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During the last decade, there has been a growing interest 
in developing nonlinear model-based control methods. This 
interest has led to substantial progress mainly within the two 
frameworks of model predictive control (MPC) and differen- 
tial geometric control. 

MPC is an optimization-based control methodology which 
explicitly accounts for process constraints and in general leads 
to a controller without an analytical form (see Muske and 
Rawlings (1993) for a recent thorough review of MPC). How- 
ever, differential geometric control is a feedback lineariza- 
tion-based control methodology which leads to a controller 
with an analytical form, as in globally linearizing control 
(GLC) (Soroush and Kravaris, 1992). 

An objective of this note is to show that not only are these 
two apparently different control methodologies closely re- 
lated, but also in some cases they lead to identical con- 
trollers. In particular, this note establishes that the input-out- 
put linearizing control laws derived in our previous article 
(Soroush and Kravaris, 1996) are indeed model predictive 
control laws. The specific objectives of this work are: 

To derive a nonlinear MPC law with the shortest useful 
prediction horizon for each controlled output. 

To prove that the derived model predictive controller is 
exactly the reduced-order error-feedback globally linearizing 
controller derived in (Soroush and Kravaris, 1996). 

Following the description of the scope of this work, the 
shortest-horizon MPC law is derived and shown to be exactly 
a reduced-order error-feedback globally linearizing con- 
troller. The nonlinear MPC law is then applied to uncon- 
strained linear processes, and the resulting linear controller 
is shown to be exactly a model algorithmic controller (Mehra 
and Rouhani, 1980) and an internal model controller (Garcia 
and Morari, 1985). 

Scope 
The focus of this study is on the nonlinear, square (equal 

number of inputs and outputs), multivariable processes de- 
scribed by a mathematical model of the form 

(1) 
x ( k  + 1) = @ [ x ( k ) ,  u(k) l  

y ( k )  = h [ x ( k ) l  
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where x = [ x ,  ... xnlT, u = [ u ,  ... urn]’, and y = [ y ,  ... y,lT 
denote the vectors of state variables, manipulated inputs, and 
controlled outputs respectively, all in the form of deviation 
variables; @ ( x ,  u )  and h ( x )  are analytic vector functions. 

For a given process, a nonlinear discrete-time model of the 
form of Eq. 1 can be obtained via approximate time-discreti- 
zation of a nonlinear continuous-time model, or directly by 
using an identification method (see e.g., Hernandez and 
Arkun, 1992). A numerical integration method (e.g., Euler’s 
method, modified Euler’s method, or Runge-Kutta-Gill 
method) can be used to obtain an approximate time-discreti- 
zation of a continuous-time model. The error resulting from 
an approximate time-discretization can be viewed as a model 
error in a nonlinear discrete-time controller synthesis, requir- 
ing the resulting controller to be sufficiently robust. 

Nonlinear Model Predictive Controller Synthesis 
The derivation of the shortest-horizon MPC law, which is 

along the lines of that of a linear multivariable model algo- 
rithmic controller is described here. 

Shortest prediction horizon 
For a controlled output y,, the smallest number of sam- 

pling periods after which a manipulated input affects the out- 
put y,, is exactly the relative order of the controlled output 

For a system of the form of Eq. 1, the rela- 
tive order of an output yi with respect to the manipulated 
input vector u is the smallest integer r, for which yi(k  + r,) 
depends explicitly on the control move u ( k )  (Nijmeijer and 
van der Schaft, 1990). If such an integer does not exist, we 
say that r, =m. Equivalently, the relative order ri is the small- 
est integer for which 

Yi. 
Definition 1. 

h ,o  @o ... O@ - 
ri times 

depends explicitly on u. Here the notation o represents the 
usual composition of functions in x :  e.g., @(x,  U ) O @ ( X ,  u )  = 
@ [ @ ( x ,  u), u] .  Given a mathematical model of the form of 
Eq. 1, it is straightfonvard to calculate every ri by using the 
formula given in Soroush and Kravaris (1996). 
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As a result of the definition of the relative orders r l ,  . . . , force the output yi to follow, in the absence of constraints 
and penalties on the controller action. Because we intend to 
derive a shortest prediction-horizon MPC law, we have to use 
reference trajectories so that the resulting model predictive 
controller is robust. Otherwise, the controller will be exactly 
an output deadbeat controller (Glad, 1987), which is known 

As in linear model algorithmic control (Mehra and 
Rouhani, 1980), for each controlled output y i ,  a linear refer- 
ence trajectory ydi  is defined 

r,,,, we can define the notation 

A 

A 

hP(x)  = h ; ( x )  

hP(x )  =h ' -"@(x ,u ) ] ,  P = 1 ,  ..., r i - 1  for its poor robustness. 

