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During evolution, the effective interactions between re.yidues in a protein can be adjusted 
through mutations to allow the protein to fold to its native structure on an adequate time scale. 
We seek to address the question: Are there some structures that can be better optimized than 
others? Using exhaustive enumeration of the compact conformations of short proteins confined 
to simple lattices, wefind that the best structures are those that contain contacts rare in random 
structures, indicating the importance of nonlocal contacts for assisting the folding process. 
Certain structural motifs such as long p-hairpins, Greek-key motifs, and jelly rolls, commonly 
found in proteins of known structure, have a high degree of optimizability. Contrary to what 
might be expected, positive correlations between the various interactions reduce optimizability. 
The optimization procedure produces a correlated energy landscape, which might assist folding. 
0 1995 John Wiley d Sons, Inc. 

INTRODUCTION 

Understanding how a protein obtains its biologi- 
cally active conformation is one of the central 
problems of molecular biophysics. Much of the 
theoretical and experimental study of protein fold- 
ing has been directed toward a resolution of the so- 
called Levinthal paradox, understanding how a 
protein can find the relatively few states classified 
as native in the midst of a vast space of possible 
conformations.’ In the absence of a detailed under- 
standing of the interactions between various parts 
of the amino acid sequence, and given the lack of 
computational power necessary to model the fold- 
ing process in detail, valuable insight has come 
from the results of simple models such as lattice 
calculations, where proteins are represented as 

polymers with random interactions, with interac- 
tions designed to capture the salient features of the 
true energy function, or with interactions designed 
to stabilize the folded conformation. (For reviews, 
see Refs. 2 and 3 . )  

Work in this area has been dominated by two 
different approaches. According to the first view, 
folding proceeds rapidly because of the existence of 
a “folding code” embedded in the sequence, which 
directs the folding along a well-defined pathway. 
This approach is often combined with a view that 
the final conformation is determined by kinetic 
barriers, and that the folded conformation is not 
necessarily the conformation of lowest free energy. 
Recently, a second approach has concentrated on 
the thermodynamic requirements necessary for 
rapid folding. In this view, folding is rapid precisely 
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because there is no single pathway, but instead a 
multiplicity of routes and a large number of possi- 
ble transition states. Some recent work along these 
lines has been based on ideas borrowed from the 
physics of spin glasses, systems dominated by an 
extremely rough free-energy landscape, yet whose 
analysis has been made tractable by the develop- 
ment of simple  model^.^-'^ This analytical work in 
combination with computer simulations I6-I9 sug- 
gests that proteins should be able to fold rapidly as 
long as there is a large energy difference between 
the folded state and other possible conformations. 
In particular, molecular dynamics and Monte 
Carlo simulations have demonstrated successful 
simulations of protein folding when the energy 
landscape has been suitably prepared, either 
through optimization of an energy function for a 
fixed sequence, l 3  or optimization of the sequence 
for a fixed energy f~nct ion .~’ -~~ In contrast, simu- 
lations have shown that successful folding to a con- 
sistent final structure is rather rare among random 
sequences, even among sequences with only one 
thermodynamically dominant state. 16,24-28 

This optimization approach takes advantage of 
the relative robustness of structure compared with 
the plasticity of sequences during evolution. Se- 
quences mutate, changing the interactions between 
the various residues, all in a way consistent with 
foldability of the structure. While on the folding 
time scale, it is the sequence that determines the 
structure; on the evolutionary time scale, it is the 
structure that determines the sequence, and thus 
the nature of the interactions between various parts 
of the protein. Evolution provides biology with a 
mechanism for optimizing the energy landscape of 
the protein, so as to facilitate folding. 

In this paper, we take advantage of this separa- 
tion in time scales and consider the folding proper- 
ties of various structures, assuming that the inter- 
residue interactions have long adapted to that par- 
ticular structure through sequence mutations, in 
the same way that electrons are considered to in- 
stantaneously adapt to the position of nuclei when 
analyzing nuclear motion in the Born-Oppenhei- 
mer approximation. By considering only these op- 
timized interactions, it is then possible to consider 
how easy it is to produce a foldable protein as a 
function of its structure. 

