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Absract. The problem under consideration is to estimate optimally some finite-
dimensional vector, which is induced by linear operators, defined on the special class
of stochastic and uncertain processes. Optimality of the estimate implies minimiza-
tion of a minimax-stochastic criterion. We assume a linear model of observations,
which contains random disturbances and has a discrete-continuous structure. The
optimal estimate must be found as a linear operator of observations.

Necessary and sufficient conditions for the vector identifiability and estimate optimal-
ity are proved. The optimal filtering algorithm for uncertain-stochastic differential
systems is obtained as an application of this estimation theory.
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1.Introduction. Parameter estimation in the linear regression arises often in
stochastic control and signal processing theory. Diffrerent approaches may be used to
solve this problem. The choice depends on both a priori information about regression
parameters and noises and optimality criteria for the estimates.
If both parameters and noises in the model are gaussian, then the estimate, which
minimizes mean square estimate error, i.e., conditional expectation is also equal to
the best linear estimate (BLE) [1]. In the case parameters and noises are random
but nongaussian with given moment characteristics, the BLE may by found by using
the same formula as in the gaussian case. There also exists a sufficient condition
for the linear estimate to be the BLE - the well-known Wiener-Hopf condition [2].
The estimation problem for pure stochastic regression is solved in [3] and [4] when
parameters and noises have singular variance matrices. In [2] the RKHS approach is
also considered when parameters and noises are random but contain uncertainties in
their moment characteristics. .
When it is assumed that parameters and/or noises are uncertain and bounded, a
minimax optimality criteria and minimax [5] , [6] or ellipsoidal bounded (7] , [8] es-
timation methods are usually used. If the parameters are uncertain and unbounded,
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then the least square estimate ( LSE ) [9] is the BLE.

In practical situations it is necessary to estimate some vector of parameters in gen-
eralized uncertain-stochastic regression [10]. That means the estimated vector is a
linear combination of unbounded uncertain and random parts induced by some lin-
ear operators from the space of random and uncertain processes respectively into the
finite-dimensional space. We assume that observations contain random noises and
have a discrete-continuous structure. Similar problems in the pure random case arise
by filtering or smoothing of the state in the linear difference, differential and integral
dynamic systems [11],[12],[13],[14].

In this article, the necessary and sufficient conditions of the state identifiability and
linear estimate optimality for generalized uncertain-stochastic linear regression are
given. Problem, which is similar to the identifiability problem, is considered in [15]
for pure uncertain differential inclusions. Here, identifiability conditions are obtained
for arbitrary linear bounded operators. Presented estimate optimality conditions
are generalizations of the Wiener-Hopf condition from pure stochastic to uncertain-
stochastic regression.

The filtering problem for linear uncertain-stochastic differential systems given com-
plex observations of both system state and input signals is solved. This algorithm
was presented in [16] briefly for the special case of separate observations of the state
and inputs. In this article, optimality of this algorithm is proved for the general case
as an application of the optimal estimation theory in generalized regression.

2.Preliminaries. Consider a probability space ({2, F, P), where ) is a sample
space, F' is a o—algebra on ), P is a probability measure on F'.
Further, we consider a finite time interval [0, T').

DEFINITION 2.1. The n-dimensional stochastic process u; = (4}, ..., u7)T be-
longs to the class S™ iff the following conditions hold:
i) each component of p; pi = pi(w,t), w € Q is F-measurable, i = 1,...,n;
i) all paths of pi, i = 1,...,n belong to the L space of square integrable functions on
[0, T];
iii) p¢ is a second-order zero-mean process with known covariance matrix-valued func-
tion cov(pr, o) = R(1,0),0<7<T,0< 0 <T.

The class S™ is quite broad. For example, all n-dimensional zero-mean second-
order diffusion processes belong to this class [1].
We will also denote the k-dimensional space of square integrable functions on [0, T
as L% &} and ®* are the left pseudoinverse matrix and operator respectively, i.e.
the matrix and the operator, which satisfy

dF By = By , DT = &.



We will consider a square of the following norm of vector a, ||a||* = a¥ £a, where
¥ is a known symmetric matrix, ¥ > 0.

3.Problem Formulation. Consider the following model of observations

Yo = Douo + ®1u + Hobo + Hi§ + Qobo, (1)
y= ¢2u0+(DU+H2€0+H£+Q0

Here uo € RP is an uncertain vector, {, € R and 6y € R™ are zero-mean ran-
dom vectors with known variance matrices cov(£o,&) = Co and cov(by,6) = Po
respectively. Matrices @, Hy, Qo of appropriate dimensions are given. {u,} € L} is
an uncertain process, {{,} € S? and {0,} € S" are ¢- and r-dimensional stochas-
tic processes with known covariance matrix-valued functions cov(;,¢,) = C(r,0) ,
cov(0,,0,) = P(r,0). The linear bounded operators ®; : Lj — R™, H, : L{ — R™,
. LS L} ®: R - L7 H: L} — L} Hy: R® — L} and Q : L} — LT and
given.

