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ABSTRACT

In an earlier paper, Bozer and Srinivasan introduced the tandem concept for au-
tomated guided vehicle (AGV) systems and presented an analytical model to evaluate
the throughput performance of a basic component of the system; namely, a single vehi-
cle serving a set of workstations under the First-Encountered-First-Served rule. In this
study, using the above analytical model and certain “column generation” techniques, we
present a heuristic partitioning scheme to configure tandem AGV systems. The partition-
ing scheme is based on a variation of the well-known set partitioning problem. It is aimed
at evenly distributing the workload among all the AGVs in the system. We demonstrate
the procedure with two numerical examples. Using simulation, the performance of the
tandem configuration obtained for each example is compared to that of the corresponding
conventional AGV system.

1. INTRODUCTION

The tandem concept for AGV systems was introduced in an earlier paper by Bozer and
Srinivasan (see [2] or [3]). As shown in Figure 1a, in a “conventional” AGV system all the
vehicles are allowed to serve any workstation in the system. In contrast, a tandem AGV
system (shown in Figure 1b) is obtained by partitioning all the workstations into single-
vehicle, non-overlapping zones. Additional pick-up/deposit (P/D) points are provided
between adjacent zones to serve as “transfer points.”

The tandem concept offers three principal advantages. First, it dramatically simplifies
the control system since only one vehicle must be controlled in each zone and the vehicles
never interfere with one another. Second, it eliminates the delays caused by congestion
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and blocking in conventional AGV systems; and third, it offers more flexibility since zones
(and workstations) can be added, removed, or modified without affecting other zones, and
different types of vehicles (including bidirectional and/or self-guided vehicles) can be used
in different zones.

The principal limitations of the tandem concept are as follows: first, a load may have
to be handled by several vehicles before it reaches its destination; this will not only require
additional pick up and deposit operations but it will also induce additional delays at the
transfer points. Second, additional floor space and capital investment is required to provide
the transfer points.

There are other advantages and limitations of tandem AGV systems. (The reader
may refer to [2] or [3| for further details.) As one can infer from Figure 1b, however,
the performance of the tandem configuration is closely related to the configuration of the
system; that is, the number of zones and the workstations assigned to each zone. Assuming
that the flow data and the workstation locations are given, in this paper we will present
a heuristic partitioning scheme (driven by analytical models) to obtain reasonably good
configurations for tandem AGV systems. We will demonstrate the partitioning scheme
with two numerical examples. We will also use these examples to compare performance
measures obtained via simulation for tandem AGV systems and conventional AGV systems.

2. DEFINITIONS AND ASSUMPTIONS

The definitions and assumptions introduced in this section are concerned with tan-
dem AGYV systems. Except for empty vehicle dispatching and bidirectional AGVs, the
same definitions and assumptions are also valid for conventional AGV systems which are
considered later in the study. (Additional assumptions concerned with conventional AGV
systems are stated in section 4.)

As shown in Figure 1, each workstation (which may represent one machine, or a group
of machines, i.e., a cell, or a department) has an input queue and an output queue. The
loads destined to a workstation are dropped at its input queue while the loads leaving that
workstation are picked up from its output queue. It is assumed that-the AGV travel time
between the two queues is negligible. It is also assumed that all the queue capacities are
such that the workstations or the vehicle seldom get blocked due to a full queue.

There are two types of workstations. The first type is an input/output (I/O) station.
Loads that arrive from outside the system, that is, loads that do not arrive from another
zone, arrive at the output queue of an I/O station where they wait to be picked up by
the appropriate vehicle. Likewise, loads that require no further processing in the system
are dropped off at the snput queue of an I/O station where they are assumed to instantly
leave the system. Note that no processing takes place at an I/O station and that a zone
may have no I/O stations or several I/O stations. Also note that flow is not necessarily
conserved at an I/O station since a load may enter the system from one I/O station and
exit from another.

The second type of workstation is a “processor station” where actual processing takes
place. At a processor station, the loads are removed from the corresponding input queue
and after a certain period of time (which represents the processing time) they are deposited
at the corresponding output queue. It is assumed that flow is conserved at each processor
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station. The material handling requirement within a processor station is beyond the scope
of the study.

In each zone, the vehicle travels from one workstation to another, or it travels between
a workstation and a transfer point. We assume that the vehicle is a bidirectional vehicle.
Using such a vehicle under the tandem approach will reduce the travel time associated
with each trip without creating the usual conflicts and path contention encountered in
conventional AGV systems that utilize bidirectional vehicles.

Note that each zone must have at least one transfer point. Transfer points are assumed_
to serve as “two-way” interface points. That is, a transfer point between zones p and ¢
handles the flow from p to ¢ as well as the flow from ¢ to p. In this regard, a transfer
point may be conceptually viewed as an “I/O station.” Naturally, in a real-life setting, if
two-way flow exists between two adjacent zones, then one would have to provide two one-
way transfer points — to handle the flow in each direction — such as a pair of conveyors.
However, for ease of exposition, we will treat these two (adjacent) one-way transfer points
as a single two-way transfer point. Also, note that the vehicle will travel directly from one
transfer point to another only if the load in question is a “transit load,” that is, a load
which requires no processing in that zone but has to travel through that zone in order to
reach another zone.

In serving the move requests within a zone, the vehicle.is assumed to follow the
First-Encountered-First-Served (FEFS) empty vehicle dispatching rule. Under this rule,
a vehicle which has just delivered a load will travel empty to poll (or inspect) the output
queue of each workstation and transfer point (in that zone) in order to locate the next move
request. Each workstation and transfer point must be polled exactly once according to a
prespecified polling sequence. (It is implicit that, if the vehicle delivers a load at the input
queue of workstation 1, it first inspects the output queue of workstation i.) The empty
vehicle continues to inspect each workstation and transfer point until a move request is
located.

For example, in reference to Figure 1b, a valid polling sequence for the third zone
would be 1-2-3-4-5-6 or 6-5-4-3-2-1. Bartholdi and Platzman [1] have shown that the
FEFS rule performs quite well with circular zones such as those shown in Figure 1b. Note
that, under the FEFS rule, the oldest move request in a zone is not necessarily: the next -

“move request to be served by the empty vehicle. Also note that, under this rule, the vehicle
is never in the idle state; that is, it is always traveling loaded or traveling empty.!

Consider a single zone with known workstations and transfer points. For notational
convenience, in the remainder of the paper we will treat transfer points as [/ O stations. Let
M denote the number of workstations (in the given zone). Without loss of generality, we
assume that the polling sequence is given by 1,2,...,1,1+1,...,M,1,2,... wheret+1 =1
when 1 = M. Further let ¥ and (1 denote the set of processor stations and the set of I/O
stations, respectively.

I The FEFS dispatching rule is a decentralized rule. That is, in order to determine its state, the AGV must
travel to an output queue and inspect it. Although FEFS is likely to lead to unnecessary empty vehicle
travel in systems with light traffic, we adopted it for tandem AGV systems primarily due to its simplicity,

and its efficiency in circular zones.



Suppose we are also given the flow data for the zone; that is, the flow in and out of
the zone as well as the flow within the zone. (It is straightforward to obtain such flow
data for a given zone from the overall flow data given for the entire system. We will later
demonstrate this with an example.) Let ); denote the rate at which loads arrive at the
output queue of workstation :. Likewise, let A; denote the rate at which the vehicle delivers
loads to the input queue of workstation :. We assume that A; = A; in steady state for
i € 9. (This also implies that a processor station may never be a bottleneck in a zone.)
For I/0 stations, on the other hand, recall that A; need not equal A; in general. However,
from conservation of flow within a zone, we must have Eien A= Zieﬂ A; provided that
the vehicle is able to meet the required throughput.