This assumption of optimized interactions is, of 
course, simplistic. There are many constraints on 
the ways that proteins can modulate the interac- 
tions between the various residues-for instance, 
due to the availability of only a limited number of 
possible amino acids, a limitation explicitly in- 

cluded in the Shakhnovich m ~ d e l . ~ ’ - ~ ~  Protein se- 
quences have to evolve to fulfill many functions, 
only one of which is the ability to fold; excessive 
native state stability may conflict with the mobility 
required for these functions. Finally, any finite mu- 
tation rate will decrease the ability of a protein to 
hold its interactions at an optimal level. Experi- 
mentally, the ease at which natural proteins can be 
mutated in order to increase their stability argues 
that biological proteins have not been so opti- 
mized, at least not for maximum ~tability.~’,~’ The 
presence of long-range multibody interactions, and 
extra degrees of freedom furnished by variations in 
side-chain positions, however, may actually give 
the proteins more flexibility in adjusting the in- 
teraction parameters than the simple model dis- 
cussed here. In addition, as Finkelstein has pointed 
out, small differences in the ability of various struc- 
tural motifs to have the favorable thermodynamics 
necessary for rapid folding can have a large effect 
on the likelihood that such structures would be 
found among biological  protein^.^',^^ 

This study considers short model proteins, 
where each residue is represented as a point con- 
fined to a two-dimensional or three-dimensional 
lattice. For such proteins, it is possible to do an ex- 
haustive enumeration of all compact conforma- 
t i o n ~ . ~ ~ - ~ ~  We use the methods developed by Wo- 
lynes and co-workers to independently optimize 
each conf~rmation.’~-’~ Different structures have, 
in general, different abilities to be optimized for 
folding. Structures are considered to be “good” or 
“bad” folders according to how well their interac- 
tions can be optimized. In contrast to what would 
be expected given a number of models of protein 
folding, 37-47 we find that the structures that can be 
best optimized for folding have many contacts that 
are unlikely in random structures. In the two-di- 
mensional lattice models, this results in a prefer- 
ence for long p-sheet structures compared to sheet 
structures with more numerous but shorter p- 
strands, and a preference for Greek-key and jelly- 
roll motifs compared to the p-meander. Interac- 
tions that are statistically positively correlated are 
less favorable for optimization than uncorrelated 
interactions. The optimization procedure naturally 
stabilizes structures that are similar in structure, in- 
creasing the basin of attraction of the folded state, 
possibly forming “folding funnels” as has been pro- 
posed based on other lattice model simulations.28 

METHODS 
Three different lattice models were used in this study. 
The first model consisted of a chain of 36 monomers, 
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confined to a 6 X 6 two-dimensional square lattice. The 
second model elaborated on the first model by consider- 
ing all compact rectangular shapes, including conforma- 
tions confined to 9 X 4, 12 X 3, and I8 X 2 square lattices, 
in addition to the 6 X 6 lattice. The third model consisted 
of a chain of 27 monomers, confined to a 3 X 3 X 3 three- 
dimensional cubic lattice. The bonds were all of unit 
length, with adjacent residues existing at adjacent sites. 
In all three cases, it is possible to enumerate all of the 
possible self-avoiding walks, not counting reflections and 
rotations: there are a total of 57,337 self-avoiding walks 
for the 6 X 6 square lattice, 133, I04 walks for the set of 
rectangular two-dimensional lattices, and 103,346 walks 
for the cubic lattice. 

The energy function is of the simple contact form: 

where 6, is equal to one if residues i and j are not adjacent 
in sequence but are on adjacent lattice sites, and zero oth- 
erwise, and yJJ represents the energy contribution for 
contact between residues i andj .  The values of { y,} are 
the adjustable parameters determined by the optimiza- 
tion process. 

Due to the nature of the lattice, the only contacts pos- 
sible are between odd and even residues, so the total 
number of possible contacts are 289 for the two-dimen- 
sional lattice and 156 for the three-dimensional cubic lat- 
tice. There are a total of 25 contacts in any conformation 
of the 6 X 6 two-dimensional square lattice, and 28 con- 
tacts for the 3 X 3 X 3 three-dimensional cubic lattice. As 
each conformation in these two particular lattices has the 
same number of contacts, and only relative energy 
differences matter, there are one fewer adjustable param- 
eters than possible contacts, i.e., 288 for the square lattice 
and 155 for the cubic lattice, and there is an adjustable 
parameter that determines the conformation of zero en- 
ergy. In the expanded two-dimensional lattice model, the 
number of contacts depends on the shape of the protein, 
so the number of adjustable parameters equals 289, the 
total number of possible contacts. In this case, all ener- 
gies are relative to an extended conformation where no 
contacts are made. 