We suppose for simplicity that {o, {¢-}, 60, {0} are not correlated.

Consider also a n-dimensional vector

T = Ao‘llo + Bofo + Au + Bf, (2)

where matrices Ag, By are given, A and B are known linear operators L — R" and
L} — R™ respectively.

The problem under consideration is to calculate a linear estimate & = Myyo + My of
z, which minimizes the following criterion

J=  sup  E{||AIP}, (3)
up ERPO ,{“r}eLg

where A = z — # is an estimate error, My and M are appropriate matrix and linear
operator respectively. Such estimate will be called further the best linear minimaz
estimate (BLME).

4.Necessary and Sufficient Conditions of Vector Identifiability and Es-
timate Optimality.
DEFINITION 4.1.The vector z given by (2) is identifiable by the observations (1) iff
there exists some measurable operator x ( may be nonlinear ) such that
& = K(yo,y) , J(2) < co.

LEMMA 4.1. Ifz is identifiable,then (ker ® Nker ®;) C ker XA and (ker & Nker &) C
ker ¥ Aq.

Proof of Lemma 4.1: see Appendix A.



This is a generalized necessary condition for the optimality of z.

THEOREM 4.1.If £ = Moyo + My is the BLME of z, then

S(Ao - Mo@o - M‘Dz) = 0, (4)
$(A — My®; — M®) = 0.

Proof of Theorem 4.1: see Appendix B.

Conditions (4) are equivalent to unbiasing the estimate &: TE{A} = 0.
This theorem defines some joint restrictions on the matrices Ay, By and operators
A, @1, D,, ® for the existence of the optimal estimate z.

THEOEM 4.2. Let z be identifiable, then & is the BLME of z iff the following
conditions hold

R 5
Seov(A, [(1 - 1,UF)(y - ,0330)(r) =0 forallr € [0,7],
where ‘1’1 =6 - QngQl

{ Zcov([l, (I- %%’)(yo - ‘I’I\I’T(y - @2(1)(4)'.’/0))) =0,

Proof of Theorem 4.2: see Appendix C.

Conditions (5) are analogues of the Wiener-Hopf conditions of optimal parameter
estimation in the pure stochastic linear model [2].
Now let us consider the estimation problem for the pure discrete-time regression

Yo = Pouo + Hoo + Qobo, (6)
zo = Aouo + Bobo, (7)

Jo= sup E{||zo — o’} (8)
ug ERPO

A0 =T — 3‘30,
to obtain the necessary and sufficient condition for the optimality of Z .

COROLLARY 4.1.Let zo be identifiable and QoPoyQY > 0,then %y is the BLME iff

ECW(AOM'/O - QOu(‘;) = 01 (9)

where uy = Loyo is any linear estimate of ug with the property

E{ZAo(uo — ug)} =0, (10)
& = {Ao®¢ + BoCoHj B3 (I — ®9})}y0, (11)



where Ro = HoCng + QOPOQ(T)‘ ) ‘I>+ = (QgREIQO)+QER61

Formula (9) is a special case of (5) and any estimate ug, which satisfies (10) may
be obtained as u§ = ®Fyo + (I — ®F ®o) Vo with an arbitrary vector V, of appropriate
dimension. In the case of uncertain parameters (Hy = 0) we obtain
= Ao@b‘- Yo
i.e., the MSE. In the case of stochastic parameters ($9 = 0), we obtain
& = BoCoHy Ry yo,

i.e., the BLE for a random vector ( or corollary from the normal correlation theorem
[1] in the gaussian case.)

5.Filtering Problem in Linear Uncertain-Stochastic Systems. In this sec-
tion filtering algorithm is derived using a necessary and sufficient conditions of esti-
mate optimality in generalized linear regression.
Consider the following dynamic system

d(l?t = a(t)ztdt + b(t)utdt + dgt, t> 0,
(12)
To =V,
where z; € R" is a state, v € R" is an uncertain initial condition, {u.} € Lj
is a ¢-dimensional uncertain process, {£;} is a zero-mean Wiener process with the
differential covariance matrix-valued function C(t).
Information concerning {z.}, {u,}, {¢-} and v is given by the observations
20 = PoV + wo, (13)
dy: = P(t)zudt + §(t)uedt + n(t)d€e + dwr, t>0, yo =0,

where wy is a zero-mean random vector with known covariance matrix Qo , {w-} is an
m-dimensional zero-mean Wiener process with differential covariance matrix-valued
function Q(t).

