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A three-pool growth model of an individual Escherichia 
coli cell is described herein. The model is based on a 
previously developed chemically structured complex 
single cell growth model. The reduction in model com- 
plexity and the identification of the essential modes of 
motion, over the time scale of growth, is achieved by 
temporal decomposition and analysis of hierarchy in re- 
laxation times. The three-pool model faithfully simulates 
the changes in cell size, cell shape, cell macromolecular 
composition, DNA initiation and termination periods, and 
the dependence of cell growth under abiotic glucose limi- 
tation. The predictions mad$ by the reduced model com- 
pare favorably with both the experimental data and those 
of the full single cell model ISCM) without any parameter 
adjustments. The three-pool model has very few signifi- 
cant parameters and has the potential to find immediate 
practical use in bioreactor design and process control 
strategies. The model development illustrates the use 
of modal analysis to  yield reduced physiologically real- 
istic dynamic model of complex microbial system such as 
E. coli. 

INTRODUCTION 

A bacterial cell is a self-contained biochemical reactor 
which has the capacity to catalyze and regulate a series of 
complex reactions. The prokaryotic cell consists of struc- 
tured aggregates of macromolecules which in turn are made 
from the pools of precursors of lower molecular weight. The 
precursor pools are derivatives of glucose, or some other 
carbon source, and they are continuously replenished by 
biochemical syntheses. Accordingly, cellular growth is an 
incessant dynamic activity of more than 2000-3000 indi- 
vidual chemical reactions. These chemical reactions can be 
broadly categorized as biosynthetic, polymerization, and 
fueling reactions. 

The idea of describing such a complex cellular activity 
with a mathematical model is not new to researchers. Con- 
siderable theoretical work on modeling the growth of cells 
has already been carried out. A simple functional re- 
lationship between the specific growth rate and the substrate 
concentration was proposed by Monod in 1942 as being a 
hyperbolic Michaelis-Menten type of expression. Since the 
pioneering work of Monod, many researchers have tried to 
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explain the growth dynamics of different kinds of cells with 
varying degree of modeling constraints and limitations. Pol- 
lard and Yei~ley’.~ .described the synthetic processes of a 
bacterial cell using 5 and 7 differential equations. More 
rigorous attempt was made by Heinmets4 who modeled the 
cell using 19 differential equations to account for various 
transients processes. The model had the limitation of con- 
tinuous growth with arbitrary imposition of the criteria of 
cell division. Weinberg and Ziegler’ described the transient 
behavioral pattern of the nondividing cell. Davison6 mod- 
eled a dividing cell with 17 differential equation with no 
explicit accounting for the abiotic environment. All these 
models were either phenomenological or had limited ac- 
counting of the biochemical and physiological events during 
the cell growth. 

The major metabolic pathways are now well documented 
and they have been characterized in terms of stoichiometry 
and biochemical kinetics. This opens the possibility for 
developing physiologically realistic growth models which 
account for well documented biochemical events. Such 
modeling would incorporate some biochemical structure to 
explain the dynamic behavior of the cell. Various metabolic 
models have been proposed to simulate the environment - 
host-cell interaction based on the underlying chemical 
structure. 7-15 Researchers have also proposed genetically 
structured models that accounts for detailed structure and 
function of relatively small genomes as plasmids.’”’* It is 
evident that the introduction of the detailed chemical struc- 
ture will result in an enormously complex mathematical 
description. 

A comprehensive chemically structured model for the 
bacterium Escherichia coti has been formulated by Shuler 
and  colleague^"-'^ to describe growth under either carbon or 
nitrogen source limitation. The growth model under glucose 
limitation consists of a detailed description of 18 key me- 
tabolites and the criteria for DNA initiation, termination, 
and cell division and it contains over a 100 parameters 
which can be obtained from the literature or from objective 
heuristic rules. This detailed but still lumped single cell 
model (SCM) has made a noteworthy contribution to the 
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understanding of the cellular growth processes but may be 
too complex for routine practical applications, such as for 
efficient bioreactor design and direct on-line process control 
strategies. A balance between physiological reality and sim- 
plicity calls for reduction in the complexity of the mathe- 
matical description to develop a tractable model that is of 
practical utility. 

The SCM serves as a starting point for the development 
of a simplified but physiologically rational E .  coli growth 
model. The important task is to extract the dynamic essen- 
tials from the complex model that are necessary to describe 
the growth process itself. Conceptualization and model re- 
duction are two major difficulties encountered in the study 
of organizationally complex system such as the SCM. 19,’0 

We will show how both these difficulties can be overcome 
by a “modal decomposition” technique which has recently 
been shown to be useful to interpret biochemical kinet- 
i c ~ . ” - ~ ~  This approach is based on the analysis of internal 
mechanism of the system and the recognization of the exis- 
tence of multiple time scales in the metabolic network. 

We will demonstrate that modal decomposition naturally 
and logically reduces the dynamic order of the complex 
glucose-limited SCM to yield results that are consistent with 
physiological function. A three pool model description of E .  
coEi growth is developed which represents a compromise 
between the oversimplified Monod model and the SCM. 
The reduced model compares favorably with the full SCM 
and growth data. 

TEMPORAL DECOMPOSITION OF DYNAMIC 
MODELS 

Importance of intrinsic Time Scales for Model 
Simplification 

Each individual biochemical event (a chemical reaction, 
a transport process, etc.) that participates in the growth 
process proceeds with a characteristic time scale and contri- 
butes to the overall cellular response. Through interactions 
of the individual events, the integrated system exhibits 
motion on several time scales. These time constants are 
systemic properties and they are usually distributed over 
several orders of magnitudes. I9vz6 

From a practical point of view, one is interested in the 
metabolic response that overlaps with external process or 
observational time scales. 192026 Owing to the large dimen- 
sionality of the interconnected metabolic mesh, it is uneco- 
nomical and perhaps even impossible to represent the entire 
system model in detail. A large number of approaches have 
been used to resolve the problem of reducing the dimensions 
of the complex systems. This includes the heuristic method 
of lumping the parameters together, compartmentalizing 
various processes into one, representing a priori a series of 
first order systems as one black box, etc. 