Energy functions were optimized using the spin-glass 
optimization methodology developed by Wolynes and 
co-workers, I3-l5 based on the random-energy model of 
Demda,48,49 as applied to the protein-folding problem 
by Bryngelson and W ~ l y n e s . ~  In this model, there is a 
competition between two phase transitions, the first to 
an ordered state, representing the folded conformation, 
at a temperature T ,  and the second to a glassy state, rep- 
resenting unfoldability, at a temperature T,. The glassy 
state corresponds to the situation when the dynamics are 
dominated by the roughness ofthe energy landscape, due 
to a lack of thermally accessible transition states between 
minima. The optimal condition for folding is when the 
protein can fold at a temperature high with respect to the 
glass transition temperature. This leads to a measure of 

optimality for the energy function, as that energy func- 
tion that maximizes the ratio of Tf/ T,. 

Wolynes and co-workers showed that, for an energy 
function linear with respect to a set of adjustable param- 
eters, as is the case with the energy function represented 
in Eq. ( 1 ), the optimal values of these parameters can be 
solved for in closed form, as f o l l o ~ s . l ~ - ~ ~  In the random 
energy model, Tf/ T, is given by 

for R = A/ I', where I? is the width of the distribution of 
energy values in the ensemble of random states, A is the 
average energy difference between these states and the 
correctly folded state, and So is the configurational en- 
tropy ofthe protein. As Tff T,is a monotonically increas- 
ing function of R, Tf/ Tg will be maximized when R is 
maximized. For the Hamiltonian in Eq. ( 1 ), we can ex- 
press the energy of the protein in its native state by ET 
= C y,J;and in random state k by Ek = C yJJ6k,. A and 

r are then given by A = Ay and r2 = yBy, for vector A 
and matrix B,  with 

J < J  J<l 

where the averages are over the random states k .  Maxi- 
mization of Tff T, leads to: 

In general, 27-residue proteins with optimized in- 
teractions on the 3 X 3 X 3 cubic lattice folded readily in 
Monte Carlo simulations, often in as few as 100,000 time 
steps. Wolynes and co-workers showed the ability of this 
procedure to produce optimized energy functions for use 
in tertiary structure ~redic t ion . '~- '~  A discretized form of 
this optimization procedure was used by Shakhnovich 
and co-workers in order to produce sequences that would 
fold readily in Monte Carlo  calculation^.^^-^^ A criterion 
related to R was found by Chan and Dill and by Karplus 
and co-workers to distinguish random sequences that 
fold easily from those that do 

All of the compact structures are used to compute B 
and (6 fs )k .  Each of the compact structures in turn are 
used to compute A, and an optimal set of { y J J }  are found 
for each possible compact conformations using Eq. (5).  
The structures were judged by the resulting value of Ropl, 
the value of R calculated with the optimized set of { y,} . 

The true thermodynamic description would include 
all of the possible conformations; this is currently unfea- 
sable for even the short polymers used in this study. The 
use of compact conformations models the situation 
where all of the contact energies were large enough so 
that the extended conformations are thermodynamically 
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tions nor the relative optimizability of the various struc- I 

irrelevant. Use of a random ensemble of conformations (a) 0.3 I I 

I 

. ,  
generated by infinite-temperature Monte Carlo simula- 
tion confined to a moderately sized three-dimensional 
volume did not qualitatively change the optimal interac- 

tures. 

P o.2 1 i I 
RESULTS 

The resulting distributions of Ylopf values for the 0.1 - 

three lattice models are shown in Figure 1. 
A number of properties distinguish good struc- 

tures from poor structures. The best structures are 
those that have the maximum number of contacts 

shows the conformational entropy change ASo for 

0 ,  
that are unlikely in random structures. Figure 2 10 15 20 25 30 

R opt 

formation of the various native contacts in highly 
and poorly optimizable structures on the 6 X 6 
square lattice, where ASo is defined as the loga- 
rithm of the number of structures where that con- 
tact is made relative to the total number of struc- 
tures. As can be seen, proteins where the native 
contacts individually most decrease the conforma- 

ity. When the off-diagonal terms of B are small, yv 

(b) 0.3 

tional entropy have a higher degree of optimizabil- 

corresponding to native contacts is given by 

0.2- 

P 

( 6 )  

Smaller values of ( corresponding to infre- 
quent interactions and large negative values of 
AS,, cause larger interactions stabilizing the native 
state, resulting in a larger value of 3,. 