Matrix @ is known. The matrix-valued functions a(t), b(t), C(t), ¥(t), #(t), n(t), Q(t)
of appropriate dimensions are given and contain only piecewise continuous elements.
The filtering problem under consideration is to calculate the linear estimate ; of z;,
which minimizes the following criterion

Jy = sup E{||z: — 4|
veR" {u-}5€L]

%, | (14)

using all observations {z,y,,0 < 7 < t}.

THEOREM 5.1. Let the system and the observations be given by (12)and(13).
Let the following conditions also hold:
i)Q(7) > 0 for all 7 € (0,t] , Qo > 0;
i1)b(1)*(7)(7) = b(r) for all T € (0,1].



Then the BLME %, is unbiased. %, and its error covariance matriz k(t) are given by
the following equations

di¢ = a(t)2.dt + [b(t)¢*(t) + M(t)(I - ¢(t)¢+(t))][dyt Y(t)2:dt],
k(1) = a(t)k(t) + (t)aT( )+ 26(2)[67 (t) P~ (t)(t)] 07 (t)+ (15)
M(8)g(t)[g(t) P~ (1) $(1)] 67 () MT (2) + C(t) -

(b(t)g*(2) + M(1)) P(2) (b(t)g* () + M(2)),

with initial conditions

.'L'o ( )¢0y01
{ K0) = (675 602, (16)

where

() = n(O)CET (1) + Q1) >
{M(>=[k(> 50+ SOt s, O

Proof of Theorem 5.1: see Appendix D.

The given algorithm is an extension of linear filtering theory from the class of
pure stochastic systems to the class of uncertain-stochastic systems, where the clas-
sical Kalman filter is useless.

6.Conclusion.

i) In this article, the optimal estimation problem in generalized uncertain-stochastic
linear regression has been formulated.

ii) The class of identifiable vectors has been determined and the necessary condition
for vector identifiability has been proved. This is a special joint restriction on the
estimated vector and observation model.

iii) The necessary and sufficient conditions for the estimate optimality have been
derived. They are generalizations of the Wiener-Hopf conditions for the class of
uncertain-stochastic regression. We have also obtained a formula of the parameter
estimation for the discrete model as a corollary of the general case. The MSE and
BLE in the pure stochastic model are special cases of this estimate.

iv) The filtering problem in the linear differential uncertain-stochastic dynamic sys-
tems has been solved under general assumptions about the linear model of observation
as an illustration of the presented estimation theory in generalized linear regression.

Appendix A. Proof of Lemma 4.1. First we decompose an estimate & =
£(Yo,y) in the form

r= K(yo, y) = ¢('Uo, U1, V2, v) + €(€0a£a0070)’
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where vo = ®oug , v1 = ®1u , vy = Byu , v = Bu , €(&o, ¢, 00,0) = & — P(vo, v1,v9,0)
and then fix some value vg, vy, v;, v*, ug, u* :

v = Poug , vy = ®u* , v] = Pyug , v = Pu*.

Let us also denote

n= E{”B€ + Boo — 6(60763 00’0)”2} )

T = Agug + Au* — ®(v, v}, v3,v*),

Us = {uo : v§ = ®ouo , v; = Pauo},

U={u:v}=du,v = du},

Then
J=m+ sup | Aoto+ Au— ¢(vo,vy,vs,0)|* >
U-OERPO;{UT}GL;
m+ sup ||Aouo + Au — (v, v1,v3,v%)||* =
ug €Uy, uelU
7+ [|x|[* + sup {277 5(Aowo + Aw) + || Agwo + Aw|[*}

wo Eker &g n ker ®,w€ker & ﬂ ker &,

J1 = 27TE(Aowo + Aw) is a linear operator with respect to wp and w, hence
J2m+|r”+ sup || Aowo + Aw]|’]
wo Eker $g nker P, ,wEker & nker ®,,J120

Supremum in this sum is finite only in the case L( Aqwo+Aw) = 0 for all wy € ker EAg
and w € ker XA i.e.

(ker @ (\ker &) C ker(E£A),
(ker @[ ker ®,) C ker(ZAo).

Lemma 4.1 is proved.
Appendix B. Proof of Theorem 4.1. Let £ = Myyo + My be the BLME of
vector z, then J(£) < oo.