The main challenge in analyzing such systems is to assess 
both the overall time constants and the dynamic interaction 
between the system variables. Modal analysis can provide 
this information, 19-23 

Modal Decomposition 

Behavioral patterns of biological systems are intrinsically 
nonlinear. Linear approximation, however, can give quali- 
tative information about the properties of nonlinear kinetic 
equations. The difficulty of analyzing the nonlinear dynamic 
characteristics can therefore be partially resolved by lineari- 
zing the set of kinetic equations at the expense of mathe- 
matical rigor. Linearization of the dynamic equation is 
achieved by expanding them into a Taylor series around a 
reference state as: 

d 
- (x) = f(x) = f(xJ + J(x - x,J + . . . (1) dt 

where x is an n X 1 vector of metabolite concentrations; 
f(x) is an n-dimensional nonlinear function which contains 
the reaction rate laws; and J is the Jacobian matrix of order 
n X n. The subscript ‘ref denotes the reference conditions. 
Each entry in J is determined by evaluating (df,/dr,) at the 
reference condition. The reference points may be the initial 
states, stationary states or any point along the nominal tra- 
jectory. The following information is obtained through lin- 
ear analysis. 

The Time Constants or the Relaxation Times 

The characteristic equation, det(J - AI) = 0, is solved 
for the eigenvalues A], Az, h3 , .  . . ,A,,. The negative recip- 
rocals of the eigenvalues are the time constants. Evaluation 
of the time constants gives the distribution of time scales 
inherent in the system. 

The hierarchy of intrinsic intracellular times can be repre- 
sented by time axis,zo.26 in Figure 1. Fast transients are char- 
acterized by the processes at the extreme left and slow 
transients at the extreme right. The process time scale, i.e., 
the time scale of interest can be represented by a window of 
observation on this time axis. The mechanisms which have 
the time constants faster than the observed window can be 
eliminated from the dynamic description as these mecha- 
nisms have reached a quasi steady state. However, the 
mechanisms which have the transients slower than the ob- 
served time exhibit high “inertia” and hardly move from 
their initial state. Hence, the fast and slow transients, as 
compared to the transients of the observed window of time 
scales, can be removed from the dynamic description of 
the system. However, the difficult task of elucidating how 
the metabolite concentrations move on these time scales 
still remains. 

The Dynamically Independent Modes 

The Jacobian matrix obtained from linearization can be 
diagonalized (there are some restrictions on this process, but 
are not of concern here) by the transformation J = MAM-I 
where the matrix A has the eigenvalues of J on the diagonal 
and M-’ and M are constant matrices comprised of the 
eigenrows and the eigenvectors respectively. A new realiza- 
tion m can be expressed as a linear combination of the state 
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Schematic illustration of system transients that overlap with the time span of obser- 

variables x as m = M-lx. The linearized system is trans- 
formed into a set of dynamically independent variables as 

dm 
dt 
_ -  - Am + M-IV(xn3 - Jxnfl 

or 

dm 
dt 
_ -  - Am + K; K = const. (3) 

The modal matrix M-' is defined by 

where ul, u2, u3,. . . ,un are the eigenrows of the system. 
The eigenrows are found by solving ui * (J - A i I )  = 0.  The 
new variables m are called modes. They can be expressed 
as: 

m = M-'x 
n + mi = ui - x = C uqxj 

j =  1 

= U i ' X 1  + u 1 z x 2  + U i J X 3  + . . . + U i n X ,  

where uij is the measure of the contribution of variable j in 
mode i. For instance, if an eigenrow has a dominant ele- 
ment, say uq, then mi = xj .  Under such conditions, xi is a 

decoupled dynamic variable and moves on a time scale 
given by A i .  

The modal matrix M-', therefore, maps the concentration 
variables onto the timescales and it tells us how various 
metabolites move on a particular time scale. The eigen- 
vectors are only specified with a multiplicative constant and 
can therefore can be scaled to our convenience. 

to 
give 

m(t) = m,gh + [ K e ( f - + ~ d . i  

Equation (3) can be integrated with m(t = 0) = 

= (m, + AdlK)eh - A-IK ( 5 )  

or 

mi(t)  = ae*+ f b (6) 
where a and b are appropriately defined constants. 

Equation (6) shows that the modes move independently of 
each other on timescales defined by the corresponding ei- 
genvalue. We can therefore think of the linear system speci- 
fied by the representation m as a set of n decoupled first 
order subsystems, i.e., each subsystem evolves in time inde- 
pendently of the others. This decomposition is important 
when it is desired to focus attention on some important 
subset of the modes, e.g., the fastest or the slowest ones. In 
such case we can reduce the dimension of the problem by 
ignoring the dynamics of the other modes.'9-23 
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THE STRUCTURED SINGLE-CELL MODEL OF 
ESCHERICHIA COLI 

Shuler and co-workersi’,’2 have developed a SCM for 
glucose-limited growth of the bacterium E .  coli. This model 
is a comprehensive description of the underlying biochem- 
istry and physiology of cellular events. The E. coli SCM 
visualizes the “whole cell” as an expanding biochemical 
reactor free to change its size and shape and to respond to 
the changes in the external glucose and ammonium concen- 
tration. The SCM has the capacity to predict the changes in 
cell morphology and cellular composition during growth. 
Within the framework of defined parameters, the cell size 
and shape, length of C and D phases, points of DNA initia- 
tion and termination, and response of the cell to changes 
in external glucose concentration are natural responses of 
the model. 