Let f;; denote the number of loaded trips per time unit that the vehicle must perform
from (the output queue of) workstation ¢ to (the input queue of) workstation j. (It is
implicit that f;; = 0.) Given the f;; values, we have:

M M
M=) fij and A=) fi (2.1)
=1 =1

by definition.

Consider next the travel time associated with each trip. Suppose the empty vehicle
picks up a load from the output queue of workstation i, transports it to workstation 7,
unloads it at the input queue of workstation j, and subsequently inspects the output queue
of workstation j. The total time required to perform the above operations — including
the pick-up/deposit times and the time required to inspect workstation j — is assumed to
be a random variable with mean 7;;.

In contrast, if the vehicle has just delivered a load at workstation ¢ and upon inspection
has found its output queue empty, then it must perform an empty trip from workstation 1
to workstation 1+ 1 due to the FEFS rule. The resulting empty travel time is assumed to be
a random variable with mean o; ;4+;, which includes the time taken to inspect workstation
1+ 1. We let 0;; denote the expected empty vehicle travel time from workstation j to
workstation ¢ (¢ # 7) following the polling sequence. That is,

1=-1
Zok'k'H’ if ]. <1
k=3

M i-1
Zok,kﬂ + Zok.k-f-l, ifg>1
k=3 k=1

where k + 1 =1 when k = M.

If all of the above information is given for a particular zone, then following the ap-
proach presented in [2] we can determine whether the vehicle (in that zone) will be able
to meet the throughput requirement (of that zone) as follows. Let a; denote the expected
proportion of time the vehicle has to travel loaded. (This includes the time required to
pick up and deposit loads, by definition.) Since the flow data and the travel times are
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given, it is straightforward to compute a; from the following expression:

M M
ar = szijrij' (2.3)

i=1j=1

Note that a; is independent of the empty vehicle dispatching rule. Also note that, if
a; > 1, the vehicle will not be able to meet the required throughput (regardless of the
empty vehicle dispatching rule used) and a; -can no longer be defined as a proportion.

Given ay, in [2] it is shown that under the FEFS empty vehicle dispatching rule, .the
vehicle will meet the required throughput (in a zone) if:

w=oay+¢<1, (2.4)
where
¢ = maxs; = max ; (A; =) 0541 - (2.5)
FE)

As remarked in [2], ¢ (> 0) acts as a “correction factor” and it can be interpreted as
“mandatory” empty vehicle travel. (For further discussions on “mandatory” empty vehicle
travel, the reader is referred to [2].) Note that we need to check the ¢; values only for the
[/O stations — this includes the transfer points.

For a given zone, w (0 < w < 1) can be viewed as the “workload” factor. A “good”
configuration can be obtained by letting the analyst control the number of zones (i.e.,
the number of vehicles), while the partitioning model is used to define each zone (i.e., to
determine the workstations to be served by each vehicle) so that the total workload is
evenly distributed among all the zones. In other words, the range of the w values in the
final partition should be reasonably small so that no bottleneck zone is created. (There
are additional properties one can state to characterize a “good” configuration. We will-
point out these properties in section 5.)

3. THE PARTITIONING ALGORITHM

The partitioning algorithm consists of three phases. In the first phase we employ cer-
tain geometric techniques to generate “promising” subsets of workstations. In the second
phase, we evaluate each subset for feasibility. That is, we use the results given by equations
(2.2) through (2.5) to determine whether one vehicle will meet the throughput requirement
imposed by the workstations in the subset. If a subset is feasible, we save it as a potential
zone (or a “column”) for the third phase. (As shown below, the first two phases actually
proceed in parallel; i.e., we generate subsets while we check their feasibility.)

The third phase is based on solving a variation of the well-known set partitioning
problem using the potential zones (or “columns”) generated in the second phase. Recall
that, in the set partitioning problem, a “column” is defined by its cost coefficient and the
set of “nodes” (or workstations) that it “covers.” The objective is to cover each “node”
exactly once by using those columns which yield the minimum total cost.
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3.1. Generating Subsets of Workstations. Using brute force to generate and
examine the feasibility of all possible subsets of workstations would not only be very time
consuming for moderately large problems with, say, 20 workstations but it is also very
likely to yield an unnecessarily large number of potential zones which would make the
solution of the model used in phase three considerably more difficult.

Furthermore, the brute force approach may generate a potential zone that would be
“difficult” to interface with other zones if it happens to be part of the final solution. For
example, consider the layout shown in Figure 2a. If workstations 1, 4, and 6 form a zone,
then it will be difficult (or impractical) to assign workstations 3 and 8 to other zones and
interface these zones with the zone defined by workstations 1, 4, and 6. (Recall that zones
are not allowed to overlap. This implies that the guide paths of two zones may not cross
each other.) Generally speaking, one must avoid generating potential zones which “isolate”
one or more workstations. Also, to avoid unnecessary vehicle travel, the workstations in a
zone should be reasonably close to each other.

Phase one is further complicated by the fact that, for a given subset of workstations,
we do not know where the transfer point(s) are located until we know the configuration
of the rest of the system. Obviously, we do not know the configuration of the rest of the
system until we solve the partitioning model in phase three.

To circumvent the above difficulties, we developed the following heuristic approach to
generate “promising” subsets of workstations while we concurrently test them for feasibil-
ity. (The details related to feasibility checking will be presented in section 3.2.) Suppose
the total number of workstations in the system to be partitioned is denoted by N. In the
following algorithm, we first solve a Traveling Salesman Problem (TSP) over N worksta-
tions. We let p(z), 7 =1,2,..., N, denote the workstation number that corresponds to the
1th position on the tour. For example, for N = 5, if the TSP tour is given by the sequence
3-1-4-5-2-3, then p(1) = 3, p(2) = 1,...,p(5) = 2.

ALGORITHM I:

0. Read the number of workstations, N. Read the (z,y) coordinate of each workstation.

1. Solve the Fuclidean TSP over all the workstations to determine the optimum sequence
of workstations. Let p(:) denote the workstation number corresponding to the :¢th
position in the above sequence.

2. Seti=1,7=2and S = {p(1)}.

Add p(j) to the set S;ie., S — SU{p(s)}

4. Solve the rectilinear TSP over the workstations in S. Given the optimum sequence of
workstations, if the subset defined by the workstations in S is feasible, that is, if the
corresponding w value for S is less than 1.0, go to step 5. Otherwise, go to step 7.

5. Store the subset defined by S as a potential zone (or column) which “covers” the
workstations in S with an objective function coefficient of w.

6. j—j+1. (f j=N+1setj=1.) Go to step 3.

7.1— 141+ 1. Ifi=N+1, STOP. Otherwise,set j =1+ 1. (fy=N+1setj=1)
Let S = {p(:)} and go to step 3.

R

In step 1 of the above algorithm, we use the Euclidean metric to solve the initial TSP
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over all the workstations since we find it to be a more realistic measure of “closeness”
between the workstations. On the other hand, in step 4 we solve the rectilinear TSP
over the workstations in S since AGV travel is assumed to be better represented by the
rectilinear metric.

The above algorithm can be demonstrated by an example. Consider the workstations
numbered 1 through 8 in Figure 2a. Solving the Euclidean TSP we obtain the optimum
tour which is given by the following sequence: 1-3-4-5-2-7-6-8-1. We start with the
subset given by workstations {1,3}. Assuming that this subset is feasible, we store it as
a column and we subsequently test the subset defined by workstations {1,3,4}. Assuming
that this subset is also feasible, we store it as a column and we next consider workstations
{1,3,4,5}. Assuming that this subset is not feasible, we “move” the pointer 1 to workstation
3 and test the subset {3,4} for feasibility. Assuming that the subset {3,4} is feasible, we
next check the subset {3,4,5}. If the latter is feasible, we next check the subset {3,4,5,2};
otherwise, we check the subset {4,5}, and so on.

