 

Note that in the special case of p, =[O.. .0lT,  i = 1, . . ., m,  
0 = 1, .. ., ri, and @, = Z,, the state feedback of Eq. 13 sim- 
plifies to 

and the resulting closed-loop input-output behavior to 

which is an output deadbeat (time-optimal) response. Dead- 
beat control has been studied extensively in the systems the- 
ory literature (e.g., O'Reilly, 1981; Glad, 1987). Deadbeat 

Stability of the linearized LY-y system 
The input-output behavior of the closed-loop system (Eq. 

17) is, of course, governed by the matrix transfer function 
C,(z), and therefore the input-output stability and perform- 
ance characteristics of the closed-loop system (Eq. 17) are 
determined by the roots of the characteristic equation 
det[Q(z)] = 0. The local, asymptotic, internal stability of the 
closed-loop system (Eq. 17) depends on the eigenvalues of its 
Jacobian, evaluated at the equilibrium point. Using the defi- 
nition of To (Eqs. 4 and 5) and the implicit function theo- 
rem, one can easily see that the Jacobian of Eq. 17 is given by 

Thus, if the eigenvalues of &,(O,O) are in the interior of the 
unit circle, the closed-loop s8ystem of Eq. 17 is guaranteed to 
be locally internally stable. Precise conditions for the closed- 
loop stability are given in the following proposition. 

Consider a system of the form of Eq. 1 with 
finite relative orders and nonsingular characteristic matrix, 
which is subject to a state feedback of the form of Eq. 13, 
where parameters pip are chosen such that the roots of 

Proposition 2. 

AIChE Journal January 1996 Vol. 42, NO. 1 191 



det[Q(z)]= 0 are in the interior of the unit circle. If the de- 
lay-free part of the system of Eq. 1 is locally hyperbolically 
minimum phase, the closed-loop system (Eq. 17) will be lo- 
cally asymptotically stable. The proof is given in (Soroush, 
1992). 

As a consequence of this proposition, the input-output lin- 
earizing state feedback (Eq. 13) can form a basis for con- 
troller design for all locally hyperbolically minimum phase 
systems of the general form of Eq. 1. 

Globally Linearizing Control Structure 
In the previous section, we saw that when a nonlinear sys- 

tem of the form of Eq. 1 is subjected to the state feedback of 
Eq. 13, the closed-loop system becomes linear in an 
input-output sense, meaning that the relation between u and 
y is described by a set of linear difference equations. The 
offsetless tracking of setpoints in the presence of model er- 
rors and step disturbances can be ensured by placing a linear 
multivariable controller with integral action around the lin- 
ear u-y system. This idea leads to the GLC structure (Kravaris 
and Soroush, 1990; Soroush and Kravaris, 1992b), which is 
depicted in Figure 2a. The linear controller of the GLC 
structure has been referred to as the external controller. 

Requesting a desirable overall closed-loop behavior (set- 
point-to-output relation) 

where Y , ~ ,  = [y , , ,  . . .y5pv, ]T  is the vector of output setpoints, 
one can easily calculate the necessary external controller 
G,(z). In particular, if 

where R(z) is a polynomial matrix in z with R(1) nonsingu- 
lar and finite, then the necessary external controller G,(z) is 
given by 

which possesses integral action: G,(z) has a pole at z = 1. 
Causality of the external controller GJz) is guaranteed as 
long as the matrix R ( z )  is chosen to be a column reduced 
polynomial matrix with the column degrees r , ,  . . . , r,: 

(22) 

where ' y i p  = [ ... y,;t]7 are rn-vectors of constant parame- 
ters with det[R(l)]# 0. In Eq. 22, the leading coefficient ma- 
trix was set to be the identity matrix without loss of general- 
ity, in view of the scaling of G,(z), given in Eq. 20. 

To implement the external controller G,(z), we should cal- 
culate a state-space realization of the matrix transfer func- 
tion G,( z).  Minimal-order state-space realizations can be de- 
rived using standard methods from linear systems theory (e.g., 
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Controller 

X 

I I 

Figure 2a. Basic GLC structure. 

Controller i 

i 
Figure 2b. Error-feedback GLC structure. 

T/ State Feedback 

output 

Observer 
-I I 

I 
Figure 2c. Error-feedback (reduced-order) GLC struc- 

ture. 

Controller 

Y 

Figure 2d. Mixed error- and output-feedback GLC struc- 
ture. 

Chen, 1984). For completeness, a minimal-order, state-space 
realization of the external controller (defined by Eqs. 21 and 
22) is given in the Appendix; it has the compact form: 
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where [ ( k )  =[51“’(k)...5,1”(k)i... j [ , ‘ “ ’ ( k ) . . . [ ~ ) ( k ) l T ,  e (k )  
=Ie , (k> . . .  ern(k>lr= y, , (k)-  y ( k ) ,  and A, ,  Be, C,, and D, 
are constant matrices, which are defined in Appendix A. 
Equation 23 is a minimal-order state-space realization, be- 
cause both the order of G,(z) [degree-in-z of the determi- 
nant of R(z ) ]  and the order of the state-space realization are 
( r l  + ..- + rm). 