Model Structure and Assumptions 

The following comments are made with regard to the 
SCM: 

1) The model formulation is based on certain simplifying 
assumptions: internal reactions of the cell are not diffusion 
limited; mineral nutrients are in excess; waste accumulation 
is negligible in the cell; and the cell division results in two 
identical daughter cells. The mechanism for the control of 
DNA initiation proposed by Fralick and Messer and co- 
worker~”-~~ is incorporated in the cell model. The geometry 
of the cell is specified by assuming the cell to be cylindrical 
with hemispherical ends and the cell division results at the 
formation of two hemispherical ends at the cell’s center as 
cross 

2) Using the above assumptions, the complete model for 
the cell growth under glucose limitation accounts for 18 
metabolite concentrations which represent the inherent dy- 
namic structure of the underlying metabolism. Each equa- 
tion in this model corresponds to a dynamic mass balance on 
a given metabolite. The model equations are too compli- 
cated to justify a detailed listing here. Such a listing can be 
found in the original reference” though a brief description 
of the model is given in Figure 2. 

The entire model can be viewed as a dynamic intermed- 
iary metabolism that is coupled to ‘auxiliary’ descriptions 
related to cell morphology and decision making processes in 
the cell. The metabolism is considered to consist of three 
major parts: a) the catabolic reactions that provide the ATP 
and the reducing power needed for biosynthesis; b) the ana- 
bolic reactions that produce the building blocks needed for 
polymerization reactions; and c) the epigenic system that 
accounts for the synthesis of macromolecules - DNA, 
RNA, protein, and cell wall. 

3) Cell morphology and certain decision making events 
are explicit functions of the concentrations of macromole- 
cules present. A set of ‘auxiliary equations’ corresponds to 
the cell morphology, septum wall synthesis, and DNA- 
related events and are derived directly from the metabolic 
description. Such a topological structure of E.  coli growth 
is given in Figure 2. 

4) Intermediary metabolism and auxiliary description to- 
gether contain over 100 parameters. Justification and inde- 
pendent experimental determination of these parameters is 
exceedingly difficult and the complexity of the model ham- 
pers clear understanding of the sensitivity of the overall 
growth pattern to these parameters. 
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Figure 2. Topological structure of E. coli growth model 
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Rate Laws 

Each of the equation used in the SCM represents a mul- 
tiple saturation type of enzyme kinetic expression having 
three major factors: 
a maximum velocity factor, Vmi; 
a saturation factor 

for each reactant; and a regulatory factor 

In the above expressions Vm, is the maximum velocity 
factor; Kxi is the saturation constant; V is the volume of the 
cell; xi  is the mass of the metabolite i per cell; and x i /V  is 
the concentration of the metabolite i in the system. The rates 
depend on the substrate in the Michaelis-Menten fashion. 

The crucial problem in a model of such complexity is the 
determination of stoichiometric and kinetic parameters. 
Justification of the kinetic parameters provided by the 
a~thorsll-'~ show that these parameters could be obtained 
directly from the literature. Most of the saturation constants 
were obtained from general heuristic rules governing the 
relationship of saturation constants to normal intracellular 
concentration of the affecting metabolite. Typical frac- 
t ion~"- '~ used were 1/5, 1/7, 1/25, 1/90, 1/400, etc., with 
the fact that the definition of the normal intracellular con- 
centration is somewhat arbitrary. 

It is clear from above that most of the metabolite concen- 
trations are well in the saturation region of the used 

'Michaelis-Menten curves. Since the metabolite mass and 
the cell volume grow exponentially with time during the cell 
cycle, the metabolite concentration inside the cell do not 
change significantly during the growth process. As a result 
the lunetic expressions with the terms of the form ( x i / V ) /  
(Kxt + x i / V )  and Kxz/ (Kxz  + x i / V )  in the SCM are almost 
frozen to the initial value close to unity except under the 
transient situations when the abiotic substrate concentration 
is changed (stepped up or stepped down) and the cell takes 
a few generations of growth to achieve a new steady state 
growth rate. 

The Dynamic Mass Balances 

As an illustration of how the SCM is formulated we show 
the equations from the original model that describe the for- 
mation of cell envelope precursors and cell envelope con- 
stituents: 

where P4 is the amount (mass units per cell) of cell envelope 
precursors; M4 is the amount of nonprotein part of the cell 
envelope; P I  is the amount of amino acids; A2 is the amount 
of intracellular glucose; E2 and E3 are the amount of en- 
zymes involved in the septum wall formation and cell en- 
velope synthesis; and t is the time. The rate constants for the 
maximum rate of precursors and cell envelope synthesis are 
k4, p4, and Ki-M4; y4 is a stoichiometric coefficient; and Kp4,  
Kp4p , ,  K,,,,, KM4p4, KM,,, and KTM4A2 are "Michaelis" and 
inhibition constants. Values of Kp4 and K P d p ,  in the full SCM 
were estimated as a certain fraction of the normal intra- 
cellular values of P4 and P I .  

Two obvious questions arise: how can we resolve the de- 
gree of complexity of the SCM? Which of the kinetic 
parameters strongly affect the growth rate under multitude 
of growth conditions? As we will see, in the Reduced 
Model Description section, the model reduction process 
eliminates a bulk of the kinetic parameters and concentrates 
them into a significant few. 

SCM AND REDUCTION OF METABOLIC 
DYNAMICS 

The metabolic part of this model is a key to the dynamic 
description of cellular growth. As indicated above, the dy- 
namic description used is quite extensive but to make the 
model readily usable and implementable there is a consid- 
erable need to eliminate any model complexity which is not 
of interest for a particular modeling objective. Our attempt 
at model simplification is based on the comparison of intrin- 
sic relaxation times and the time span of cellular growth as 
detailed previously. The objective is to develop a simple 
tractable model for glucose limited E .  coli growth that ac- 
counts for macromolecule formation and satisfy glucose 
dissimilation requirements to meet ATP need for bio- 
synthesis. Concomitantly, the reduced model should predict 
cell size, shape, growth rates and overall composition with 
a few well characterized set of kinetic parameters. 