Using this notation and the definition Of the relative order ri, 
we see that there is a manipulated input u j  such that 

m 

and 
where aij ,  i , j =  1, ..., m, are tunable scalar parameters. 
Thus, the reference trajectories are governed by y ; ( k  + 1 )  = h'(x(k)) ,  P = 0, . . . , r, - 1 

Thus, the relative order ri is the smallest number of sampling 
periods after which a manipulated input u j  affects the output 
y,;  it is the shortest useful prediction horizon for the output 

If a system output yi does not have a finite relative order 
( r i  is not finite), this means that none of the manipulated 
inputs u l ,  . . . , urn affect the output yi ( y i  is not controllable). 
Throughout this note, it is assumed that all the relative or- 
ders are finite, and locally there is no singular point at which 
d{h>- ' [@(x ,  u)]}/du = [O . . . 01, i = 1, . . . , m. 

Yi .  where a = [ aij] is an m x m matrix. In the case that the ma- 
trix a! = 0 and the controller action is neither penalized nor 
bounded, resulting model predictive controller will be an out- 
put deadbeat controller. 

Optimization problem - derivation of the control law 
We consider a minimization problem of the form 

I z m  Output prediction m 

For a process with a mathematical model of the form of 

calculated by using the model. The predicted values of an 
output yi up to r, sampling periods ahead are obtained by 
adding the measured output signal y i ( k )  to the future changes 
in the output y, ,  predicted by the model (i.e., Eq. 2)  

min { C O j [  yd,(k + r j ) -  j j ( k  + r j ) ]  + pju7(k> (6) 
Eq. 1, the future values of each controlled output yi  can be u ( k )  j = l  j =  1 

subject to the input constraints 

u l t < u t ( k ) ~ u h t ,  P = 1 ,  ..., m 

A 
j i ( k  + 1 )  = y i ( k )  + h; (x (k ) )  - h , ( x ( k ) )  , P = 1, , . ., r, - 1 where 01, ..., Om, pl, . .., pm are positive tunable parame- 

ters, 
and x is obtained by simulating the process model x ( k  + 1) = 

, j e ( k  + r e )  and y d t ( k  + r l )  are given by Eqs. 3 and 5, 

@ [ x ( k ) ,  u(k)l. 

future change in y 6  

predicted by model 

When there is no input constraint and the controller action 
is not penalized, the minimization problem of Eq. 6 takes the 
form 

future change in y i  
predicted by model 

where j i  denotes the predicted output. The vector of state 
variables x will be calculated by using a full-order open-loop 
state-observer (by on-line simulation of the process model). 
Because a full-order open-loop state-observer can only be 

rn 
min ( c O j [ y d j k  + rj> - j j ( k  + rj)l 
u ( k )  j =  1 

used for open-loop stable processes, the use of an observer of 
this we limits the ,-.lass of processes to which the derived 
controller will be applicable. 

In this case, the resulting controller tries to minimize a 
weighted sum of the squared, predicted mismatches between 
the controlled outputs and the reference trajectories. As a 
special case, we seek a controller which can force every con- 
trolled output yi  to follow the corresponding reference tra- 
jectory yd i  exactly (which makes the performance index of 
Eq. 7 zero) 

Reference trajectories: setpoint filters 
Reference trajectory of an output y, ,  denoted by yd i ,  is the 

trajectory which the model predictive controller will try to 
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As we will see, such a controller exists only for a certain class 
of processes. The required control move u(k) ,  which makes 
the performance index in Eq. 7 zero, is the solution of the 
following system of nonlinear algebraic equations (using Eqs. 
3 and 5 )  

sary and sufficient condition for the existence of a solution 
for u. Throughout this article, it will be assumed that e(x, u) 
is locally nonsingular, and Eq. 8 has a real solution for u at 
each time instant. 