Synthesis of mixed error- and state-feedback controllers 
In the case that all state variables are measured on-line, 

the state feedback of Eq. 13 and the external controller (Eq. 
23) are implemented to induce the desired linear overall 
closed-loop response of Eqs. 20 and 22. This motivates the 
following theorem. 

Theorem 1. Consider the nonlinear process described by 
Eq. 1 with finite relative orders and nonsingular characteris- 
tic matrix e(x, u )  on X x U. Then, the dynamic system 

Synthesis of error-fedback controllers 
In many practical situations, complete on-line state infor- 

mation is not available. Quite often, only the outputs are 
measured on-line and this motivates the synthesis of nonlin- 
ear output-feedback control laws, which can induce a closed- 
loop input-output behavior of the form of Eq. 25. 

In the case of a process operating only within the domain 
of attraction of an open-loop stable equilibrium point, state 
variables can be reconstructed by using an open-loop ob- 
server: w ( k  + 1)= @ [ w ( k ) , u ( k ) ] ,  where w is the vector of 
state estimates. The state estimates w,, . . . , wn can then be 
used in the input-output linearizing state feedback of Eq. 13 
in conjunction with the external controller of Eq. 23, leading 
to an error-feedback controller, which induces the closed-loop 
dynamics of Eq. 25. The synthesis formula of the resulting 
error-feedback controller is given in the following theorem. 

Theorem 2. Consider the nonlinear process described by 
Eq. 1 with finite relative orders and nonsingular characteris- 
tic matrix C(x,  u )  on X X U. Then, the dynamic system 

where qo(. , .) is defined by Eqs. 4 and 5, and A, ,  B,, C,, and 
D, are the system matrices of the state-space realization of 
Eq. 23, represents an (rl  + ... + r,,,)th order state-space real- 
ization of a dynamic mixed error- and state-feedback con- 
troller that induces the closed-loop input-output behavior 
described by Eqs. 20 and 22: 

(25) 

The proof is given by Soroush (1992). The block diagram of 
the mixed error- and state-feedback controller (Eq. 24) is de- 
picted in Figure 2a, which is the “Basic”GLC structure. 

where q0(. , .) is defined by Eqs. 4 and 5, and A , ,  B,, Ce and 
D, are the system matrices of the state-space realization of 
Eq. 23, represents an ( n  + rl + ... + rrn)th order state-space 
realization of a dynamic error-feedback controller that in- 
duces the closed-loop input-output behavior of Eq. 25, if the 
process and its model are initialized consistently [do)  = w(0)]. 
The proof is given by Soroush (1992). 

In the controller of Theorem 2, if the external controller 
and the process model (observer) are initialized such that 

the controller realization of Eq. 26 will have rl + ... + rrn re- 
dundant modes; the modes of the external controller will be 
the same as rl + ... + r, modes of the observer subsystem. In 
this case, the elimination of the redundant dynamics of the 
external controller leads to a reduced-order realization of the 
controller of Theorem 2. The resulting controller is given in 
the following corollary. 

Corollary 1 (Reduced-Order Realization). Under the as- 
sumptions of Theorem 2, the dynamic system 

r ;  \ l  
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where qo(. , .) is defined by Eqs. 4 and 5, represents an nth 
order realization of a dynamic error-feedback controller, 
which induces the closed-loop input-output behavior of Eq. 
25, if the process model and the external controller are ini- 
tialized such that w(0) = x(0)  and(i''(0) = h?-'(w(O)), C = 1, 
. . . , r j ,  i = 1, . . . , m. The proof is given in Soroush (1992). 

The controller realizations of Eqs. 26 and 27 represent a 
dynamic error-feedback controller (the only input to the con- 
troller is the error) with integral action (Eq. 27 is a reduced- 
order realization of Eq. 26). The error-feedback GLC struc- 
tures are depicted in Figures 2b and 2c. 

Synthesis of mixed error- and output-feedhck controllers 
The control laws of Eqs. 26 and 27 are applicable to the 

processes operating only within the domain of attraction of 
an open-loop stable equilibrium point. Otherwise, any error 
in the observer initialization will grow indefinitely, leading to 
internal instability. This motivates the development of alter- 
native state-reconstruction techniques. 

In the present subsection, we will explore the use of the 
reduced-order observer, which simulates a stable subsystem 
of the process model, driven by the output measurements and 
process inputs. When such an observer is coupled with the 
input-output linearizing state feedback and the external con- 
troller, it gives rise to a mixed-error and output-feedback 
control law. To make the development sufficiently general, 
we will include the possibility of available secondary mea- 
surements, in addition to the measurements of the controlled 
output (primary measurements). 

Definition 5. For a process of the form of Eq. 1, the mea- 
surable process variables y 1 ,  ..., will be called the sec- 
ondary outputs, if they are algebraic functions of the state 
variables, y j  = X i ( x ) ,  i = 1, . . . , s, such that the (rn + s)X n 
matrix 

(28) 

where X ( x )  = [ X , ( x )  ... X5(x)IT has (s + m )  linearly inde- 
pendent rows, V x  E x. 