Development of a SCM Simulator 

A computer program that simulates the full SCM model 
was written using the EPISODE package as the differential 
equation solver.3o The program has the ability to change the 
step size to accommodate varying degree of stiffness in the 
equations. All predictions from this simulated model were 
compared with that of the published work"-'4 and were 
found in close agreement. The simulated model predicted 
the growth rates under the glucose limitations. 

The program was allowed to generate steady state growth 
patterns for a set of initial conditions whose output was a 
45-min doubling cell. This output was categorized as a set 
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of initial conditions for later use. The abiotic glucose con- 
centration was changed from the set of initial conditions and 
the program was allowed to run with this new external 
glucose concentration for several generations until the cell 
reached the steady state cycle of growth with a new doubling 
time. Thus several sets of initial condition of metabolite 
compositions were obtained along with their corresponding 
doubling times. These metabolite compositions were then 
used as reference conditions to initiate the modal decom- 
position process to reduce the complexity of the model. 

Comparison of Relaxation Times and Temporal 
Decomposition 

A careful investigation of the full model shows that only 
14 equations are dynamically independent. The concen- 
tration of the metabolite ppGpp is three orders of magnitude 
lower than the lowest initial concentration of precursors and 
low levels of ppGpp are maintained during the balanced 
growth of the ceIL3' Nevertheless, upon glucose and amino 
acid starvation, rapid synthesis and accumulation of ppGpp 
above basal level exert stringent control of RNA synthesis. 
Thus, the quick production of large amounts of ppGpp in 
response to glucose or amino acid starvation reduces the rate 
of synthesis of RNA, rate of synthesis of proteins and has an 
effect on the protein synthesizing system of the cell. This 
effect of ppGpp can be accounted implicitly by making the 
anabolic rate v, depend on external glucose concentration. 
Consequently, ppGpp was eliminated from the model. 

The time constants and the modal matrix of the full 
model for a newly born cell with a doubling time of 45 min 
was calculated using efficient computer codes, namely, 
EISPACK.32 The time constants for a newly born 45-min 
E .  coli cell and the contribution of modes to these relaxa- 
tion times is shown in Table I. The information displayed in 
this table reveals important dynamic interpretations of this 
model at the reference conditions. The inherent time con- 
stants in the system show that the metabolic transients can 
be divided into three time regimes. 

1) Transients faster than growth (of the order of seconds 
to minutes): The fast transients are associated with the reac- 
tions that adjust rapidly to the growth pattern. The transients 
due to these mechanisms relax very quickly and play an 

insignificant role in the system description in the realm of 
observable times of cell growth. These transients represent 
the low-molecular-weight metabolism and their significance 
has been elucidated earlier. 19,33 

2) Transients slower than growth (of the order of days): 
Mechanisms corresponding to these transients exceed the 
characteristic observation times of the process. The slowest 
dynamics in the model represent a slowly changing mass 
balance on the septation enzyme and glycogen and they are 
too slow to become significant over growth times. For all 
practical purposes, these dynamic balances can be assumed 
to befrozen in their initial states and can be subsequently 
eliminated from the system description. 

3 )  Growth dynamics and overlapping metabolic tran- 
sients (on the order of tens of minutes to an hour): These 
transients are comprised of three modes indicating that 
the essential dynamic order of the metabolic model is 
three; therefore a three-equation model should be sufficient 
to describe the metabolic transients that overlap with the 
dynamics of cellular growth. 

Growth Dynamics and Overlapping Metabolic 
Transients 

The first mode in Table I has a positive eigenvalue re- 
sulting in an exponential growth pattern. The relationship 
between the linearized growth time constant and the dou- 
bling time of the cell is given by the relation: 

(9) 
where tpwtb is the time constant of the unstable growth 
mode. The specific growth rate of the cell is given by the 
reciprocal of twwrh. This time constant gives an excellent 
prediction of the cycle time of the cell (note that this predic- 
tion is based only on the initial conditions specified for 
the cell and no full integration of the model equations is 
involved33). 

Table I shows that the proteins and amino acids move in 
a constant ratio on these times and are dynamically equiva- 
lent. Similar observations are made for the pools of cell 
envelope precursors and its constituents and ribonucleo- 
tides, deoxyribonucleotides and RNA. These metabolic 
pools are defined as 

Table I. Modal matrix of E .  coli for a 45-min. cell. The symbols used are (A,) ammonium ions, (A2) glucose, (PI) amino acids, (P2) ribonucleotides, 
(P,) deoxy ribonucleotides, (P4) cell envelope precursors, (MI) proteins, (M4) cell envelope constituents, (M5) glycogen, (Ed septation enzyme, (RNA,, 
RNAz, RNA,) different forms of RNA. The matrix represents the three essential growth modes of motion. Modes 2-9 are comprised of fast transients 
and are in a quasisteady state; modes 12 and 13 represents slow inertial transients. Interaction of P,  and M4 on the growth time scales are underlined 
and is discussed in the text as an example for model reduction (ref. 33). 

Mode Time 
no. constants A, A2 P I  pz p3 P4 MI M4 M5 E, RNAl RNA2 RNA? 

1 -0.95 h 0.5 0 0.1 -0.1 -0.1 1 0.1 1 .I 0 0.7 -0.1 -0.1 -0.1 

0.6 0.5 
2-9 <min 

h 0.2 0 0.1 0.5 0.5 -1 0.1 -1.1 -0.1 0 0.6 
1 1  0.5 0 0.3 -0.5 -0.5 1 0.5 1.1 0 2 -0.5 -0.5 -0.5 1°1 

12-13 > 1 0 h  
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pool - ribonucleotides, deoxyribonucleotides, and RNA; 
pool,-amino acid and protein; and 
pool3-Cell envelope precursors and cell envelope con- 

This implies that on the order of tens of minutes to hours, 
these three key metabolite pools represent the essential be- 
havior of E. coli metabolism during growth. Similar obser- 
vations are made when the modal matrices for the E. coli 
cells with cycling times of 0.84, 1.34, 2.18, and 2.78 h are 
calculated. One important point to note here is that the 
relative contribution of the metabolites to the pools is con- 
stant for all the cycle times though the relative contribution 
of pools to the modes may vary. Since we use the pools 
rather than the modes as our dynamic variables, the conclu- 
sions drawn from the modal matrix becomes independent of 
the reference states; clearly an important result. 

stituents. 