For a process model of the form of Eq. 1 with a nonsingu- 
lar characteristic matrix, the implicit function theorem en- 
sures the local existence of a function 

which satisfies the set of algebraic equations 

where the error e = y,, - p. The preceding algebraic equa- 
tions are, in general, nonlinear in u and may not have a solu- 
tion for u(k) .  To ensure the existence of a solution to these 
algebraic equations, we have to identify the class of processes 
for which such a controller exists. 

Consider a discrete-time system of the form 
of Eq. 1, and assume that each output yi possesses a finite 
relative order ri. The m x m matrix 

Definition 2. 

Using the definition of To (Eqs. 9 and lo), the solution to 
the system of algebraic equations of Eq. 8 takes the form 

is called the characteristic matrix of the system (Nijmeijer and 
van der Schaft, 1990). 

which is also the solution to the minimization problem of Eq. 
7. Thus, the nonlinear MPC law is given by Eq. 11, where 
x ( k )  is obtained by simulating the process model, x(k  + 1) = 
@[x(k) ,  u(k)l. Equivalently, it can be represented by the fol- 
lowing dynamic nonlinear error-feedback control law: 

A necessary condition for existence of a solution to Eq. 8 is 
that the process deadtimes should be balanced (Soroush, 
1996). This condition can be expressed in terms of the differ- 
ential geometric notion of characteristic matrix; a necessary 
condition for the existence of a solution to Eq. 8 is that the 
characteristic matrix of the process should be generically non- 
singular (Soroush, 1996). Note that in the case of linear sys- 
tems, nonsingularity of the characteristic matrix is a neces- 
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Constrained processes 
In the case of a process with active input constraints, in 

contrast to the single-input single-output case (Soroush and 
Kravaris, 1992), the constrained minimization problem of Eq. 
6, in general, does not have an analytical solution; the mini- 
mization problem should be solved numerically on-line to 
calculate the exact optimal controller action. An approximate 
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analytical solution to the constrained minimization problem, 
however, can be obtained by calculating the unconstrained 
controller action (i.e., solution to the unconstrained mini- 
mization problem) and then (a) “clipping” the calculated un- 
constrained controller action or (b) scaling down the uncon- 
strained controller action while maintaining its direction 
(Campo and Morari, 1990). 

In the case that (i) a rearrangement of manipulated inputs 
or controlled outputs makes the characteristic matrix of the 
process model diagonal (process is completely or strongly in- 
put-output decoupled), and (ii) a diagonal a is chosen, the 
exact solution to the constrained minimization problem may 
be obtained simply by clipping the unconstrained controller 
action. 

In the absence of the input constraints, the minimization 
problem of Eq. 6 has an analytical solution: the minimizing 
u ( k )  is the solution to the system of the nonlinear algebraic 
equations 

e +  Input-Output * Linearizing 
State Feedback + 

output 
Map 

u, 

Figure 1. Reduced-order error-feedback GLC structure. 

exactly a differential geometric controller. In other words, the 
reduced-order error-feedback globally linearizing controller 
is an unconstrained, nonlinear model algorithmic controller 
with (a) prediction horizons of one sampling period beyond 
the minimum deadtimes, (b) control horizons of one, (c) lin- 
ear reference trajectories, and (d) a quadratic performance 
index with no penalties on controller action. 

The dynamic, input-output linearizing error- 
feedback controller of Eq. 12 implicitly possesses integral ac- 
tion. Thus, in the presence of an active input constraint, the 
controller will exhibit windup. This windup can be prevented 
by updating the state variables of the model (controller) ac- 
cording to 

Remark 1. 

x ( k  + 1 )  = @{x(k ) ,  1Z(k)} 

where x ( k )  is obtained by simulating the process model, x (k  
+ 1) = @[ x( k ) ,  u( k)] .  In this case, because the controller ac- 
tion is penalized, the controller cannot force the controlled 
outputs to follow the linear reference trajectories. Thus, this 
controller is not input-output linearizing. 

Znput-output linearizing MPC law 
In the case of a process with a perfect model and a nonsin- 

gular characteristic matrix, under a proper initialization of 
process model [i.e., x(0) = X(O)], the model predictive con- 
troller of Eq. 12 forces every controlled output to follow the 
corresponding reference trajectory exactly; that is, the out- 
puts will evolve according to the same linear dynamics which 
govern the reference trajectories 

This implies that the model predictive controller induces a 
linear input-output behavior to the closed-loop system; the 
model predictive controller is an input-output linearizing 
controller. Indeed, it is exactly the reduced-order error- 
feedback globally linearizing controller of Eq. 37 in Soroush 
and Kravaris (1996). The error-feedback GLC structure is de- 
picted in Figure 1. 