The nonsingularity of the characteristic matrix on X x U is 
a sufficient condition for output controllability, and therefore 
a sufficient condition for the matrix [ d h ( x ) / d x ]  to have m 
linearly independent rows, Vx E X .  If a process has a nonsin- 
gular characteristic matrix and the condition of Eq. 28 is not 
satisfied, then there is at least one y i  that is a "redundant" 
process measurement; this can be resolved by dropping at 
least one of the extra measurements as secondary output(s). 

Consider a process of the form of Eq. 1 with s (s 2 0) sec- 
ondary outputs: 

To such a process, we apply the coordinate transformation: 

where x l ,  . . ., x n - 5 - m  are ( n  - s - rn) state variables of the 
system of Eq. 29, which satisfy the condition: 

Note that the condition of Eq. 28 guarantees the existence 
of the ( n  - s - rn) state variables xI . . . x ~ - , ~ - ~ ,  which satisfy 
the condition of Eq. 31. Because of the condition of Eq. 31, 
the coordinate transformation of Eq. 30 is invertible on X .  

The system of Eq. 29, in the new coordinates of Eq. 30, 
takes the form: 

Fp(q, Y , y , u ) = @ , ( 3 - ' ( [ q Y y I T ) , u } ,  

P = l ,  ..., n - s - m ,  

w77, Y , y , u )  = x(@{3-'([qYyylT),u)), 

+(q, Y , y , u )  = h ( @ . ( 3 - ' ( [ q Y y l T ) , u ) ) .  

In the system of Eq. 32, the last (rn + s) state variables are 
measured on-line, whereas the first ( n  - m - s) state vari- 
ables are not and can be reconstructed by simulating the first 
( n  - m - s) state equations, which are driven by the primary 
and secondary outputs and the manipulated inputs. There- 
fore, the reduced-order observer: 

or, in a compact form, q ( k  + 1) = F [ q ( k ) ,  Y ( k ) ,  y ( k ) ,  u ( k ) ] ,  
is used to reconstruct the state variables x,;.., x ~ - ~ - ~ .  The 
state estimates q,, ..., qn-,,-, can now be used in an 
input-output linearizing state feedback, synthesized for the 
system of Eq. 32. This idea is precisely formulated in the fol- 
lowing theorem. 
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Theorem 3. Consider the system described by Eq. 32 with Controller sirntdifications 

where To(. , .) is defined by Eqs. 4 and 5,  and A,, Be, C,, and 
0, are the system matrices of the state-space realization of 
Eq. 23, represents an ( n  + r, + ... + rm - m - s)th order 
state-space realization of a dynamic mixed error- and 
output-feedback controller that induces the input-output be- 
havior of Eq. 25 to the closed-loop system, if the reduced- 
order observer and process are initialized consistently [ q ( O )  
= [x , (0) . . .~ ,_ ,_ , (0)]~] .  The proof is given by Soroush (1992). 

The controller realizations of Eq. 34 represents a dynamic 
mixed error- and output-feedback controller with integral ac- 
tion. The overall control structure as well as the various parts 
of the controller are shown in Figure 2d. This controller 
structure is the mixed error- and output-feedback GLC struc- 
ture. 

number of adjustable parameters while leaving enough flexi- 
bility to "shape" the closed-loop response. 

(I) First-Order-Plus-Deadtime Response. This type of re- 
sponse is obtained by placing ( r ,  + ... + r, - m )  poles at the 
origin and leaving the remaining m poles adjustable, which 
corresponds to setting: 

The requested desirable closed-loop input-output behav- 
ior has the form: 

Closed-loop stability 
Consider the conditions: (i) the m-vector parameters y i p  

are chosen such that the roots of the characteristic equation 
det[R(z)l= 0 lie inside the unit circle; (ii) the m-vector pa- 
rameters p, p are chosen such that the roots of the character- 
istic equation det[Q(z)l= 0 lie inside the unit circle; (iii) the 
process is locally hyperbolically minimum phase; (iv) the pro- 
cess is locally asymptotically open-loop stable; and (v) the sys- 
tem of Eq. 33 is locally asymptotically open-loop stable. 

The overall closed-loop system (under the controllers of 
Theorems 1, 2, and 3, and Corollary 1) will be input-output 
stable, if the condition (i) holds. 

For an input-output stable closed-loop system, the local 
internal stability will be ensured (a) under the controller of 
Theorem 1, if (ii) and (iii) hold; (b) under the controller of 
Theorem 2, if (ii), (iii) and (iv) hold; (c) under the controller 
of Theorem 3, if (ii), (iii) and (v) hold; (d) under the con- 
troller of Corollary 1, if (iii) and (iv) hold. 