REDUCED MODEL DESCRIPTION 

The development of the reduced dynamic growth descrip- 
tion is presented in two steps. We first present the use of the 
information obtained through linear analysis. 

Linear Formalism -The Steady Growth Model 

Modal Reduction 

We will now use the coefficients in the modal matrix to 
combine the original differential equations into three equa- 
tions as prescribed by the linear analysis. To avoid too much 
detail we continue to use the dynamic mass balances on cell 
envelope precursors and constituents for illustration. Equa- 
tions (6) and (7) can be written in the most simplified form 
as: 

Since a takes the value a = 1.1 = y4, we get 

We can therefore combine P4 and M4 into a pool, P4 + 
1. lM4, which describes the motion of these metabolites on 
the growth time constant. This correspondence between the 
structure of the stoichiometric matrix and the modal matrix 
is the heart of the natural pool formation. Similar analysis 
is carried out for the pools of amino acids and protein, and 
ribonucleotides and RNA as indicated by the modal matrix. 

Linear Model 

Following the general procedure indicated above, a 
simple three pool growth description of E. coli metabolism 
can be formulated as shown in Figure 3. This model is a 
direct result of the analysis of the SCM according to the 
aforementioned guidelines. 

The dynamics of the three pools are described by: 

with the reaction rates: 

v,, = const. 

Y D N A  = v,,,,Nfo*s; 

The mass balance on glucose is given by: 

vmd = const. 

d 
- (Glu) = v,, - vCat - (v,,) ( V )  = 0 (17) dt 

The factors ap4,  aM,, and yM4 can be viewed as macroscopic 
constants obtained by combining the first-order reaction rate 
constants with the maximum saturation rate. As stated be- 
fore, this is possible for the cell in steady growth since the 
metabolite concentrations do not change much through the 
growth cycle and the concentrations stay in the saturation 
region. 

At this point we can use the modal matrix predictions. 
Over the time scale of observation, the eigenrow's weights 
for M4 and P4 appear in a constant ratio a : 1 in the three key 
modes (see Table I). Combining P4 and M4 as one metabo- 
lite pool, we can write the following dynamic description for 
this pool: 

dM4 d", (12) d 
dt dt dt 
-(P4 + &4) = ap,V - y4- + a- 

Glucose (external) 

vz n I 
Vcat 

catabolism . -  1 
Glucose (internal) 

('cell wall ('protein') ('nucleic acids') 
constituents') 

/ \  
septum cell wall 

Figure 3. Reduced growth model ofB. coli. Here Y,. is the total substrate 
uptake rate, Y., the catabolic rate, Y, the anabolic rate and vDNA the DNA 
synthesis rate; x , ,  x2,  andx, accounts for the fractional split of anabolic flux 
that contributes to the formation of the macromolecular pools. 
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The transient mass balance on glucose accounts for dissimi- 
lation requirements that provides ATP and the reducing 
power needed for biosynthesis, membrane energization and 
the transport reaction that drives the nutrients from external 
environment to the intracellular surroundings. The modal 
structure shows that glucose is a fast variable and hence the 
concentration of glucose is considered to be in a quasisteady 
state. 

The anabolic rate v,, determines the formation of the 
pools and x , ,  x2 ,  and x3 accounts for the fractional split of 
this rate into the corresponding fluxes for the growth of 
these physiologically significant pools (note that x1 + 
x2 + x3 = 1). The rates v,, and vCat are the total substrate 
uptake and catabolic rates and V is the volume of the grow- 
ing cell. The net rate of DNA synthesis is YDNA; vmd is the 
maximum rate of the production DNA; and Nforks is the total 
number of DNA forks growing in the cell. 

Auxiliary Decision Making Events 

As observed from the model topology, Figure 2, the dy- 
namics of cell morphology and the control of initiation of 
DNA synthesis are direct functions of the amount of macro- 
molecules present. The cell geometry and the mechanism 
for the control of DNA initiation are assumed to be the same 
as in the original model. 

1 )  DNA synthesis. A zeroth-order synthetic rate of 
DNA is assumed for this simple linear model. This assump- 
tion is justified by the fact that the DNA synthesis proceeds 
at a constant rate; except that this constant rate is function 
of number of forks that propagates during the course of cell 
division. 

The enzyme molecules 
catalyzing the cell wall and the septum wall formation are E2 
and E3, respectively. Their dynamics are related to the pro- 
tein pool as: 

2 )  Septumlcell wall synthesis. 

dE3 - = e3Poo12 
dt 

where e2 and e3 are kinetic constants. 
3 )  Cell division. The septum wall is synthesized after the 

termination of DNA synthesis. The cell divides when the 
septum wall formed matches the cell width (see Fig. 2 and 
the “Common Attributes of SCM and the Three-Pool 
Model”” section for details). 

This linear reduced model is dynamically equivalent to 
the full structured model over the time scale of growth. 
Since this reduced description is obtained through a linear 
analysis, the predictions of the transient mass balances are 
unable to show the response of the cell to changes in the 
external nutrient concentrations. However, the model pre- 
diction compares well with the full SCM for a specified 
external glucose concentration. 

Nonlinear Formalism -The Complete Model 

Essential nonlinear dynamics are exhibited by the struc- 
tured SCM when significant shifts in the external glucose 
concentrations occur. These effects are reflected by the fact 
that a few metabolite concentrations vary from their satura- 
tion region in a given rate law and temporarily take values 
that are on the order of K,,, values. The computer cells take 
ca. five to six generations to adjust their internal metabolite 
concentrations to new growth conditions. Once the cells are 
in a steady growth pattern they maintain a specific relation- 
ship between cell division, DNA termination and initiation 
of replication. 