Figure 3 shows the change in conformational 
entropy of forming any given contact in the 6 X 6 

1 

( & $ > k  
Yr,"-- 

30 5 10 15 20 25 
R ,  

square lattice.33 In general, the most common in- 
teractions are between the residues closest in se- 
quence that can possibly interact, between i and i 
+ 3. These interactions are common in the poorly 
optimizable structures. In both the two-dimen- 

0.8 

P 

FIGURE 1 Distribution of values for the various 0.4- 
conformations of ( A )  a 36-residue protein confined to a 
two-dimensional 6 X 6 square lattice; (B) a 36-residue 
protein confined to a set of possible two-dimensional 
square lattices, including 6 X 6, 9 X 4, 12 X 3, and 18 

11 12 13 14 15 

R O P t  

X 2; and (C) a 27-residue protein confined to a 3 X 3 
X 3 three-dimensional cubic lattice. The highly and 

0, 
10 

poorly optimizable structures are shown in the figure. 
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- 1  I 

AS0 
FIGURE 2 Probability density [ P( AS,)] for a native 
contact to have conformational entropy change (AS,) 
for the best hundred (-) and worst hundred ( -  - -) 
structures on the 6 X 6 square lattice. The conforma- 
tional entropy change AS0 for a contact i j  is defined as 
AS, = In( Q , j / Q o ) ,  where Q, is the number of conforma- 
tions with contact i j ,  and 00 is the total number of con- 
formations. 

sional and the three-dimensional case, the most 
unlikely contacts do not correspond to the residues 
that are furthest from each other along the se- 
quence. In fact, the least likely contacts are be- 
tween residues 8 and 25 and between 12 and 29 for 
the 6 X 6 square lattice, and between residues 6 and 
13 and between 15 and 22 for the 3 X 3 X 3 cubic 
lattice. This is likely the result of confining the en- 
semble of random structures to compact confor- 
mations. If random conformations during in vitro 
folding followed random-flight statistics, the most 
unlikely contacts would be the long-range contacts, 
suggesting that in real proteins foldability would be 
increased by increasing the number of these long- 
range contacts. It is, however, not clear how valid 
random-flight statistics are for proteins in the de- 
natured state, especially under folding condi- 
t i o n ~ . ~ ~  

As shown in Figure IC, the most optimizable 
structure in the cubic lattice has an 1 1-residue a- 
helix. More study of larger three-dimensional lat- 
tice models would be necessary to see if the opti- 
mizability of this structure is due to the properties 
of the a-helix or due to the peculiar statistics of the 
possible compact conformations on the 3 X 3 X 3 
cubic lattice. On the other hand, interesting corre- 
lations can be made between the various square lat- 
tice conformations and the occurrences of various 
&sheet structures. For instance, all of the possible 

compact @-meanders in the extended two-dimen- 
sional square lattices are shown as examples (a)- 
(g) in Table I. In general, as the length of the p- 
strands gets larger, longer range contacts are made, 
and the optimizability of the structure increases. 
The @-hairpin motif [ example (g ) ]  is quite optimi- 
zable, even compared with other structures with a 
larger total number of contacts. It is also interesting 
to note the greater degree of optimizability of more 
complex @-sheet structures, such as the Greek-key 
motif [ example (h)]  and a reduced representation 
of the jelly-roll motif [ example ( i ) ]  . 

Positive statistical correlations between contacts 
in random conformations, represented by off-diag- 
onal terms in B,  reduce the significance of these 
contacts if they are both present in the native struc- 
ture. For instance, assuming the off-diagonal terms 
are small, yi i ,  the energy contribution due to the 
native contact between residues i andj  is given by 

As and B,,,,, are always positive, positive val- 
ues of Bu,,,, decrease the contribution of yU to sta- 

6 12 24 30 36 

FIGURE 3 Configurational entropy change AS, in 
forming a particular contact for proteins confined to a 6 
X 6 square lattice. White squares represent contacts that 
are not possible due to the nature of the lattice model. 
The darker the square the larger the entropy change in 
establishing that contact. The greatest entropy change is 
for contact between residues 8 and 25 and between resi- 
dues 12 and 29. 
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0.5- 

0.4- 

0.3- 

Table I List of Sopt Values for various 36-Residue 
&Strand Conformations Possible in the Extended 
Set of Square Lattices 

I 

a. 

b. 