AIChE Journal 

or, in the z-domain, y ( z )  = diag{z-'*}(Z, - az-')-'(Z, - 
m)ysP(z), where a = - [ y l ,  ... y m l ] .  The matrix ( I ,  - a;')-'  
(Z, - a )  is the transfer function of a multivariable first-order 
filter, and therefore the controller that leads to such a re- 
sponse can find a nice iriternal model control (IMC) interpre- 
tation in linear systems (Garcia and Morari, 1985a,b). Finally, 
practical experience from linear systems has shown that al- 
though this kind of response has only rn X m tunable param- 
eters, it gives enough flexibility to the designer. The relative 
magnitudes of off-diagonal elements with respect to the diag- 
onal elements of the matrix a are measures of interactions 
between the setpoints and outputs. When the y, are chosen 
according to Eq. 35, the controller of Eq. 27 simplifies into 

A 

~ ( k )  = To w ( k ) ,  ( I ,  - a ) [ e ( k )  + h ( w ( k ) ) l +  a 1 
January 1996 Vol. 42, No. 1 195 



(11) Complete Input - Output Decoupling. One common 
design specification is to request a completely decoupled 
closed-loop response: 

or, in the z-domain, y , ( ~ ) / y , ~ , , ( z )  = (1 + y,il + ... + y/ri)/lzrx + 
y / l z r f - l  + ... + Y:~,), i = 1, . . . , rn. The controllers of Eqs. 24, 
26, and 34 induce the input-output response of Eq. 38, when 
the tunable parameters y j j  are chosen according to y,; = 0, 
l # i, L' = 1, . . . , rn, j = 1, . . . , r,, i = 1, . . ., m. Alternatively, 
it is possible to request triangular (partial) decoupling in 
closed-loop on the basis of a hierarchization of the impor- 
tance of the controlled outputs. 

(111) First-Order-Plus-Deudtirne Response and Complete In- 
put - Output Decoupling. This closed-loop response has the 
characteristics of both responses of Eqs. 36 and 38 ( rn  decou- 
pled first-order-plus-dead-time responses): y,(k + r,) - a i y , ( k  
+ r, - 1) = (1 - a l ) y y , J k ) ,  i = 1 ,  . . . , rn or, in the z-domain, 

y , ( z ) / y , ~ , , ( ~ ) = z - ~ ~ ( l - a ~ ) / ( l - z - h , ) ,  i = l ,  ..., rn, which is 
obtained by setting y,2 = ... = y,,, = [O...OIT, i = 1, . . ., rn, and 
a = - [y l l . . .  y,,,,]=diag{a,}with det(a)#O. 

Implementation issues 

The input-output linearizing state-feedback of Eq. 13, 
which served as a basis in the nonlinear controller design ap- 
proach of this article, may correspond to an implicit function. 
In such a case, the controller action should be calculated nu- 
merically by solving the set of algebraic equations: 

for d k ) .  Note that because of nonsingularity of the charac- 
teristic matrix, the solution for u ( k )  will be at least locally 
unique. The numerical calculation of the controller action will 
not be cornputationally expensive, compared to the computa- 
tional effort needed in MPC for solving an optimization 
problem on-line. 

Except for the controller of Corollary 1, the feedback con- 
trollers derived in this article possess two sets of tunable pa- 
rameters, p, y and y, y .  While the performance characteristics 
and stability of the overall closed-loop system (input-output 
dynamics describing the  relation between the setpoints and 
controlled outputs) are dependent on the adjustable parame- 
ters y l y  and are independent of the adjustable parameters 
p l y ,  the dynamics of the hidden modes of the closed-loop 
system depends on the parameters p,!. In addition to the 
requirement that the roots of det[Q(z)] = 0 should lie inside 
the unit circle, the parameters pEy  should be chosen such 
that the robustness of the closed-loop system is ensured. In 

particular, enough care must be taken to ensure that the hid- 
den modes are slower than the unmodeled dynamics. Experi- 
mental and simulation studies have shown that the parame- 
ters p i p  have a strong effect on the robustness of the closed- 
loop system. 

Connections to model predictiue control 
While the connections between the derived controllers of 

Theorems 1, 2 and 3, and MPC are not transparent, it is 
straightforward to show that the controller of Eq. 37 (con- 
troller of Corollary 1 when the tunable parameters y , [  are 
chosen according to Eq. 35) is exactly a nonlinear multivari- 
able model algorithmic controller (MAC) for unconstrained 
nonlinear processes. To show this equivalence, one needs to 
follow an approach similar to the one used in (Soroush and 
Kravaris, 1992b), wherein for unconstrained SISO processes, 
a nonlinear version of the linear MAC (Richalet et al., 1978; 
Mehra and Rouhani, 1980) was derived. The details of the 
MIMO MAC derivation can be found in Soroush (1992). The 
equivalence of the controller of Eq. 37 and the nonlinear 
MAC implies that 

under the nonlinear MAC, the closed-loop system is par- 
tially governed by the zero dynamics of the process, which 
is the nonlinear analog of placing a subset of closed-loop 
poles at the finite zeros of a process by a linear MAC. 
an unconstrained nonlinear model predictive controller 
(with (a) prediction horizons of one sampling period be- 
yond the minimum deadtimes, (b) control horizons of 
one, and (c) a quadratic performance index without any 
penalties on controller action), is exactly an input-out- 
put linearizing feedback controller. 