Note that, in Algorithm I, we may consider {8,1}, {8,1,2}, {8,1,2,3}, and so on, as
potential zones as well. We will assume that a subset defined by two adjacent worksta-
tions on the TSP tour is always a feasible subset. If a particular workstation cannot be
feasibly paired with either one of its neighbors, then this workstation can be removed from
the partitioning problem. (It can be later added as a single workstation zone after the
remaining workstations have been partitioned.)

We are also implicitly assuming that the “subset” defined by all the workstations
(1,2,...,N) cannot be a feasible subset. Otherwise, only one zone (and one vehicle) is
required to serve all the workstations and there is no partitioning problem.

The columns generated by Algorithm I for the example problem shown in Figure
2a seemed to provide a sufficient number of “promising” potential zones. However, in
applying the algorithm to problems with more workstations, it became evident that some
potentially good zones will not be “recognized” by Algorithm I. Consequently, we used
the “band” technique to generate additional columns. (The “band” technique has been
used in a variety of sequencing problems; see [4] and 5|, among others.) To apply this
technique we first sort all the workstations in a non-decreasing order according to their
x-coordinate values. In reference to Figure 2a, we would obtain the following sequence:
1-3-8-4-6-5-7-2. Note that ties are broken by selecting the workstation with the smallest
y-coordinate value. We subsequently use the above sequence — instead of the Euclidean
TSP tour — in step 1 of Algorithm I to obtain additional columns.

The same procedure is repeated in the y-direction. That is, the workstations are
sorted in a non-decreasing order according to their y-coordinate values. Ties are broken
by selecting the workstation with the smallest x-coordinate value. In reference to Figure
2a, we would obtain the following sequence: 8-1-6-7-5-3-2-4. As before, we use this
sequence in step 1 of Algorithm I to obtain additional columns.

Lastly, we generate more columns by first dividing the workstations (horizontally)
between an upper band and a lower band of equal width. Subsequently, we use the above
procedure to obtain the sequence 1-8-6-7 for the lower band, and the sequence 3-4-5-2
for the upper band. Likewise, dividing the workstations (vertically) and applying the band
technique yields the following two sequences: 8-1-6-3-4 (for the left-hand band) and 7-5-
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2 (for the right-hand band). Each one of the above four sequences is used, one at a time,
in step 1 of Algorithm I to generate additional columns. Obviously, the value of N must
reflect the total number of workstations in a particular sequence.

The TSP tour and alternative sequences obtained from the band technique may result
in duplicated columns. However, after sorting the workstation numbers within each col-
umn, it is straightforward to identify and eliminate duplicate columns in a list of columns
sorted by the number of workstations in each column. Since such an elimination technique
is straightforward to apply, we did not concern ourselves with repetitions during column
generation. More information on the total number of columns, the number of repetitions,
and the resulting number of (unique) columns obtained for the two example problems will
be presented in section 4.

In addition, the above procedure is not guaranteed to generate potential zones that
are “easy” to interface with other zones. However, to a large extent, the TSP tour and
the band technique reduce the possibility of generating zones such as the one defined by
workstations {1,4,6} in Figure 2a. As we attempt to demonstrate through the numerical
examples, as long as such zones are avoided, interfacing the resulting zones in a tandem
system is fairly straightforward.

3.2. Checking for Feasibility. Consider a subset of workstations obtained from
the first phase. To check for feasibility, we have to first identify (approximate) transfer
point locations, and define all the appropriate travel times and flow volumes for the subset
of workstations in question. Once the above steps are completed, it is straightforward to
check for feasibility by computing the value of w from equations (2.4) and (2.5) where M
denotes the number of workstations in the subset.

The approach we used to check for feasibility can perhaps be best described by an
example. Recall the workstation locations shown in Figure 2a. The (z,y) coordinate for
each workstation is shown in Table 1a. Suppose the AGV system is required to handle
four types of jobs (labeled A through D) through the system. The workstations visited by
each job type and the number of jobs that must be processed per hour are shown in Table
1b. Note that workstations 1, 2, and 3 are I/O stations while the remaining workstations
are processor stations. v

Suppose we are concerned with the subset S = {5,2,7}. Reeall that, in step four
of Algorithm I, for a given subset of workstations we solve the rectilinear TSP. Since the
vehicle is bidirectional, all the distances are symmetric; therefore, for the subset {5,2,7},
any tour is optimum. Nevertheless, suppose the optimum tour is given by the sequence 5-
2-7-5. We first determine the (approximate) location of each transfer point by computing
the centroid of the rectangle formed by two adjacent workstations. As shown in Figure
2b, for the subset {5,2,7}, there are three transfer points. The first one, say, transfer
point 99, is between workstations 5 and 2, and it is located at z = (25 + 35)/2 = 30
and y = (15 + 21)/2 = 18. The second transfer point, say, transfer point 98, is between
workstations 2 and 7, and it is located at (z,y) = (35,15). The third one, say, transfer
point 97, is between workstations 7 and 5, and it is located at (z,y) = (30,12). (Recall
that transfer points are treated as I/O stations.)

Due to the rectilinear metric, a transfer point can be actually located anywhere within
the rectangle formed by the two adjacent workstations without increasing the travel dis-
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tance of the vehicle from one workstation to the other. However, since the vehicle is
bidirectional, travel to/from a particular transfer point may affect the overall workload on
the vehicle.

Consider now the flow associated with the subset {5,2,7}. It is straightforward to
transform the data shown in Table 1b (for each job type) to an overall flow matrix for the
system as shown in Table 1c. Since the vehicle is assumed to move one job at a time, each
entry in the above flow matrix is assumed to represent the number of (loaded) trips the
vehicle must perform per hour from one workstation to another. .

The subset {5,2,7} along with the transfer points is shown in Figure 2b. The flow
matrix that we need to construct is shown in Table 1d. Consider first the flow among
workstations 2, 5, and 7. As shown in Table 1d, this flow data is simply obtained from
the flow matrix shown in Table 1c. Consider next the flow that occurs from workstations
{1,3,4,6,8} to workstations {5,2,7}. Obviously, this flow must be handled through one of
the transfer points. In order to determine the appropriate transfer point, we measure the
Fuclidean distance from a workstation to each transfer point and select the closest one.

For example, out of workstation 1, we have 1.5 jobs/hr flowing to workstation 4 (which
we are not concerned with at this moment) and 3 jobs/hr flowing to workstation 7. Since
the closest transfer point to workstation 1 is transfer point 97, we assume that all the flow
from workstation 1 to workstation 7 is handled through transfer point 97. That is, as far
as the vehicle which serves the subset {5,2,7} is concerned, we have 3 jobs/hr flowing from
transfer point 97 to workstation 7 (due to workstation 1 only).

Since no flow occurs from workstations 3, 6, and 8 to any one of the workstations
in the subset {5,2,7}, we disregard these three workstations. However, we have 3 (4.5)
jobs/hr flowing from workstation 4 to workstation 2 (5). Since the closest transfer point
to workstation 4 is transfer point 99, we have 3 (4.5) jobs/hr flowing from transfer point
99 to workstation 2 (5) (due to workstation 4 only). There are no other jobs that enter
the subset {5,2,7} through the transfer points.

Lastly, consider the flow from the subset {5,2,7} to other workstations. Note that we
have 3 (3) jobs/hr flowing from workstation 5 to workstation 4 (6). Since transfer point 99
(97) is the closest one to workstation 4 (6), we have 3 (3) jobs/hr flowing from workstation
5 to transfer point 99 (97). In contrast, no flow occurs out of workstation 2, while 1.5
jobs/hr flow from workstation 7 to workstation 1. This flow must be handled through
transfer point 97. Hence, we have 1.5 jobs/hr flowing from workstation 7 to transfer point
97.