C. 

d. 

e. 

f. 

g* 

h. 

1. 

Rapt = 12.01 

9.58 

nnn 

m 

11.09 

14.38 

16.13 

16.59 

18.17 

18.74 

19.09 

bility when the native state contains contact my1 

and A:,, = 1. Conversely, the presence of contacts 
in the native structure that are negatively corre- 
lated in random structures should cause an even 
greater degree of optimizability. Some contacts 
have to be highly correlated, due to the nature of 
the lattice model: the presence of an i - i + 5 con- 
tact increases the probability of an i + 1 - i + 4 
contact. It is the large number of these correlated 
contacts that cause the lack of optimizability of ex- 
ample (b)  compared with example (a),  even 
though the total number of contacts made in (b)  is 
larger. 

In contrast to these statistical correlations be- 
tween the various interactions that reduce optimi- 
zability, the optimization criterion induces corre- 
lations in the energy landscape, by stabilizing con- 
formations similar to the correct conformation. 
This can be seen in Figure 4, which shows the ener- 
gies of a number of such conformations relative to 
the overall distribution of energy levels, for interac- 
tions optimized for the most optimizable 6 X 6 
square lattice structure. 

These induced correlations can also be seen in 
plots of Pr( Q),  defined by 

where PT( k )  is the probability of the system being 
in conformation k ,  given as the Boltzmann proba- 
bility at temperature T ,  and Qk,! is the proportion 
of the contacts that are the same in structure k and 
1.10,'6 PT( Q )  measures the probability that two 
structures picked at random from an ensemble of 
such conformations will be structurally similar. 
Pq( Q )  is plotted in Figure 5 ,  for the 3 X 3 X 3 cubic 
lattice, computed at the temperature at which the 
probability of a structure being in the native con- 
formation is 0.5. A number of statistical tendencies 
are observable. The energy landscape becomes well 
correlated, causing a large value of P,,C Q )  between 
0.8 and 1 .O, relative to the case where interactions 
are chosen at random from a Gaussian distribu- 
tion. Although the optimization procedure as- 
sumes a luck of such correlations, the correlations 
so produced in the energy landscape could be im- 
portant in increasing the rate of folding by increas- 
ing the size of the basin of attraction of the folded 
state, as discussed by Onuchic and co-workers.28 
This effect is even more pronounced for the 6 X 6 
square lattice, as the more restrained nature of the 
lattice induces greater correlations in the energy 
landscape. 

P 

3 

E 

FIGURE 4 Distribution of energies of the various 
conformations on the 6 X 6 two-dimensional square lat- 
tices, for the set of { re} values optimized for the struc- 
ture shown at the left in the figure, the most optimizable 
conformation on the lattice. As shown, many similar 
structures are also stabilized by the optimization proce- 
dure. 
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0’3’ 

Q 
FIGURE 5 PT,( Q )  curves for the 100 best structures 
(-), 100 worst structures ( . . . ), and 100 structures 
with random y values (- . -), compared with the distri- 
bution of Q values for random pairs of proteins ( -  - -), 
for structures on the 3 X 3 X 3 three-dimensional cubic 
lattice. 

In addition to the increase in PT,(Q) for high 
values of Q,  there is also an increase in PTf( Q) for 
low values of Q, especially for highly optimizable 
structures. This reflects the fact that as sop, in- 
creases, as well as Tf, more states in the continuous 
distribution will be thermally accessible at the fold- 
ing temperature. The distribution of these lower Q 
values becomes closer to that for random pairs of 
structures. Again, it is the large number of ther- 
mally accessible states that would contribute to 
folding, as the protein has more routes accessible to 
escape from local minima in the energy landscape. 