These theoretical results will be described in detail in a 
forthcoming publication. The controller of Eq. 37 can also be 
interpreted/implemented as a Smith predictor along the lines 
of our SISO results (Soroush and Kravaris, 1992b). For 
brevity, the details are not given here and can be found else- 
where (Soroush, 1992). 

Illustrative Example: Application to a CSTR 
To illustrate the application and performance of the de- 

rived control laws, we consider a CSTR example similar to 
the one used by Daoutidis et al. (19911, in which the follow- 
ing parallel reactions 

k I  
A - U,  

k -  I 
A +- U ,  

k 2  
A + U, 

k 3  
A -+ U, 

k4 . 
A -+ U, 

k d  
A - + D  

take place. U,,  U2, U,, and U, are undesirable side products, 
and D is the desired product. The dependence of k , ,  k - l ,  
k , ,  k , ,  k , ,  and k ,  on temperature are given by k ,  = 

Z,exp( -  E a i / R T ) ,  i =  1, - 1 ,  2, 3, 4 and  k ,  = 
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2, exp( - EUd/RT),  respectively. It is assumed that the feed 
to the reactor does not contain Ul,  U,, U3, U4, or D. 

Mathematical model and control problem 
Mole balances on A and U, and energy balance for the 

reactor (under standard assumptions) give the reactor model, 
which is of the form 

1 Y =[3 
(39) 

where u I  = C,,, u, = Q, and 

L P = l  J 

T, -T  +-. 
7 

C , ( k + l )  = 1 CA(k + 1) 

T ( k  + 1) 

Table 1. Parameters of the CSTR Model 
R = 8.345 X 10" kJ.kmol- ' .K- '  

Z ,  = 3.906X 10" 5 - l  

2, = 3 . 9 0 6 ~  10' m6.kmol-2.s- 
Z ,  = 4.933 x 10' 
Z,  = 4.933X 10' s - '  
Z, = 2 . 4 9 9 ~ 1 0 ~  m3.kmol-' 

kJ.kmol-' 
kJ.kmol- 
kJ.kmol-' 

-AH, = 4 . 0 0 0 ~ 1 0 ~  kJ.krnol-I 
-AH, =5.5O0XlO4 kJ.kmol-' 
- A H3 = 5.0008X lo4 
-AH4=6.200x104 kJ.kmol-' 
-AH,=6.000x104 kJ.kmol-' 

n2 = n,  = 3.000X 10" 

z-, =9.000x103 s - '  

m6.kmol-2.s- I 

EuI = EuZ = 2.000X lo4 
E, = E, -, = 6.000 X lo4 

Z?"? = E 0 4 =  1.00Ox lo5 

kJ.kmol- 

n,  = n - ,  = 1.ooox10" 

n4 = 1.ooox 10" 
nd = 2.000 x 10" 

V = 1.000 x m3 
p = 1 . 0 0 0 ~  lo3 kg.rn-' 
c = 4.200 X 10" 
T, = 2.952 X lo2 

T=3.000~X102 S 

kJ.kg-I.K-' 
K 

The control problem is lo maintain the concentration C, 
and the temperature T at the point (C,, TI = (1,4001, where 
the selectivity S is maximum (i.e., S = l), in the presence of 
the process disturbances and model errors. The manipulated 
inputs are the inlet concentration of the reactant (C,,) and 
the heat input to the reactor (Q). 

For time-discretization of the preceding continuous-time 
model, a simple forward difference method (Euler's) is used, 
which can provide a good approximate discrete-time model 
under fast sampling. The resulting discrete-time model is 

The parameters of the reactor model are given in Table 1. 
Figure 3 depicts the reaction selectivity S , defined by 

where A t  is the sampling period, which is in the state-space 
form of Eq. 1. Here the vector of state variables x =[C, CU1 
TIT. The discrete-time model of Eq. 40 is employed to syn- 
thesize the controllers of Theorems 1, 2 and 3. kdC2d 

S =  
k lC2' + kzCi2 + k3Ci3 + k4Ci4 - k-  ,C;; I 

vs. the concentration C, and temperature T at steady-state 
conditions. As Figure 3 shows, the selectivity S has a global 
maximum at (C,, T )  = (1,400). 

controlzer synthesis and impkmentation 
The first step is to calculate the relative orders and the 

characteristic matrix, according to Definitions 1 and 2. Since, 
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E 

and therefore, 

the relative orders r l  = 1 and r2 = 1, and the characteristic 
matrix is 

which is nonsingular everywhere on R 3  XR2. 

and 3 take the following forms: 

troller of Theorem 1 (Eq. 24) becomes 

For this specific example, the controllers of Theorems 1, 2, 

(A) "Basic" GLC (All States Measurable). The con- 

0.8 

s 

0 1  

3 

T 
Figure 3. Reaction selectivity vs. C, and T, at steady- 

state conditions. 