J(2) = E||Boto + B¢ — Mo(Hobo + Hié + Qobo) — M(Habo + HE + Q0)|*+

sup ||(Ao - Mo@o - MQz)Uo + (A - Mo@l - M@)UlPI

uo €RPO u€L]
Supremum in this sum is finite only in the case
(Ao — Moy®o — M®;)up =0, for all uo € R, and
(A - My®; — M®)u =0, for all u € L,



which is equivalent to (4).

Theorem 4.1 is proved.

Appendix C. Proof of Theorem 4.2. We will find all My and M which satisfy
condition (4) and then select matrix Mp and operator M optimally, using criterion
(3).

First we consider the equation

Z(Ao - Moq)o - Még) = 0 (18)

It is necessary to mention that the composition ¥, = M®, : R — R" of opera-
tors M and @, is some matrix of appropriate dimensions. Using Lemma 4.1 and the
property ®o®F &y = @, it may be shown, that L(Ag— ¥;)d¢ &y = £(A4p — ¥;). Then
(18) is a system of linear equations with solution 3]

Mo = StZ{[Ao — 03)®F + Zo(I — ®o®F)} + (I — T )Ny,

where Zy and Ny are arbitrary matrices of appropriate dimension. It is easy to verify
that criterion (3) does not depend on Ny, hence we can select M in the form

My = [Ao — W) ®F + Zo(I — B,7). (19)

Substituting M, into the second equation (4) we obtain

S[A — Ag®F &) — Zo(I — Bo®F)®,] = SMY, (20)

where ¥; = ® — ®,®¢ ®;. Without loss of generality we suppose that ¥} : Im(¥;) —
ker(¥;)! in the one-to-one manner and ¥ [(Im(¥;))t] = 0. Otherwise, we can
transform U7 to such form.

All u € L} can be decomposed uniquely as u = uF + u* where u* € ker ¥, ,
ut € (ker ¥;)*. Then using Lemma 4.1 and the property

‘DI‘I’T‘I’I = ‘I’l, (21)

we can show, that

Uiy, = 2U

where U = A — AoQa-Ql it Zo([ - Q()Q;-)Ql

Operator M may be rewritten in the form M = ¥} + M , where M must be found.
From (20) it follows that M satisfies the following equation

TMVY, =0, (22)

This is equivalent to ImW¥; C ker(SM). Using (21) and (22), we can obtain following
properties of M and ¥,

SMv = SMvt,

(-0 ¥ o = v,

where v € LT , v = vT + vt | vl € Im¥; | vt € (Im¥,)*.



Similarly to the common solution of (18) we obtain

M=Z*E{0¥f + Z(I - 0, ¥])} + (I - T*E)N,

where Z, N : L — R" are arbitrary operators.

Again, criterion (3) does not depend on the choise of N. Hence, we can consider
operator M in the form

M =W} + Z(1 - U, %),

Then general solution of (4) is

M = (A - Ac®3 &) ¥f — Zo(I — B8F)®, U} + Z(1 — ¥, 0}),
Mo = AOQO (A A0Q+¢1)\I’+¢2(I>3'+ (23)
Zo(I — ®0®F)(I + 0,V ©,8F] — Z(I — U, ¥})5,87 .

Suppose that Z and Z are the optimal matrix and operator respectively, i.e.

= MO(ZO, Z)yo + M(Z,, Z)y is the BLME. For arbitrary

Zo = Zo +6Zyand Z = Z + 6Z we have the corresponding estimate and criterion

value,

X=z + 6ZQ(I QQQO )[yo - Ql ‘I’+(y @2@0 yo)] + 5Z(I ‘P] \Il"')(y ¢2®0 yo)
J(%)= Jl(Zo, ) + 29(6Z0,62) — Z3(Zo,6Zo) J4(Z 62),

where

5(Z, 2) = E{|IA|1?} = J(2),

J2(6Z0, 5Z) E{”6Zo(] QQQO )[yo - <I>1‘Il+(y QZQO yo)]+
6Z(I — 0 ¥ )(y — 8298 y0)||*} > 0,

Ja(Zo, 6Zo) = 2tT{ZCO'l)(A, 6Z0(I - q’od’?,’)[yo - Ql \I’r(y - Qg@gyo)])}, (25)
Ji(2,62) = 2tr{Scov(A, 8Z(I — B, U} )(y — 8,8} yo)). (26)

(24)

If conditions

J3(Zo,6Zo) = 0,
{ J(2,52)=0, &)

do not hold for some §Z, and 6Z then from (24)-(26) it follows that there exists the
estimate
z* = Mo(Zg, Z*)yo + M(Z(;a Z*)y :

{ Z; =0. 5[(J3(Z0,6Zo) + J.,(Z 62))12(620,62))6Z0 + Lo,

and J(z*) — J(&) = —0. 25(J3(Zo,5Zo) + J4(Z 62))? < 0.