The metabolic control signals that account for shifting 
growth pattern in the SCM are based on glucose concen- 
tration. These few but significant hyperbolic terms are readi- 
ly identified via model inspection. The mathematical form 
of the complete model is the same except that van, and VDNA 

take the following form: 

The full model equations for the metabolic dynamics and 
the associated cell morphology and decision making events 
of the bacterial growth are given in Tables I1 and 111. The 
parameter values, which are non adjustable, for the com- 
plete three-pool single cell model (TPSCM) are given in 
Table IV. This three pool reduced model and the full SCM 
show essentially identical growth patterns. In the “Three- 
Pool Model Predictions” section, we present a comparison 
of the predictions of the two models of physiologically im- 
portant features as the macromolecular compositions, cell 
morphology etc. There is an order of magnitude of reduction 
in the number of kinetic parameters to a significant few and 
that simplifies making a priori predictions of the transient 
behavior of cell growth. 

COMMON ATTRIBUTES OF SCM AND 
THE THREE-POOL MODEL 

The auxiliary cell machinery that couples with the meta- 
bolic growth description is envisaged to work as suggested 
in the literature. ‘‘-I4 We have not changed this auxiliary 
model description primarily for two reasons: 

1) the auxiliary decision making events are directly re- 
lated to the predictions of the metabolic part of the model 
and 

2) the description of cell geometry and DNA initiation 
are based on certain independent set of assumptions. Con- 
sequently, these attributes of the full SCM were incorpo- 
rated into the reduced three-pool description of the bacterial 
growth with appropriate justification. 
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Table XI. Three-pool single-cell model equations. The equations represents dynamic mass balance 
on each metabolite where V,. and Vd are the maximum anabolic and DNA synthesis rate and K ,  
and Kd are the corresponding saturation constants; Nf,, is the total number of forks in the DNA 
molecule; Glue, represents the extracellular glucose concentration; and Glu is the intracellular glucose 
mass. The surface area of the cell is represented by A ; ( P / O )  is the molecules of ATP synthesized 
per atom of oxygen consumed; M. is the maintenance energy term that includes the contribution due 
to membrane leakage, ion transport, and reducing power for biomass. 

Metabolic Dynamics 

Rate laws 

Metabolic energy requirements 

d d d d d d 
- ( A W  = BI;(POO~I) + BZ-(POOIJ + 73-(P00l3) + l?d-(DNA) dt + 7.- dt (V) (9) dt dt dt 

Redox requirements 

( 10) 
d d 
dt dt - (Me) = 7 . A  + qrnl pC.a - (V) 

Chemical Energy for Biosynthesis 

The principle carrier of biologically utilizable chemical 
energy is ATP and all the energy requiring processes in the 
bacterial cells are directly or indirectly coupled to the con- 
version of ATP to ADP and Pi. The cost of metabolic growth 
is obtained by adding the costs of starting biosynthetic ma- 
terial and the conversion cost of the coupling factors used in 
the b io~ynthes is .~ '~"~~~ Such a calculation serves as a basis of 
estimating ATP equivalents required in the synthesis of the 
metabolite pools. Such prices of the metabolic growth are 
given in Table V. 

The incomplete oxidation of glucose and the energy spill- 
ing mechanisms are incorporated as such from the original 
model. However, the requirements of ATP and the available 
reducing power for biosynthesis in our model are based on 
equivalent metabolite pools. The amount of ATP generated 
from substrate level phosphorylation and oxidative phos- 
phorylation is given by;U 

ATP = substrate level phosphorylation 

+ oxidative phosphorylation (20) 

- (maintenance energy) - (P /O)  (21) I 
The substrate level phosphorylation and the oxidative phos- 
phorylation rates are related to eqs. (7) and (8) in Table 11. 
Maintenance energy includes the contributions due to mem- 
brane leakage, ion transport, and reducing power for bio- 
mass. (P/O) is the number of molecules of ATP synthesized 
per oxygen atom consumed and z is the moles of acetate 
formed per mole of glucose dissimilated. The parameter 
values for calculation of these energy requirements are given 
in Table V. 

Growth of Cellular Geometry 

Since the reduced model also treats the cell as an expand- 
ing bioreactor, the volume of the cell and its geometrical 
dimensions are continuously varying with time. The cell is 
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Table 111. Associated cell morphology and decision making events of the cell. The constants for 
the cell and septum wall catalyzing enzymes are e, and e3; ARP and RP are the antirepressor and 
repressor proteins, respectively; and No is the number of origins for DNA replication. The surface area 
of the cell is given by A ;  V is the cell volume; W is the cell width; Sl is the septum length; and Se 
the septum wall formed. This description is directly taken from the SCM (ref. 12). 

Cell wall and seutum wall catalvzine enzvmes 

dE2 d - _  - e2- (Pool,) 
dt dt 

Decision making events - ARP and RP dynamics 

d d 
- (ARP) = kmp- (POOlg) 
dt dr 

k m  RP = k R p  No [km + [ ( d P C C d y ; I z  ( d P y d t ) , )  
~ 

Cell geometry 

A = rW2 -k TWL + 2rWLSl 

v = dTw3 + :W,L + f r w 2 s ~  - frsi3 

Se = 27rWSl 

d 
-(Se) = - 
dt (E, E,) (A) 

Table IV. 

Metabolic model parameters” 

Anabolism V ,  = 0.30g/mL/h K, = 2.5 X g/mL 
Flux fractions for x ,  = 0.2731 x2 = 0.6225 

xg = 1 - X I  - x, 

Parameter values and constants for the model equations. 

pool formation 

DNA 

Kc = 2.0 x g/mL g 
h cm2 

Glucose uptake v = 1.75 X lo-’- 

K2G = 7.8 x lO-’’(g/n~L)~ 
Auxiliary parameters 

Antirepressor protein 
ARP 

g PO013 
kmP = 2.0 X 

Repressor protein 

Enzymes 

k ,  = 3.1 X lo-’’ g 

e, = 3.2 X lo-’- 
gm Pool, 

k ,  = 0.25 g/mL 

Cell shape 
cmz 

= 2.86 x lo6- 
gm 

Acetate pz = 0.9 K, = 1.0 X g/h 

a There is an order of magnitude reduction in the number of these parameters as compared to SCM. 