with the nominal initial conditions: [,(O) = C,(O), t2 (0)  = 

T(0). 
(B) Error-Feedback GLC. The controller of Theorem 2 

(Eq. 26) becomes 

with the nominal initial conditions (see Table 2): &,(O)= 
C,(O), t2(0)  = T(O), w,(O) = C,(O), w2(0) = C,l(O), w&O) = 
T(0). Under the nominal initial conditions, t , ( O )  = w ,(O) and 
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Table 2. Operating Conditions 

C,,(O) = 0.000 X 10" krno1.m- ' 
C,l(O) = 0.000 X 10" k r n ~ l . r n - ~  

T(0) = 2.952 X 10' K 
CAtT= l.OOOXIOo k r n ~ l . m - ~  
CUl,,= 5.844X 10-1 krno1.rn-j 

C, = 5.687X 10" krnolm-' 
T,, = 4.000X lo2 K 

Q:: = 5.942 X 10" kJ.s- ' 

t2(0)= w3(0), the controller of Eq. 42 has two redundant 
states: t , ( k )  = w,(k), t 2 ( k )  = w,(k), for all k .  Elimination of 
the two redundant states leads to the reduced-order realiza- 
tion of Corollary 1 (Eq. 27): 

(1 + yi;)/At. Using a different strategy, each controller 
tries to induce the same decoupled input-output re- 
sponse of Eq. 45. 

(ii) In the derivation of the controller of Eq. 42, an open- 
loop observer was used: w,, w2, and w 3  represent the 
estimates of the concentration C,, concentration C,,, 
and temperature T ,  respectively, obtained via open- 
loop simulation of the process model. Under t , ( O > =  
w,(O) and t2(0) = w3(0), we will have 5, (k)  = w , ( k )  and 
t 2 ( k ) =  w 3 ( k )  for all k .  Therefore, in this case, the 
controller has two redundant modes. The elimination 
of the equations of the redundant states 5, and t2 
yields the reduced-order controller of Eq. 43. 

(iii) Controller (A) uses an on-line measurement of the 
concentration of U,, whereas controllers (B) and (C) 

(43) 

(C) Mixed Error- and Output-Feedback GLC. Assum- 
ing that there is no secondary output (s = O), the controller of 
Theorem 3 (Eq. 34) takes the form (note that the system of 
Eq. 40 is already in the form of Eq. 32): 

- 

both simulate the U,-balance equation on-line in order 
to obtain an estimate of CUI. In particular, the q-equa- 
tion of controller (C) is exactly the U,-balance equa- 
tion and is driven by the on-line measurements of the 

with the nominal initial conditions (see Table 2): tl(0)= 

The tunable parameters of the controllers are chosen to be 
p;, = ril = -0.90, p:, = y:, = -0.96, and p?, = r?, = P i ,  = 

y;, = 0 in all the cases. Under these settings, the three con- 
trollers try to induce the same decoupled linear input-output 
response 

C,(O), = T(O), ~ ( 0 )  = CUl(0). 

to the overall closed-loop system. 
Remark 1. Some comments on the nature of the preced- 

ing controllers: 
(i) All three controllers possess integral action: the state 

ti represents the integral of the error ei multiplied by 

temperature T and the concentration C,. In con- 
troller (B) (Eq. 421, the w2-equation is exactly the U,- 
balance equation and is driven by w ,  and w, rather 
than the on-line measurements of the concentration 
C, and reactor temperature 7'. Although w1 and w3 
are supposed to match the concentration C, and the 
reactor temperature 'T in closed-loop, disturbances and 
model errors will cre.ate a mismatch, which will impact 
upon the quality of the concentration estimate. 

Simulation results 
To simulate the reactor process, the standard software 

package ODEPACK is used to integrate numerically the three 
ordinary differential equations in Eq. 39. Every 2.5 s (the 
sampling period At), the value(s) of C,, C,, and/or T calcu- 
lated by the ODE solver are used in the discrete-time con- 
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Table 3. Simulation Cases 

.L ................ Estimated C1 Actual C3 

-- *---- , Actual C2 - - - - -  Estimated C3 

............................... ___.-- .... - _  .... 

"\ . 

-I: - 
_..- - - - - - - - _ _ _ _ _ _ _ _  

Nominal Model Initialization 
GLC Structure Model Error Error 

"Basic" A1 A2 - 
Error-Feedback B1 B2 B3 
Mixed Error- and Output-Feedback Cl C2 c 3  

trollers as the on-line process measurements. The operating 
conditions are given in Table 2. 

The objective is to study the performance of the three con- 
trollers (A), (B), and (C) in (a) performing a smooth and fast 
reactor startup, and (b) rejecting the effect of a step change 
(20 K increase) in the inlet temperature q, under (1) perfect 
model (nominal case), (2) model errors (50% error in the fre- 
quency factors of all the reactions), and (3) observer initial- 
ization errors [w2(0)=Cu,(O)+2 for Case B3; and v(O)= 
C,f0)+2 for Case C3]. A list of the simulation cases is pro- 
vided in Table 3. 