DISCUSSION 

There have been a number of models of protein 
folding that have emphasized the building up of lo- 
cal  contact^.^^-^' These models often focus on the 
interactions that can be readily made and the cor- 
relations between these interactions, with an em- 
phasis on determining what generic features of 
polymers can be used to direct the folding process 
into a limited set of folding pathways. The present 
model in some ways represents the opposite ex- 
treme, where the evolutionary process is able to 
dominate the more generic polymeric features of 
the protein. The most optimizable structures are 
the ones with the largest number of interactions 
that are rare in random structures, presumably 

those that are nonlocal. In addition, the presence 
of strong, positive correlations between the various 
interactions, rather than assisting in the folding 
process, reduces the stabilization due to those in- 
teractions, leading to less optimizable structures. 

As discussed in the introduction, there are a 
number of reasons why this extreme limit of per- 
fectly optimized interactions is unrealistic. Even in 
the absence of total optimization, however, biolog- 
ical proteins are still likely to have highly optimiza- 
ble structures. Consider a fitness space, where the 
independent variables are the strengths of the vari- 
ous interactions, and the dependent variable is 
foldability, represented by the value of R. The op- 
timal values of the various interactions correspond 
to a fitness value of % = %op,, with any shift away 
from the optimal values corresponding to a de- 
crease in 3. We can consider that there is a critical 
value of R, %,,,, , below which proteins cannot fold 
in an adequate time scale. The question then arises: 
How large is the region of interaction space around 
a given optimal value where % > BCrit? If we ex- 
pand the value of % around % = %,, the volume 
of parameter space for % > Ylcrjl will scale as (%,, 
- %crjl)  to a large power, due to the large dimension 
of the parameter space. For biological proteins, 
where the adjustable parameters are the residues at 
each position in the chain, the dimension of the 
parameter space is on the order of the number of 
residues. This means that the neighborhood of in- 
teractions around higher values of %,, will be 
much larger than for lower values of 3,. Struc- 
tures with larger values of R,, will be more likely 
to originate from evolution, as well as to be more 
robust to the effect of mutations. The plasticity of 
sequences, the ability of the sequence to change 
while preserving the coarser aspects of the protein 
structure, may reflect the predominance of larger 
values of Bop, and the concomitant large range of 
interaction parameters preserving foldability. The 
importance of this effect will depend on the relative 
values of %op, and Rcrjt . 

The result that some structures might be more 
“designable” than others has been suggested by 
Dill and co-workers, 5 1 3 5 2  but is in conflict with the 
results of other work that found little correlation 
between structure and foldability.I6 This latter re- 
sult may be a consequence of the use of inappro- 
priate measures for monitoring the structural prop- 
erties of folding and nonfolding sequences, espe- 
cially given the few foldable sequences found. 

Despite the differences in emphasis between the 
local contact model and the optimized interaction 
model developed here, there are some structures, 
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such as long P-hairpins, Greek-key motifs, and 
jelly-roll structures, that are suggested by both 
models as well as being commonly observable in 
proteins of known s t r ~ c t u r e . ~ ~  In addition, differ- 
ent models may be relevant at different stages in 
the folding process. Initially, local structures, such 
as a-helices, can form due to local interactions, fol- 
lowed by an assembly of these structures into max- 
imally optimizable tertiary structures following the 
principles derived here. For instance, in cyto- 
chrome C, hydrogen-exchange studies suggest that 
the first tertiary contacts formed are between the 
two terminal a - h e l i ~ e s . ~ ~  This result, hard to un- 
derstand using the local interaction picture, would 
be quite predictable, as the interactions between 
the ends would be the strongest after optimization. 
It is also conceivable that understanding the fold- 
ing process of different proteins may require 
different considerations. For instance, large differ- 
ences are observed in the intermediate states seen 
in the folding of a-helical  protein^^^-^' and P-sheet 
proteins, 58 as detected using hydrogen-exchange 
measurements. 

Although the random-energy model that forms 
the basis for the optimization procedure neglects 
correlations between the energies of neighboring 
states, it would not be possible for the protein to 
avoid the Levinthal paradox if this were rigorously 
true: a high degree of correlation must exist in the 
energy landscape in order for the protein to be able 
to efficiently search the possible conformation 
space. While the optimized-interaction theory sug- 
gests that structures with highly correlated interac- 
tions are less optimizable than structures without 
such correlations, the energy surface will itself be- 
come correlated by such an optimization proce- 
dure; alternative states will also be stabilized to the 
extent that they contain interactions found also in 
the native state. Understanding these correlations 
may be central to understanding the folding pro- 
cess and may have important ramifications in the 
dynamics of protein folding. 
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