Table V. 

Pool,, q1 0.0318 mol ATP/g 
Pwlz, 72 0.0415 mol ATP/g 
p“&, 7 3  0.0097 mol ATP/g 
DNA, q d  0.0071 mol ATP/g 
Unaccounted ATP, 7: 0.00633 mol/mL 
Membrane energization, q/ 
Transport of ions, qma 

Prices of metabolic growth. 

9.57 X lo-* mol/h cmz 
0.0282 mol/g cell 

These costs are taken from ref. 12 after proper corrections for pool sizes. 
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assumed to be cylindrical in shape with closed hemispheri- 
cal ends.” All the mathematical expressions for the cell 
volume, the surface area, and the cross wall (septum wall) 
follow straight from mensuration science (see Table 111). 
The volume of the cell is taken as the sum of the three 
metabolite pools divided by their corresponding den- 
sity. The surface area of the cell is expressed as the amount 
of cell area formed per mass of the cell envelope pool. The 
septum wall, which is synthesized after the DNA termi- 
nation, is taken as a certain fraction of the cell envelope 
synthesized. This fraction is determined by the amount 
of enzyme molecules E2 and E3 formed. These enzyme 
molecules catalyzing the septum and cell wall formation 
are expressed as a function of the protein pool (eq. (18) 
and (19)). 

Mechanism for DNA Initiation 

Manifestation of numerous mechanisms in the litera- 
t ~ r e ~ ” ~ ~  for the control of DNA initiation shows that the 
exact hypothesis for such a formulation is difficult to deter- 
mine. The SCM uses the observation of Fralick and Messer 
and  colleague^^^-^^. Since our primary effort is to replicate 
the full SCM with a minimal complexity in the form of 
postulated three pool model, we use the same formulation 
for DNA synthesis (see Table 111). Again the difference is 
that our model assumes dependency of this mechanism on 
simple macromolecule pools rather than the precursor- 
macromolecule relationship of the original model. The 
DNA synthesis is initiated when the antirepressor protein 
(ARP), which is continuously formed as a certain fraction of 
the cell envelope, exceeds the repressor protein (RP) made 
at DNA initiation. Like the SCM, our model assumes the 
continuous formation of ARP as a certain fraction of the cell 
envelope pool and the production of RP as a burst that is 
modulated by the protein pool synthesis rate. 

THREE-POOL MODEL PREDICTIONS AND ITS 
COMPARISON TO SCM AND EXPERIMENTS 

The aforementioned analysis and the development of the 
three pool model is aimed at answering two important ques- 
tions about bacterial growth: 

1) What determines the growth rate in a given medium? 
2) How does the cell regulate its growth under a variety 

of growth conditions and what are the important dynamic 
variables and parameters that regulate cellular growth? 
One of the obvious checks before any attempts are made to 
answer these questions is to first compare the quality of the 
three-pool model predictions with the full SCM. To test the 
validity of our model, several computer experiments were 
carried out using the parameters given in Table 111. The 
parameters obtained to predict the cell’s growth behavior are 
strictly according to the model reduction technique as de- 
scribed earlier. In the model reduction procedure, no adjust- 
ments of parameters are made to obtain a fit to the data and 
known predictions. 

Shifts between Growth Conditions 

Simulated response to nutritional changes can be carried 
out by changing the limiting substrate concentration (in our 
case glucose) of the external environment. The metabolic 
capabilities of the bacterium in response to such a shift is 
strong, and they are reflected in the quick adaptability of the 
bacterium to a new growth surrounding in only a few gen- 
erations. The validity of the three-pool model is confirmed 
by performing such downshift and upshift experiments. 

Response of the Model to Downshift in External 
Glucose Concentration 

The reduced TPSCM was allowed to run for several gen- 
erations for a 45 minute cell. Then the abiotic environment 
was suddenly decreased in a step down fashion from ex- 
ternal glucose concentration,,, to concentration, and the 
response of the model was observed over a number of gen- 
erations. The cell takes five to six generations to achieve a 
new steady-state growth rate (Fig. 4). This is in excellent 
comparison with the SCM predictions. A steady decrease in 
the growth was observed unlike the SCM which predicts a 
very long second generation of growth. 

Response of the Model to Upshift in External 
Glucose Concentration 

The computer simulations were performed again by step- 
ping up the external glucose concentration from concen- 
tration to concentration,. A steady increase in the growth 
rate was observed and the cell’s response was spread over a 
few generations to come back to its steady state growth rate 
(Fig. 4). 

Such predictions of the cell’s growth rate under varying 
growth conditions are in accord with the full SCM and the 

RESPONSE TO EXTERNAL GLUCOSE CONCENTRATION 
1.2 

1.1 

NUHER OF GENERATIONS 

Figure 4. Response of the model to changes in external glucose concen- 
tration. The external glucose concentration is stepped down from 1 X lo-’ 
to 4.4 x g/L. For stepup, the glucose concentration is changed from 
4.4 x to 1 x lo-) g/L. The computer cell takes a few generations to 
adjust to its new steady growth: (M) SCM predictions and (M) 
TPSCM predictions. 
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reported experimental trend in the literature. 31,39 Further- 
more, it reflects the inherent plasticity of the TPSCM to 
respond to such a shift and exhibit the non-linear behavioral 
characteristics of the cell. 