The resulting flow data for the subset {5,2,7} are shown in Table 1d. Note that transfer
point 98 is never used since it is not the closest transfer point to any of the workstations in
the set {1,3,4,6,8}. Also, recall that transfer points are assumed to be “two-way” interface
points that handle flow in either direction. When the set partitioning model is solved
and the configuration is finalized, the analyst can always replace such “two-way” transfer
points with two adjacent “one-way” transfer points if necessary. (Although it is most likely
to be negligible, the AGV travel time between two such transfer points can be captured
by slightly increasing the load pick up and deposit times at these stations.)

Before we can compute the workload, i.e., the w value for the subset {5,2,7}, we also
need to determine the appropriate travel times and the polling sequence for the empty
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vehicle. As remarked earlier, the workstations are sequenced according to the rectilinear
TSP tour. Adding the transfer points does not change the optimum TSP sequence since
the transfer points can be inserted without increasing the length of the original optimum
tour. Assuming that the (empty or loaded) vehicle travels at a speed of 15 grids/minute,
and that it takes 0.20 minutes to pick up or deposit a load, from Table 1d and equation
(2.3) we obtain ay = 0.3900.

We next need to determine the value of ¢ shown in equations (2.4) and (2.5). Note
that, due to the o;; values that appear in equation (2.5), the ¢ value depends on the
polling sequence. We consider two polling sequences: clockwise (5-99-2-98-7-97-5) and
counterclockwise (5-97-7-98-2-99-5). Obviously, one of the above sequences is obtained
directly from the rectilinear TSP tour while the other sequence is obtained by simply
reversing the TSP tour. Using 15 grids/minute for the vehicle speed to determine the
appropriate o;; values defined in equation (2.2), and the A; — A; values shown in Table
1d, from equation (2.5) we obtain ¢ = 0.1467 and ¢ = 0.0733 for clockwise and coun-
terclockwise polling sequences, respectively. Hence, assuming a counterclockwise polling
sequence, from equation (2.4) we obtain w = 0.4633. Since w is less than 1.0, the subset
defined by the workstations 2, 5, and 7 (along with estimated transfer points 97, 98, and
99) is a feasible zone. Therefore, we store it as a column which “covers” workstations 2,
5,and 7, at a “cost” of 0.4633 units. (Note that, once the w value is computed, we need
not include the transfer points in the definition of a column.)

Recall that, in step 4 of Algorithm I, a prospective zone is considered feasible if its
w value is less than 1.0. However, given the approximate nature of the proposed scheme
described above, one should use a threshold value less than 1.0 to accept or reject a subset.?
We suggest using threshold values between 0.80 and 0.90 to verify feasibility. That is,
any subset with an w value greater than or equal to 0.80 (or 0.90) should be considered
infeasible. This would also allow the analyst some flexibility in modifying the shape of
the zones and the exact location of the transfer points in the final partition in order to
facilitate the interfacing task.

3.3. The Partitioning Problem. The partitioning model is based on a variation
of the well-known set partitioning problem. Let w, denote the cost coefficient (i.e., the
workload factor) of the pth (unique) column obtained from the previous phase. Also, let
aip equal to 1 if workstation ¢ is “covered” by column p, and O otherwise. Lastly, let L
denote the desired number of zones (or “loops”) set by the analyst. Note that L also
denotes the number of vehicles.

The decision variable is denoted by z, where z,, is equal to 1 if column p is used in the
final partition, and 0 otherwise. The objective is to avoid generating bottleneck loops by
evenly distributing the overall workload among the loops as much as possible. An indirect
way to accomplish this is to minimize the maximum workload in the system. Assuming
that the maximum workload (which occurs in one or more zones) is designated by z, we

2The partitioning scheme developed here is an approximate one since the exact locations of the transfer
points are not known in advance and we do not consider possible “transit loads” in computing the workload
in a prospective zone. Our numerical experiments indicate that, as long as the sequence of workstations

remains unchanged, the workload is generally not sensitive to the exact location of a transfer point.
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obtain the following 0-1 Integer Programming problem:

Minimize 2
Subject to: z2—wpzp >0  for all p, (3.1)
Y apz, =1 foralli, (3.2)
~ .
Z T, =L, (3.3)
P
z,=0o0r 1 forallp, (3.4)

where constraint 3.1 ensures that the workload in any zone used in the final partition does
not exceed z. Constraint 3.2 requires that each workstation is covered exactly once; that
is, each workstation is assigned only to one zone. Lastly, constraint 3.3 forces the resulting
partition to have exactly L zones.

Clearly, if the L value selected by the analyst is not sufficiently large, the above
model may not have a feasible solution. Depending on the problem size — primarily the
number of columns — and the computational resources available, one may solve the above
model for several L values to generate alternative solutions. Although for relatively small
problems this may be the most desirable approach from a design standpoint, it may not be
a practical approach for large problems from a computational standpoint. (The definitions
of “small” and “large” problems depend on the type of hardware and software available to
solve the above model.)

Hence, for large problems, it may be more practical to start with a relatively large
value of L and gradually decrease it either until the maximum w value, i.e., z, exceeds a
user defined upper limit, or until the problem becomes infeasible. Since we assumed that a
workstation can always be feasibly paired with an adjacent workstation on the Euclidean
TSP tour, an upper bound on L is given by N/2 (if N is even) or (N/2) + 0.5 (if N is
odd), where N is the total number of workstations to be partitioned.

Also, certain heuristic methods can be used to estimate a near-minimum L value.
For example, we may sort the columns in a non-increasing order based on the number of
workstations they cover. Starting with the column which covers the maximum number-
of workstations, we may select each column, one at a time, until all the workstations are
covered. To avoid “double coverage,” as soon as we select a column, we need to disallow
all the other columns that cover any of the workstations already covered by the selected
column.

Other methods can be devised to generate appropriate L values. However, it seems
that in practice, the analyst can narrow down the range of reasonable L values rather
quickly. For example, if N = 20, then setting L equal to 10 will generate too many zones
that are in all likelihood not necessary. On the other hand, setting L equal to, say, 4,
will require that a zone, on the average, cover 5 workstations. By examining the above
sorted list of columns and the corresponding w values, the analyst can quickly determine
whether such an “average” is reasonable or not. Hence, for most cases it seems that, even
for moderately large problems with N ~ 20, it will be fairly straightforward to reduce the
L values of interest to a small range.
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In this study, since we are also interested in comparing the performance of tandem
AGYV systems with conventional AGV systems, the number of vehicles required for the
conventional system was used as a benchmark value for L. (As described in section 4, the
number of AGVs required for the conventional system was obtained via simulation.)

3.4. Solving The Partitioning Problem. We used a generic 0-1 Integer Program-
ming code (LINDO) on a mainframe to solve the partitioning problem defined in section
3.3. As shown in section 4, a fair number of (unique) columns are generated for both
example problems. Naturally, the maximum problem size that can be solved depends on
the type of hardware and software available to the analyst. However, it is instructive to
note that one may reduce the problem size — that is, eliminate a number of columns —
if a heuristic solution is available. (Note that classical set partitioning heuristics will not
directly apply here since the desired number of zones, that is, L, is selected a priori by the
user.)

Suppose the maximum workload obtained from a heuristic solution is given by zy.
Any column which has an w value greater than zy cannot be in the optimum solution
(due to the minimax nature of the problem). Hence, to reduce the computational effort,
all such columns can be eliminated before attempting to solve the problem exactly.

Developing a heuristic procedure to solve the partitioning problem is beyond the scope
of this study. However, using a “quick-and-dirty” method (based on the Euclidean TSP
tour), we were able to obtain a reasonably good solution for the second example problem.
(We did not have to apply the heuristic to the first example problem since we were able to
solve it without eliminating any columns.) Obviously, one would eliminate many columns
with a good heuristic. However, if a good heuristic procedure were available, there would
be less incentive to obtain an exact solution.