Hence J(z*) < J(2), or £ is not optimal. So (27) is necessary for optimality of 4.
Now let us suppose that (27) holds, then for all

J(#) = J1(Zo,2) + Z5(6Z0,6Z) > J(). Hence, # is the BLME. Furthermore, it is



easy to verify that (27) is equivalent to ( 5 ).

Theorem 4.2 is proved.

Appendix D. Proof of Theorem 5.1. First we prove that &; is unbiased. De-
note m; = E{z.}, t; = E{#,}, A; = m; — i, = E{A,}. &0 in (16) is the MSE, hence
it is unbiased Ag = 0. Furthermore,
dy; — P(t)E:dt = P(t)Adt + G(t)uedt + n(t)dE; + duy.

Using the first equation (15) and condition ii) of Theorem 5.1 we can obtain the
differential equation for m;:

ding = a(t)hdt + b(t)udt + [b(t)(t) + M () — (t)d*(¢))]0 () Adt.

Using (12) we can also obtain differential equation for m;,

dm; = a(t)mdt + b(t)u.dt.

Then

4B = alt) = )9 () + MU = 0" DO Bat,
Ay =

Equation (28) has a unique solution A; =0, hence %, is an unbiased estimate of z;.

Equations (12),(13) may be rewritten in the equivalent integral form [1]

= &(t,0)v + /0 “8(t, 1)b(r)usdr + /0 “o(t,7)dt.,

Yt = /[¢' (1) + ¢(7) u.,.d‘r+/ d§r+/d‘/~’r,

20 = Govo + wo,

where ®(t,7) is a solution of the following differential equation

®i(t,7) = a(t)®(t,7) , t > 7,8(r,7)=1I.

Processes {z,} , {y,} have a.s. continuous paths, so these paths are square integrable
in the time interval [0,¢]. It is necessary also to mention that all operators, which
transform v , {u,}, {&} , {wr} and wy are linear and bounded. Let us state confor-
mity between generalized regression (1) - (2) and system (12) - (13):

Douo = dov,
(D1u)(p) =0,
(@au0)(w) = [ 9(r)0(r,0)v dr,

(Pu)(p) = [)u z,b(r)/oT ®(7,0)b(0)u,dodr +/ T)u,dr

10



Hobo =,

()W) =0,

(Habo) (k) =0,
(HEw) = [ (r) [ 0(r,0deodr + [“n(r)i,

Qoo = un,
@)W = [ dor,
Aot = ®(t,0)v,
Au= | “®(t, 7)b(r)udr,

B0£0 =0,

Bt = /0 "8t 7)de,.

So filtering problem (12) - (14) is a special case of the estimation problem (1) -

and conditions (5) are

{ Seov(A, (I - @8F)yo) = 0,
Teov(Ay, [(1 - @0)(y — 8,83 y0)|(7)) =0, 7 €0,
Using (15) and (16), we obtain

(29)

Bi=At0)A0 + | At 7){de,
[6(r)¢*(7) + M(7)(I - ¢(7)$* (7))]In(7)dE, + duw,]},
AO = ¢3-w0,

(I - <I’o‘I’SL)yo = (I - ¢o¢§)wo,

11



where A(t,7) is a solution of the following equation

Aq(t,7) = {a(t) = [(t)$* (1) + M()(I - $(O)6* (O ()}A(E, 7), t > 7
A(r,7)=1.

Then

Ecw(Ah (I - ¢0¢g)w0) = A(t,O) E)FQO(I - ¢0¢3.)T = 07

.e., the first condition (29) holds. Furthermore,

a N t
A=A, DA, + / A(t, 0)de, —

[ AN()6(0) + )T - b(0)g* (@ ln(o)des + o],

and

pr=[(I - @%)(y — ®:8fyo))](r) =

| =808+ @) (0) (20 — 20)do + (0)de, + dus].
Note, that cov(Ay, A,) = A(t, s)cov(A,, A,) for all £, s > 0. Then
cov(Be,pr) = [ con(Br,dp,) =
/OT coo{{A(t,7)A, + / *A(t, 0)dt, -
A )Y+ () + MO = ()6 () + o),
(T = $(0)* () B(0) & — 2)do + (o), + dun]}} =

| Mt2)@)7(0) + Ol (@) - M) R - b(0)6% (o)) =
for all 7 € [0,¢]. The second condition (29) holds.

Theorem 5.1 is proved.
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