Startup Pe+ormance. Figure 4a depicts the startup pro- 
files of the outputs for the different cases; they show the al- 
most identical performance of the three controllers. The out- 
put response C, under the model errors has a small over- 
shoot that is insignificant relative to the magnitude of these 
errors. Overall, this figure shows the robustness of the con- 
trollers to the model and observer initialization errors. The 
corresponding startup profiles of the manipulated inputs are 
depicted in Figure 4b. 

Figure 4c compares the variations of the actual and esti- 
mated values of the state CuI during the period of startup 

4101 I 

2 9 0 h  
0 200 

I 
I 

T ime (s) 
Figure 4a. Startup profiles of the controtted outputs. 

\ 
d 

tz, 7.5 l o /  

0 200 400 600 800 

T ime  (s) 
Figure 4b. Manipulated input profiles, corresponding to 

Figure 4a. 

.......... Estimated B2 Actual 8 1  

Estimated B1 Actual B3 

Estimated B3 Actual 8 2  - - - - -  
n 

AIChE Jaurnal 200 January 1996 Vol. 42, No. 1 



(under controllers (B) and (C)): they show that, in the ab- 
sence of the model errors, the observer initialization errors 
are rejected within less than 2,000 s. However, in the pres- 
ence of the model errors, the difference between the actual 
and estimated Cy grows during the period of startup and is 
never rejected. Despite the mismatch between the estimated 
and actual CUI, the two controllers perform very satisfactorily 
in the presence of the model errors. 

Regulatory Performance. Figure 5a (continuation of Figure 
4a) depicts the performance of the controllers (under differ- 
ent conditions) in rejecting the effect of an unmeasurable step 
disturbance in T, (20 degrees increase, from 22°C to 42"C, at 
t = 2,000 s). The regulatory performance of controllers (A) 
and (0 under both nominal conditions and model errors are 
almost identical. Controller (B), despite the larger initial er- 
rors, rejects asymptotically the effect of the disturbance on 
the outputs. This disturbance rejection is satisfactory relative 
to the magnitude of the applied disturbance. It should be 
noted that the output and the manipulated input profiles for 
Cases B3 and C3 (which are not shown here) are identical to 
those of Cases B1 and C1, respectively, since the initializa- 
tion errors have already been rejected. The corresponding 
profiles of the manipulated inputs are depicted in Figure 5b 
(which is the continuation of Figure 4b). This figure shows 
that the controller action in Cases B1 and B2 are initially less 
aggressive than those of controllers (A) and (B). 

Figure 5c (continuation of Figure 4c) compares the profiles 
of the actual and estimated values of the state C,, when there 
is a step change (20 K increase) in the inlet temperature at 

0.97 

3991 " ' I " 7 ' I ' " ' I " ' 4  
1800 2300 2800 3300 3800 

T i m e  (s) 
Figure 5a. Controlled-output profiles when there is a 

step change in Ti at t = 2,000 s. 

I[ II 

h 10 \ 

3 
d 

1800 2300 2800 3300 3800 

T i m e  (s) 
Figure 5b. Manipulated input profiles, corresponding to 

Figure 5a. 
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*- - 0 . 9 L - - - - - - 7  
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... Estimated C2 
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Figure 5c. Estimated and actual C,, vs. time, corre- 
sponding to Figure 5a. 
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t = 2,000 s (corresponding to Figure 5a). In the presence of 
the model errors, when the inlet temperature disturbance is 
introduced at t = 2,000 s, the difference between the actual 
and estimated C,, grows more under controller (B). Under 
no model errors and controller (C), the difference between 
the actual and estimated CUI is zero and is not affected by 
the disturbance, whereas under controller (B), the difference 
grows as the disturbance is introduced. 

Conclusions 
Discrete-time nonlinear feedback control laws were de- 

rived for multivariable nonlinear processes whose delay-free 
parts are minimum phase, where a delay-free system is the 
one whose inverse is physically realizable. The derived con- 
trollers include mixed error- and state-feedback, error-feed- 
back, and mixed error- and output-feedback laws, which can 
induce linear input-output closed-loop response. The mixed 
error- and output-feedback control law was derived for the 
broad class of the nonlinear processes, in which controlled 
outputs as well as some other process variables are mea- 
sured. The conditions under which the mixed-error and out- 
put-feedback can be applied to  a process operating at or 
around an open-loop unstable equilibrium point were deter- 
mined. The application and performance of the derived con- 
trol laws were illustrated by the numerical simulation of a 
chemical reactor. 