In terms of solving the partitioning problem, there is a special case which requires
further explanation. Recall that we assumed a workstation can be feasibly paired with at
least one of its neighbors on the Euclidean TSP tour. For an odd number of workstations,
this does not necessarily guarantee a feasible partition even if a sufficiently large L value
is used. For example, for N = 5, if the TSP tour is given by the sequence 1-2-3-4-
5-1, and the only feasible subsets are given by {1,2}, {2,3}, {3,4}, {4,5}, and {5,1},
then no feasible solution exists to the partitioning problem. For such a case, one may
add N single-workstation columns to the problem. Letting s (s € p) denote the set of all
single-workstation columns and @ denote the maximum number of single-workstation zones
allowed in the final partition, the workload for each single-station column can be simply
set equal to zero, as long as we add the constraint ), z, < Q to the set of constraints
given by equations (3.1) through (3.4).

4. NUMERICAL EXAMPLES AND CONVENTIONAL AGYV SYSTEMS

In this section we will use two numerical examples to demonstrate the partitioning
algorithm, and to compare the performance of the resulting tandem configurations with
their conventional counterparts.

All the assumptions and definitions stated for tandem AGV systems also apply to
conventional AGV systems, with the following exceptions:
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1. Conventional AGVs are assumed to operate on a unidirectional basis. Using bidirec-
tional vehicles in conventional AGV systems further complicates the control system,
and it potentially creates a significant increase in path contention.

2. The conventional AGV system is assumed to have only I/O and processor stations;
that is, no transfer points are defined.

3. The empty vehicles in the conventional system are assumed to be dispatched according
to the Shortest-Travel-Time-First (STTF) rule. Under this rule, if a vehicle becomes
empty at its last delivery point, it is dispatched to the closest workstation which
contains an unassigned move request.

4. When a vehicle becomes empty at its last delivery point, if no unassigned move re-
quests are available in the system, the empty vehicle is sent to a parking area (so that
it will not block other vehicles in the system). If a new move request arrives while
the empty vehicle is on its way to the parking area, then the vehicle is immediately
assigned to that move request and it is rerouted accordingly.

We used a commercial simulation/animation program (WITNESS) to simulate both
the tandem and the conventional system. This program captures all vehicle interactions
(such as blocking at intersection points and P/D points) as well as delays caused by “zone
blocking” in conventional AGV systems. Each simulation run was first warmed up for
10,000 minutes followed by 5 replications that were 6,000 minutes long each. In all the
simulation runs, the average processing time for each processor was set equal to that value
which yields an expected processor utilization of 75%.

The data for the first numerical example (that is, layout 1) were given earlier in Table
1 and Figure 2a. The configuration used for the conventional system is shown in Figure 3a.
Using the simulation model, we observed for the conventional system that the workload
given in Table 1b can be satisfied with 4 vehicles that are, on the average, approximately
75% utilized. (Note that, with a conventional AGV system under the STTF rule, vehicle
utilization consists of loaded and empty travel.)

For the tandem configuration, assuming that a prospective zone is feasible only if its
estimated workload does not exceed 0.90, the column generation algorithm generated a
total of 69 columns with layout 1. After eliminating duplicate columns, there were 39 -
(unique) columns remaining for the partitioning model. Since this number is well within
the range of problems we can solve exactly, we set L = 4 and solved the resulting model
(without eliminating any columns) to obtain the configuration shown in Figure 3b. The
estimated w values (obtained from the partitioning algorithm) and the actual w values
(obtained from equations 2.3 through 2.5 for the zones shown in Figure 3b) are shown in
Table 2. As one would anticipate, the actual values exceed the estimated values since each
loop was expanded in order to reduce the length of the interface conveyors. Note that
there are no transit loads in the tandem configuration shown in Figure 3b.

Using WITNESS, we simulated the conventional system and the tandem system under
three throughput levels. The first level is given in Table 1b where we have 1.5 jobs/hr (or
40 minutes between job arrivals) for job types A and B, and 3.0 jobs/hr (or 20 minutes
between job arrivals) for job types C and D. The second throughput level was obtained
by increasing the arrival rate of all job types by 33.33%. The third throughput level
was obtained by increasing the arrival rate of all job types by 60% relative to the first
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throughput level.

The results obtained from the simulation model (except for column C, which was
obtained analytically) for all three throughput levels are presented in Table 3. In Table
3a, note that both the tandem system and the conventional system “easily” meet the
required throughput. We must stress that, although columns C and G in Table 3 reflect
the workload on each vehicle under the tandem and conventional system, respectively,
their direct comparison will lead to the incorrect conclusion that the tandem system has
more slack. This is primarily because, as the throughput level is increased, the ay + ¢
value for the tandem system will increase proportionally. In contrast, for the conventional
system, only loaded vehicle travel will increase proportionally with the throughput level,
whereas vehicle utilization due to empty travel will generally decrease as the throughput
is increased. (Note that, under the STTF rule, as the throughput is increased, an arriving
loaded vehicle is more likely to find a new load at its delivery point.)

The above observation can be clearly seen in Tables 3b and 3c where the a; + ¢
values for the tandem system increase at the same rate as the throughput level, while in
the conventional system the vehicle utilization increases at a slower rate. Also note that,
as the throughput is increased, the average and maximum queue lengths for both systems
increase. However, the conventional AGV system appears to perform slightly better. (In
Table 3c, although the tandem system theoretically meets the required throughput, the
maximum queue lengths are approaching unacceptable values for most practical applica-
tions.) In fact, if the throughput level is increased by 100% (relative to the first level), the
conventional system still meets the required throughput with an average vehicle utiliza-
tion of approximately 98% and an overall maximum queue length of 24 jobs (at the output
queue of workstation 3). For the tandem system, on the other hand, we were not able to
obtain a result with the above throughput since the number of “active” jobs in the system
reached an upper limit imposed by the software. (When the simulation model stopped due
to this upper limit, there were 375 jobs in the output queue of workstation 3.)

~ Another observation is that, at all throughput levels, the average time a job spends in

the system is longer for the tandem configuration. This primarily stems from the fact that,
with 4 vehicles, very limited blocking and congestion occurs in the conventional system,
while additional delays are induced at the transfer points in the tandem system. Also
note that, for both systems, the average time a job spends in the system decreases as
the throughput level is increased. The decrease observed in the average time-in-system is
primarily due to the increase in the processing rate at the processor stations. (In order
to maintain an expected processor utilization of 75% in all the simulation runs, we had to
increase the processor capacity as we increased the throughput level.)

For the second example problem (that is, layout 2) we used six job types and 20
workstations. The data for each job type are shown in Table 4. The configuration of the
conventional AGV system is shown in Figure 4a. The direction of each arc in the conven-
tional configuration was determined by a simple heuristic procedure aimed at minimizing
loaded vehicle travel. For the workload given in Table 4 (that is, 1.5 jobs/hr of each job
type), the simulation model for the conventional system indicates that 8 vehicles are re-
quired to meet throughput. The average vehicle utilization (that is, loaded plus empty
travel) is equal to approximately 84%.
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For the tandem configuration, assuming that a prospective zone is feasible only if its
estimated workload does not exceed 0.90, the column generation algorithm generated a
total of 380 columns with layout 2. After eliminating duplicate columns, there were 292
(unique) columns remaining for the partitioning model. Given the fairly large problem
size, we used the heuristic mentioned in section 3.4 and found a 6-zone partition with
an objective function value of z = 0.6158. Eliminating each column that had an w value
greater than 0.6158, we were able to reduce the number of columns to 171. (Note that the
above elimination does not exclude any column which may be in the optimum solution for
L =6.) Solving the reduced problem with L = 6, we obtained the optimum configuration
shown in Figure 4b.