This equivalence implies that an unconstrained MPC law 
with the shortest useful prediction horizon for each output is 

where ii( k )  is the feasible control action which is actually im- 
plemented. The feasible control action ii is obtained by clip- 
ping or scaling-down the unconstrained controller action cal- 
culated from Eq. 11 (see i and ii in the preceding subsubsec- 
tion). The model predictive formulation of input-output lin- 
earizing control led to this solution to the problem of windup 
in input-output linearizing control. This approach prevents 
windup by ensuring that at each time instant, the state vari- 
ables of the controller are driven by the same feasible control 
action which is actually implemented. 

In the case of a constrained process whose 
characteristic matrix is diagonal (process is completely or 
strongly input-output decoupled), if a shortest horizon non- 
linear MPC with a diagonal a is used, then the exuct con- 
troller action may be obtained simply by applying the satura- 
tion function to each unconstrained manipulated input calcu- 
lated by the reduced-order error-feedback globally lineariz- 
ing controller of Eq. 12. 

Because the derived unconstrained MPC law 
of Eq. 12 and the reduced-order error-feedback GLC are 
identical, the conditions for closed-loop stability under the 
two control laws are the same. In the absence of constraints 
and penalties on the controller action, the closed-loop system 
under the model predictive controller will be input-output 
stable, if the matrix a is chosen such that all of the eigenval- 
ues of a lie inside the unit circle. For an input-output stable 
closed-loop system, the local internal closed-loop stability will 
be ensured, if the process is locally hyperbolically minimum- 
phase and locally asymptotically open-loop stable. 

For an unconstrained process with a perfect 
model, if the matrix a is chosen to be diagonal ( a  = diag{ ai)) 

Remark 2. 

Remark 3. 

Remark 4. 
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and the controller is initialized appropriately (i.e., x(0) = 

T(O)), the error-feedback controller of Eq. 12 will induce the 
completely input-output decoupled, first-order-plus-deadtime 
response 

y i ( k  + r i )  - aiy i (k  + ri - 1) = (1 - ai )ysp , (k) ,  i = 1, . . . , m 
(14) 

to the closed-loop system. 

Application to Unconstrained Linear Processes 

crete-time state-space model of the form 
Consider a linear, multivariable process described by a dis- 

(15) 

where A ,  B ,  and C are matrices of dimensions n X n ,  n X m, 
and m x n,  respectively. This is a special case of the system 
of Eq. 1: @(x(k), u(k))  = Rr(k )+  Bu(k); h(x(k) )  = Cx(k). 
The input-output behavior of the system of Eq. 15 is de- 
scribed by the z-domain matrix-transfer function: G ( z )  = 

Applying Definitions 1 and 2 to the system of Eq. 15, we 
see that: (a) the relative order ri is the smallest integer for 
which ciA‘l-lB #[0 ... 01, where ci is the ith row of the 
matrix C ;  (b) the characteristic matrix (Chen, 1984) 

x ( k  + 1) = Ax(k)  + Bu(k) ,  x(0) = 0, u(0) = 0 i y ( k )  = Cx(k)  

C(ZZn - A ) -  ‘B. 

which is assumed to be nonsingular. 

form: Yo(x, u )  = C ’ ( u  - ax), where 
cmA’m]? Using the algebraic identity 

For this linear case, the function Yo has the simple explicit 
= [clA‘l . . . 

the matrix-transfer ‘function G ( z )  can be factored into two 
parts: (i) a pure delay part diag{z-‘O; and (ii) a “delay-free” 
part [if C? is nonsingular], 

For this case, the model predictive controller of Eq. 12 takes 
the form 

fer function error-feedback controller (internal model con- 
troller) 

where H ( z ) ,  given by Eq. 16, is the delay-free part of the 
process model. This error-feedback controller is exactly a 
multivariable linear internal model controller and a model 
algorithmic controller, which induce a closed-loop response 
of the form 

If a is chosen to be a diagonal matrix ( a  = diag{a,}), the 
controller of Eq. 17 will be a minimal-order state-space real- 
ization of the following internal model controller with a diag- 
onal filter (Garcia and Morari, 1985) 

which induces the completely input-output decoupled, 
closed-loop response of Eq. 14. 
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