Nonlinear control methods have been formulated both in 
continuous and discrete time. While the main advantage of 
the continuous-time formulation is that physical parameters 
are explicit in the process model and therefore in the control 
law, main advantages of discrete-time formulation are that 
(a) the process model and control law are directly suitable for 
computer implementation, and (b) the presence of deadtime 
does not complicate the control problem. Although several 
discrete-time nonlinear process model identification methods 
are available, at the present time there is no method to 
time-discretize exactly nonlinear continuous-time models. The 
mathematical models of many processes are obtained from 
the first principles, and therefore the resulting models are in 
continuous-time. There are a variety of approximate time-dis- 
cretization methods, which are often referred to as numerical 
integration methods, such as Euler’s method and the 
Runge-Kutta-Gill method. In the case that a continuous- 
time process model is available, one can use an approximate 
time-discretization method to  obtain a discrete-time process 
model. This discrete-time process model can then be used to 
design a discrete-time feedback control law, for example, by 
using one of the synthesis formulas given in this article. In 
this case, the approximation in the time-discretization of the 
model can be viewed as a model error. Sufficient robustness 
with respect to the model error can be ensured by a proper 
tuning of the feedback controllers, as in the case of the reac- 
tor example considered in this article. Note that the approxi- 
mate time-discretization issue also arises when we follow a 
continuous-time controller design approach, wherein a con- 
t inuous- t ime control ler  is synthesized based  on a 
continuous-time model, and then the controller has to be 
time-discretized before being implemented on a computer. 

A nonlinear controller synthesis approach, in general, in- 
volves a state-feedback law (calculated on the basis of desir- 
able closed-loop input-output response characteristics or by 

minimizing a performance index), and a state-observer to 
construct the states (for the case of incomplete state informa- 
tion). While there are a variety of ways to calculate a state 
feedback, at the present time there is no general method of 
nonlinear state-observer design. For the nonlinear process 
operating only within the domain of attraction of an open- 
loop stable equilibrium point, one can use a full-order, 
open-loop observer to  reconstruct the states. Open-loop ob- 
servers can be applied to  a broader class of nonlinear pro- 
cesses, if they are reduced-order observers driven by output 
measurements. The controller of Theorem 3 includes such an 
observer. In many chemical reactors, while the process dy- 
namics possesses an open-loop unstable equilibrium point, the 
dynamics of the subsystem of the process that excludes tem- 
perature as a state variable has locally stable equilibrium 
points only. Because temperature is easily measurable, the 
controller of Theorem 3 is therefore applicable to a broad 
class of chemical reactors that exhibit steady-state multiplici- 
ties. 
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Notation 
c =heat capacity of reacting mixture, kT.kg-’,K-’ 

C, =concentration of reactant, kmola- ,  
CA,, = steady-state concentration of reactant, kmol.rn-, 
CAj =inlet concentration of reactant, kmol.m-’ 

C,, = steady-state inlet concentration of reactant, kmol.m-’ 
C i  = concentration of desired product, krnol.rn-’ 

C,(O) =startup concentration of desired product, kniol.m-’ 
Cut =concentration of undesired product Up, kmol.m-, 

CUt(O) =startup concentration of undesired product U p ,  kmolm-3 
Ea,, =activation energy for desired reaction, k.J.kmo1-’ 
Eat  =activation energy for undesired reaction, 0 ,  kJ.kmo1-I 
k ,  =reaction rate constant for desired reaction, m3 kmol-’.s-’ 

k , ,  k ,  =reaction rate constants for reactions 1 and 4, SKI 

k, ,  k ,  =reaction rate constants for reactions 2 and 3, m6.kmol-2.s-1 
k - ,  =reaction rate constant for reaction - 1, s - ’  
n =order of the reaction 0 
R =universal gas constant, kJ.kmol-’.K-’ 

R ,  =rate of production of A ,  kmol.m-’.s-’ 
R,, =rate of production of U,, kmol.m-’.s-’ 
R ,  =overall rate of heat production by reactions, kJ.kmol-’ 

Q,, =steady-state value of heat input, k J C ’  
T,, =steady-state value of temperature, K 

V =volume of the reacting mixture, m’ 
Z,  =frequency factor for desired reaction, rn’.kmol-’.s-’ 

Q =heat input to reactor, k.J.s-’ 

T(0) =startup temperature, K 

Z , ,  Z ,  =frequency factors for reactions 1 and 4, s-’  
Z , ,  Z ,  =frequency factors for reactions 2 and 3, mh.kmol-2.s-’ 

Z - ,  =frequency factor for reaction I, s - ’  

Greek letters 
- A H ,  =heat of desired reaction, kJ.kmo1-l 
- A H p  =heat of undesired reaction 0 ,  kJ.kmol-’ 

@ =state vector function 
p =density of reacting mixture, k g a - ’  

T = CSTR residence time 
=state feedback 
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or, in a more compact form, 

where ( ( k )  =[ 5,“)(k)...(!11,)(k)j... iE1’m)(k)...E(,m)(k)]T, and 
A,,  B,, C,, and D, are the appropriate ( r l  + ... + r m ) X ( r ,  
+ ... + r,,,), ( r l  + ... + rm)x  rn, rn x ( r l  + ... + rm),  and rn X 
rn matrices arising from the state-space realization of Eq. Al. 
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