The estimated w values (obtained from the partitioning algorithm) and the actual w
values (obtained from equations 2.3 through 2.5 for the zones shown in Figure 4b) are
shown in Table 2. Note that the maximum estimated w value is equal to 0.409 (due to
zone 2) while the maximum actual workload in the system is equal to 0.313 (due to zone
5). Also note that there are no transit loads in the tandem configuration shown in Figure
4b.

We simulated the conventional system (with 8 vehicles) and the tandem system (with
only 6 vehicles) under three throughput levels. The first level is given in Table 4 where
we have 1.5 jobs/hr (or 40 minutes between job arrivals) for each job type. As before,
the second throughput level was obtained by increasing the arrival rate of all job types by
33.33%, and the third throughput level was obtained by increasing the arrival rate of all
job types by 60% (relative to the first throughput level).

The results obtained from the simulation model (except for column C, which was ob-
tained analytically) for all three throughput levels are presented in Table 5. In Table 5a,
note that both the tandem system and the conventional system “easily” meet the required
throughput. (Recall that columns C and G in Table 3 are not directly comparable.) How-
ever, as the throughput level is increased, as shown by Tables 5b and 5c, the conventional
system clearly begins to stall. In fact, if the throughput level is increased by 100% (relative
to the first level), the tandem system still meets the required throughput with a maximum
ay + ¢ value of 0.6260 (in zone 5) and an overall maximum queue length of 16 jobs (at the

“output queue of workstation 14) despite the fact that it has 6 vehicles instead of 8. For
.the conventional system, on the other hand, we were not able to obtain a result with the
above throughput since the number of “active” jobs in the system reached an upper limit
imposed by the software. (When the simulation model stopped due to this upper limit,
there were 775 jobs in the output queue of workstation 18.)

Also note that, contrary to what we had observed for layout 1, in layout 2 the average
time a job spends in the system is longer for the conventional system at all throughput
levels. For the conventional system with 8 vehicles and 20 workstations, it is clear that
blocking, congestion, and unidirectional travel are becoming critical factors in layout 2.

5. CONCLUSIONS AND FUTURE RESEARCH

In this paper we presented a partitioning algorithm based on a specialized column
generation technique. The resulting partitioning model is a variation of the well-known set
partitioning problem. Our empirical results indicate that reasonably good partitions can be
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obtained for tandem AGYV systems using the above algorithm. Also, our simulation results
indicate that, from a throughput standpoint, tandem AGV systems are very competitive
with conventional AGV systems.

It seems that, in terms of throughput performance, a conventional AGV system with
only three or four vehicles would be comparable to or better than a tandem AGV system.
However, unless very simple, tailored control routines are developed for conventional AGV
systems with few vehicles, the complications and “fixed cost” associated with the control
system will always be there even if a small number of vehicles are needed in a conventional
system. Given their throughput performance, and the additional simplicity and flexibility
they offer, the tandem AGYV system is emerging as a strong contender for small systems
with just three or four vehicles.

For a larger system with more vehicles and workstations, our empirical results indicate
that the tandem AGV system (with just 6 vehicles) performs much better than the conven-
tional AGV system (with 8 vehicles). More empirical evidence is required to generalize this
observation. The layout and the production routing of the jobs can be expected to have
a significant impact on the performance of both conventional and tandem AGV systems.
Also, relative to loaded and empty travel times, if the load pick up and deposit times are
long, the throughput performance of the tandem system is likely to be adversely effected
since a load may be handled several times before it reaches its destination. Although we
used 12 seconds for load pick-up and 12 seconds for load deposit, in layout 2 the tandem
configuration outperformed the conventional system with a wide margin.

We are in the process of extending this study in several directions. First, we are
considering alternative schemes to account for potential “transit loads” in computing the
workload for a subset of workstations. Second, we are considering new definitions for
a “good partition.” For example, in the partitioning algorithm presented here, we were
concerned only with the workload generated within a zone, and with minimizing the max-
imum workload in the system. An alternative approach is to simply minimize the number
of zones, subject to the constraint that the workload in any zone may not exceed an upper
limit set by the user. (Note that the constraint can be imposed simply by eliminating all
columns which have a workload greater than the user defined upper limit.) In the process,
one may evaluate the desirability of a prospective zone not only by the workload and the
number of workstations it “covers,” but also by the ratio of the flow within.the zone to the
total flow associated with that zone. (Note that, in the tandem approach, it is desirable
to have zones that have minimum interaction with one another.)

Minimizing zone-to-zone flow can be accomplished more effectively if the layout is
not fixed. In this paper, we treated the layout as given and fixed. However, a third and
potentially very promising extension to our study is to solve the layout and partitioning
problems concurrently. We believe that significant savings can be realized if one is allowed
to change the layout (that is, interchange workstation locations) under the tandem ap-
proach. Similar savings can be realized for conventional AGV systems as well. However,
given its (single vehicle) zones and bidirectional vehicles, it appears that more dramatic
savings can be realized with the tandem approach if some or all workstation locations are
interchangeable.
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Table 1a. The (x,y) Coordinates of the Workstations for Layout 1.
1. (1,4) 2. (35,21) 3. (1,21) 4. (9,25)

5. (25,15) 6. (15,4) 7. (35,9) 8. (9,1)

Table 1b. Workload and Routing Data for Layout 1.

Job Type Jobs/Hr. Production Routing (by workstation number)

A 1.5 1 -4-25 7-1

B 1.5 3-4-6-1

C 3.0 1-7-25 4 - 2

D 3.0 3-4-5-6-8-1

Table 1c. Overall Flow Matrix (From-To Chart) for Layout 1. (Given in Trips/Hour.)

1 2 3 4 5 6 7 8

1 - 0.0 0.0 1.5 0.0 0.0 3.0 0.0
2 0.0 - 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 - 4.5 0.0 0.0 0.0 0.0
4 0.0 3.0 0.0 - 4.5 1.5 0.0 0.0
5 0.0 0.0 0.0 3.0 - 3.0 1.5 0.0
6 1.5 0.0 0.0 0.0 0.0 - 0.0 3.0
7 1.5 0.0 0.0 0.0 3.0 0.0 - 0.0
8 3.0 0.0 0.0 0.0 0.0 0.0 0.0 -

Table 1d. Flow Matrix (From-To Chart) for the Subset {5,2,7}. (Given in Trips/Hour.)

2 5 7 97 98 99 A A2
2 - 0.0 0.0 0.0 0.0 0.0 0.0  +3.00
5 0.0 - 1.5 3.0 0.0 3.0 7.5 0.00
7 0.0 3.0 - 1.5 0.0 0.0 4.5 0.00
97 0.0 0.0 3.0 - 0.0 0.0 3.0  +1.50
98 0.0 0.0 0.0 0.0 - 0.0 0.0 0.00
99 3.0 4.5 0.0 0.0 0.0 - 7.5  -4.50
N, 3.0 7.5- 4.5 4.5 0.0 3.0 22.5
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Table 2. Estimated and Resulting Workloads in each Zone.

Layout 1" Layout 2

Estimate Result Estimate Result
Zone 1 0.218 0.337 0.389 0.307
Zone 2 0.300 0.493 0.409 0.297
Zone 3 0.333 0.453 0.304 0.297
Zone 4 0.370 0.483 0.391 0.260
Zone 5 n/a n/a 0.378 0.313
Zone 6 n/a n/a 0.331 0.243

(*) In layout 1, the resulting workload in each zone should exceed our estimate since we "stretched” each loop after obtaining the
final partition. Although it was not necessary, we stretched each loop in order to reduce the length of the interface conveyors.
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Table 3a. Simulation Results for Tandem and Conventional AGV Systems (Layout 1).

A B C D E F G H
Layout 1
IAT = 40, 40, 20, 20
Tandem Conventional
AVER MAX ' AVER MAX
0B1 0.15 0.01 4 0.24 0.01 4
OB2 0.00 0.00 0 0.00 0.00 0
OB3 0.42 0.12 10 0.28 0.02 5
OB4 0.54 0.04 8 0.58 0.01 7
o8BS 0.41 0.03 6 0.39 0.01 5
OB6 0.39 0.03 5 0.22 0.02 4
oB7 0.45 0.05 7 0.27 0.01 4
0OB8 0.12 0.01 4 0.1 0.01 3
C1 0.07 0.03 3 * "
Cc2 0.16 0.01 3 * *
c3 015] 0.1 2 : d
C4 0.12 0.02 5 " *
C5 0.12 0.01 4 * *
cs 0.26 0.02 4 * *
c7 0.46 0.08 6 * *
c8 0.15 0.01 5 * *
TIS AVER 137.27 | 22.46 127.70 | 19.70
TIS MIN 20.25 12.13
TIS MAX 501.65 480.15
Alpha f Alpha f + Max Phi i Alpha f Busy
AGV1 30.39 0.84 33.70 37.35 0.63 74.71 0.50
AGV2 41.06 2.05 49.30 37.17 0.80 74.80 1.52
AGV3 35.86 1.42 45.30 37.68 0.78 74.97 1.38
AGV4 44.82 1.13 48.30 37.24 1.50 74.50 1.91
IAT: Interarrival time for job types A, B, C, D (minutes/job).
Col. A: Average queue length for output buffer of workstation i,

Average queue length for interface conveyor i,
Average time-in-system / Minimum time-in-system / Maximum time-in-system
Alpha f value for each AGV.
Col. B: Half-width of 95% confidence interval.
Col. C: Maximum queue length for output buffer of workstation i,
Maximum queue length for interface conveyor i,
Alphaf + Max Phii = Alpha f + Phi.

b

Col. E: Average queue length for output buffer of workstation i,
Average time-in-system / Minimum time-in-system / Maximum time-in-system,
Alpha f value for each AGV.

Col. F: Half-width of 95% confidence interval.

Col. G: Maximum queue length for output buffer of workstation i,

Alphaf + Alphae = Vehicle Utilization.
Col. H: Half-width of 95% confidence interval.
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Table 3b. Simulation Results for Tandem and Conventional AGV Systems (Layout 1).

A B c D E F G
Layout 1
IAT = 30, 30, 15, 15
Tandem Conventional

AVER MAX AVER - MAX
OB1 0.23 0.03 5 0.35 0.06 6
0oB2 0.00 0.00 0 0.00 0.00 0
OB3 1.23 0.35 16 0.45 0.03 6
OB4 1.14 0.21 13 0.80 0.03 - 9
0oBS 0.77 0.07 10 0.62 0.07 8
OoBé 0.88 0.06 9 0.36 0.03 _ 6
oB7 0.94 0.15 13 0.42 0.02 7
oBs8 0.21 0.03 4 0.27 0.03 4
C1 0.13 0.02 6 * '
C2 0.26 0.02 5 : '
C3 0.22 0.01 6 : :
C4 0.27 0.04 5 t ’
CS 0.21 0.03 5 * *
cé 0.48 0.04 5 * :
c7 0.99 0.12 6 * *
cs8 0.27 0.04 5 * '
TIS AVER 129.78 16.61 102.00 | 12.86
TIS MIN 23.02 15.34
TIS MAX 412.13 408.52

Alpha f Alpha f + Max Phi i Alpha f Busy

AGV1 40.93 1.14 44.93 47.42 1.67 87.28 2.09
AGV2 55.80 1.58 65.73 47.57 1.91 87.40 2.14
AGV3 48.56 1.79 60.40 48.05 1.22 87.45 1.46
AGV4 60.35 -1.45 64.40 47.92 0.98 87.37 1.74
IAT: Interarrival time for job types A, B, C, D (minutes/job).
Col. A: Average queue length for output buffer of workstation i,

Average queue length for interface conveyor i,

Average time-in-system / Minimum time-in-system / Maximum time-in-system,

Alpha f value for each AGV.
Col. B: Half-width of 95% confidence interval.
Col. C: Maximum queue length for output buffer of workstation i,

Maximum queue length for interface conveyor i,

Alphaf + Max Phii = Alphaf + Phi.
Col. E: Average queue length for output buffer of workstation i,

Average time-in-system / Minimum time-in-system / Maximum time-in-system,

Alpha f value for each AGV.
Col. F: Half-width of 95% confidence interval.
Col. G: Maximum queue length for output buffer of workstation i,

Alphaf + Alphae = Vehicle Utilization.
Col. H: Half-width of 95% confidence interval.
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Table 3c. Simulation Results for Tandem and Conventional AGV Systems (Layout 1).

A B | C D E F G H
Layout 1
IAT = 25, 25, 12.5,12.5
Tandem Conventional
AVER MAX AVER MAX
OB1 0.34 0.05 8 0.44 0.02] 8
oB2 0.00 0.00 0 0.00 0.00 0
0oB3 2.35 0.87 24 0.71 0.14 14
OoB4 2.00 0.37 19 1.09 0.08 13
0BS 1.45 0.36 14 0.83 0.08 9
oBé 1.58 0.29 12 0.49 0.04 6
oa7 1.86 0.52 16 0.52 0.03 6
0oB8 0.28 0.03 5 0.37 0.06 8
C1 0.17 0.08 6 * *
Cc2 0.37 0.04 5 * '
3 0.27 0.02 3 . '
C4 0.42 0.08 6 * *
(] 0.28 0.06 5 * *
(o] 0.84 0.1 5 ! !
c7 1.77 0.30 6 * *
cs8 0.45 0.12 6 " *
TIS AVER 133.70 | 2342 88.27 8.84
TIS MIN 19.59 13.61
TIS MAX 361.74 322.49
Alpha f Alpha f + Max Phi i Alpha f Busy
AGV1 48.88 1.76 53.92 55.55 2.05 93.65 1.98
AGV2 63.70 2.85 78.88 55.33 1.85 93.57 1.92
AGV3 59.24 3.48 72.48 55.44 2.28 93.51 2.05
AGV4 71.98 2.78 77.28 55.42 247 93.56 1.57
IAT: Interarrival time for job types A, B, C, D (minutes/job).
Col. A: Average queue length for output buffer of workstation i,

Average queue length for interface conveyor i,
Average time-in-system / Minimum time-in-system / Maximum time-in-system,

Alpha f value for each AGV.
Col. B: Half-width of 95% confidence interval.
Col. C: Maximum queue length for output buffer of workstation i,

Maximum queue length for interface conveyor i,
Alpha f + Max Phii = Alphaf + Phi.

Col. E: Average queue length for output buffer of workstation i,
Average time-in-system / Minimum time-in-system / Maximum time-in-system,
Alpha f value for each AGV.

Col. F: Half-width of 95% confidence interval.

Col. G: Maximum queue length for output buffer of workstation i,
Alphaf + Alphae = Vehicle Utilization.

Col. H: Half-width of 95% confidence interval.
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Table 4. Workload and Routing Data for Layout 2.

Job Type  Jobs/Hr. Production Routing (by workstation number)

A 1.5 1- 3- 6- 2- 5- 4-1

B 1.5 1- 6- 8- 7- 29

C 1.5 9- 7- 8-16 -20-17 - 13 - 9
D 1.5 18 - 15 -11-12 - 16 - 13 - 17 - 9
E 1.5 18 - 15 -19 -12 - 11 - 10 - 14 - 18
F 1.5 18 -14-10- 4 - 5- 1
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Table 5a. Simulation Results for Tandem and Conventional AGV Systems (Layout 2).

A B Cc D E F G
Layout 2
IAT = 40
Tandem Conventional
AVER MAX AVER MAX
OB1 0.24 0.03 6 0.28 0.03 7
0B2 0.09 0.01 3 0.17 0.01 3
OB3 0.12 0.02 3 0.18 0.02 4
OB4 0.20 0.01 5 0.26 0.01 4
0B85 0.15 0.01 4 0.26 0.02 4
0B6 0.17 0.02 4 0.24 0.04 4
OB7 0.13 0.02 4 0.24 0.02 3
0OB8 0.13 0.01 3 0.21 0.02 4
0OB9 0.05 0.00 3 0.09 0.00 3
0B10 0.18 0.02 3 0.29 0.03 5
OB11 0.15 0.02 4 0.26 0.04 4
OB12 0.12 0.01 5 0.27 0.03 4
OB13 0.17 0.02 5 0.20 0.02 4
OB14 0.22 0.04 4 0.33 0.04 5
OB15 0.11 0.02 5 0.44 0.06 6
OB16 0.12 0.01 3 0.20 0.02 4
0B17 0.12 0.01 5 0.26 0.02 5
OB18 0.22 0.04 5 0.58 0.07 6
OB19 0.09 0.02 3 0.24 0.04 4
0B20 0.06 0.01 3 0.12 0.01 3
C1 0.09 0.01 3 . .
Cc2 0.25 0.03 4 " *
C3 0.08 0.01 3 * *
C4 0.07 0.01 3 * *
CS5 0.06 0.01 2 . *
(o] ] 0.08 0.01 2 . *
Cc7 0.16 0.02 4 * *
C8 0.16 0.01 4 . *
C9 0.14 0.02 4 * .
C10 0.05 0.01 2 . *
C11 0.06 0.01 3 * *
C12 0.10 -0.01 3 . *
TIS AVER 360.26 | 53.03 378.63 | 53.66
TIS MIN 22.70 35.44
TIS MAX 1176.24 1182.44
Alpha f Alpha f + Max Phi i Alpha f Busy

AGV1 27.35 1.88 30.70 37.21 1.71 84.43 3.83
AGV2 27.91 1.53 29.70 36.22 2.64 84.75 3.16
AGV3 24.96 1.30 29.70 36.90 2.35 84.60 3.10
AGV4 23.02 1.55 26.00 36.78 2.23 84.59 3.30
AGV5 23.15 2.32 31.30 36.79 2.86 85.00 3.33
AGV6 21.48 1.11 24.30 36.53 2.75 84.50 3.33
AGV7 * . 36.25 2.73 84.47 3.94
AGVS * * 36.64 2.28 84.80 3.26

(For legend refer to Table 3.)
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Table 5b. Simulation Results for Tandem and Conventional AGV Systems (Layout 2).

A B C D E F G H
Layout 2
IAT =30
Tandem Conventional
AVER MAX AVER MAX
OB1 0.40 0.06 8 0.46 0.07 8
0B2 0.13 0.03 3 0.26 0.01 -4
0B3 0.18 0.02 3 0.25 0.01 3
OB4 0.29 0.02 5 0.37 0.03 5
0BS5S 0.22 0.01 4 0.40 0.03 4
OB6 0.25 0.02 4 0.37 0.04 5
0B7 0.21 0.01 4 0.32 0.03 4
OB8 0.21 0.02 4 0.33 0.04 5
0B9 0.08 0.01 3 0.13 0.01 3
0B10 0.30 0.02 6 0.49 0.05 6
OB11 0.25 0.03 4 0.42 0.05 5
0OB12 0.19 0.03 4| 0.44 0.07 5
0B13 0.33 0.04 5 0.31 0.03 5
OB14 0.35 0.02 5 0.55 0.06 6
OB15 0.16 0.01 4 0.84 0.09 8
OB16 0.20 0.03 5 0.33 0.03 4
0B17 0.20 0.01 5 0.40 0.03 5
OB18 0.36 0.04 6 1.20 0.25 13
0B19 0.15 0.01 4 0.59 0.13 5
0B20 0.10 0.01 5 0.19 0.02 3
C1 0.14 0.02 3 * *
Cc2 0.44 0.02 7 * *
C3 0.13 0.04 4 * *
C4 0.14 0.01 4 * *
CSs 0.09 0.01 3 * *
(o] ] 0.13 0.01 3 * *
Cc7 0.30 0.05 6 * *
C8 . 0.24 0.04 3 * *
C9 0.23 0.02 5 * v
C10 0.08 0.01 3 * *
Ci1 0.09 0.01 3 * *
C12 0.16 0.02 3 * *
TIS AVER 295.27 | 20.26 320.83 | 25.50
TIS MIN 19.78 41.20
TIS MAX 794.99 809.27
Alpha f Alpha f + Max Phi i "~ Alpha f Busy
AGV1 36.49 1.39 40.93 49.62 3.37 97.06 1.58
AGV2 36.65 1.29 39.60 49,58 3.84 97.04 1.39
AGV3 34.28 1.80 39.60 49.53 3.16 97.00 1.50
AGV4 30.97 1.52 34.67 49.90 3.00 97.22 1.34
AGV5 30.75 1.96 41.73 49.83 3.75 97.10 1.51
AGV6 29.46 1.44 32.40 49,72 3.38 96.75 1.95
AGV7 * * 49.54 3.20 96.99 1.41
AGVS * * 49.97 3.33 96.968 1.31

(For legend refer to Table 3.)
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Table Sc. Simulation Results for Tandem and Conventional AGV Systems (Layout 2).

A B C D E F a H
Layout 2
IAT = 25
Tandem Conventional
AVER MAX AVER MAX
OB1 0.59 0.14 7 0.66 0.14 9
0OB2 0.19 0.03 5 0.40 0.08 5
0OB3 0.30 0.08 6 0.39 0.02 6
0OB4 0.48 0.04 6 0.50 0.05 6
0BS5S 0.29 0.01 4 0.53 0.05 6
OBé 0.33 0.02 5 0.47 0.02 6
OB7 0.28 0.03 5 0.39 0.02 5
0B8 0.29 0.03 6 0.39 0.03 5
0OB9 0.11 0.01 4 0.17 0.02 3
0B10 0.42 0.04 8 0.77 0.09 7
OB11 0.36 0.05 6 0.63 0.05 7
0B12 0.26 0.02 4 0.65 0.05 6
0OB13 0.53 0.09 7 0.41 0.03 5
OB14 0.54 0.02 8 0.91 0.17 10
OB15 0.20 0.01 5 3.45 1.62 17
OB16 0.27 0.03 5 0.46 0.03 6
OB17 0.27 0.03 5 0.55 0.06 7
OB18 0.53 0.06 8 6.48 6.27 45
0OB19 0.22 0.02 4 2.80 0.91 12
0B20 0.14 0.01 3 0.27 0.02 5
C1 0.19 0.02 4 * *
C2 0.70 0.08 7 . *
C3 0.18 0.05 4 * *
C4 0.22 0.02 4 * *
C5 0.12 0.02 3 * v
C8 0.18 0.02 4 * *
(974 0.48 0.08 7 * *
C8 0.32 0.04 4 * *
Co 0.33 0.06 5 * *
C10 - 0.12 0.03 3 * y
C11 0.12 0.01 3 * *
C12 0.23 0.04 3 * *
TIS AVER 257.09 15.69 316.71 34.07
TIS MIN 22.43 39.99
TIS MAX 649.42 880.41
Alpha f Max Alpha f + Phi i Alpha f Busy
AGV1 44,14 2.41 49.12 58.94 1.55 99.88 0.17
AGV2 44.55 0.61 47.52 58.74 1.92 99.77 0.31
AGV3 42.05 2.32 47.52 58.96 1.57 99.74 0.37
AGV4 37.16 1.82 41.60 58.91 2.12 99.79 0.31
AGV5 36.70 1.21 50.08 59.18 3.15 99.83 0.31
AGV6 35.74 2.23 38.88 60.00 2.28 99.83 0.23
AGV7 * * 59.09 2.156 99.79 0.38
AGVS * * 59.01 1.91 99.83 0.14

(For legend refer to Table 3.)
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