Growth Rate Dependence on Substrate 
Concentration 

Figure 5 shows the superimposed plots of the TPSCM 
model predictions to experimental data and those of the full 
SCM. Overall, the predicted TPSCM response tracks the 
experimental data and is, in particular, consistent with the 
response curve of the full SCM. The model's projected trend 
is in close agreement with the available experimental data on 
the growth rate.I3 With only a few kinetic parameters in the 
reduced model, the sensitivity of the overall growth mecha- 
nism to these parameters can be readily studied. 

Furthermore, an order of magnitude estimation for the 
specific growth rate can be made simply based on the initial 
conditions specified for the cell. This is achieved by calcu- 
lating the modal matrix and the hierarchy of the relaxation 
times. The unstable growth mode and the negative time 
constant predicts the approximate doubling time for the 
cell. The relation in eq. (9) is used to calculate the specific 
growth rate. Figure 6 show that the order of magnitude 
estimation of the doubling time and the growth rate obtained 
by complete simulation are in good agreement. 

Macromolecule Composition Profile during the 
Division Cycle 

Figure 7 shows the reduced model predictions for the 
macromolecule composition profiles through the cell cycle 
for the 45-min cell. The time axis is scaled to the total cycle 
time and the macromolecule compositions (pool size) are 
scaled to their initial value. It is observed that the pools grow 
exponentially with time and at the end of the division cycle, 

DEPENDENCEOFGROWTHRATEONEXTERNAL 
GLUCOSE CONCENTRATION 
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Figure 5. Dependence of growth rate on external glucose concentration: 
(0) experimental data (ref. 12), (M) the SCM model predictions, 
(U) reduced three pool model predictions. The growth dependence of 
external glucose is a natural response. of the model and is not fitted to the 
data. 
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Figure 6. Predicted doubling time as a function of external glucose 
concentration: (A) predicted time from unstable mode, and (13) simulated 
time. The predicted doubling time is calculated from the time constant 
predicted by the unstable mode and by using eq. (6) in the text. No full 
integration of the model equations is involved. 

the pool composition is doubled as expected. Similar obser- 
vations are made for cells with other cycle times. 

Cell Morphology 

The reduced TPSCM of E .  coli has the ability to predict 
the cell morphology over a variety of growth conditions for 
glucose limited growth. If the model's prediction of the 
macromolecule pool size is sufficiently accurate, the predic- 
tion of cell geometry is a natural consequence of the model. 
A representative plot, Figure 8, shows the variation of cell 
width during the division cycle. The model predicts that the 
cell width does vary during the division cyclea and the 
maximum deviation from the average width occurs when 
there is observable septum wall formation. No noticeable 
increase in the cell width is observed in the very beginning 
of the growth phase as predicted by the full SCM. However, 
the largest deviation of the cell width is observed for the 
slowest growing cells (with large doubling times) and this 
is in accord with the full model and the findings of Truebe 
and Woldringh 

Cell Composition 

About 95% of the dry weight of E .  coli and other micro- 
organisms consists of macromolecules. A typical analysis 
reflects that protein accounts for approximately 52% and 
nucleic acids for 19% of the cell's dry mass. The cell en- 
velope constituents accounts for 17-18% of the cell. Pro- 
tein, RNA, and DNA together account for ca. 80% of the 
dry weight of the cell. Figure 9 show the model prediction 
of how the relative amounts of these macromolecules vary 
with the growth rate. Jacobsen4' reported the dependence of 

JOSH1 AND PALSSON: E. COLl GROWTH DYNAMICS 113 



Figure 7. 
total doubling time and the y-axis is scaled to the pools' composition of freshly born cell. 

Relative macromolecular composition profile for the cycle time of 45 min cell. The x-axis is scaled to the 
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VARIATION OF CELL WIDTH DURING OIVISION CYCLE 
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Figure 8. Variation of cell width during the division cycle of the cell for 
0.95 h-'. The cell width slowly decreases and then steadily increases with 
the growth (A) SCM prediction and (u) TPSCM prediction. 

VARIATION OF CELL COMPOSITION WITH GROWTH RATE 

DNA 
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Figure 9. Variation of macromolecular composition with the growth rate. 
These prediction are for the E .  coli cells growing in a chemostat with 
glucose as a limiting nutrient; x ,  and x2 are the fractions of anabolic flux 
that accounts for the growth of physiologically significant macromolecular 
pools. 

protein, RNA and DNA content on the growth rate in a 
glucose-limited chemostat. The projected trend is in accord 
with this work. Both protein and DNA content fall with the 
increasing growth rate where as total RNA content increases 
with the increasing growth rate. 

Cell Energy Budget 

One of the effective tests of energyaccounting in the cell 
is the determination of growth yield. The formation of new 

material (net increase in cell mass) in the cell primarily 
depends upon the available energy for anabolism and the 
energy generated during catabolism. Growth yields, Yglu, are 
commonly expressed as grams of dry weight of cell per 
grams of substrate consumed (glucose is the substrate). An 
equation describing the relation between the growth yield 
and the specific growth rate has been derived by Pirt42; 

This relation expresses the fact that during the organism's 
growth, the consumption of substrate is divided between 
growth dependent and growth independent processes. 

Figure 10 shows a linear regression of the TPSCM predic- 
tions; which gives mglu = 0.25 and Yz;  = 0.47. These val- 
ues are very well in accord with SCM prediction of 0.21 g 
glucose/g cell h and 0.49 g cell/g glucose consumed and 
the reported yield data from Seniors.43 

DISCUSSION 

Biochemical regulation of biological processes are gener- 
ally characterized by large dimensionality, strong inter- 
action among the system variables and nonlinearity. It is 

GROWTH YIELD UNDER GLUCOSE LIMITATION 
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Figure 10. Double reciprocal plot of growth yiefd and specific growth 
rate. The SCM and TPSCM predictions are compared to the data for E. coli 
B/r-A (ref. 12). The solid line represents the TPSCM predictions: 
(M) represents SCM predictions. Parameter Yzr obtained from 
TPSCM is 0.47 as compared to 0.48 of SCM. Parameter mBlu for TPSCM 
is 0.251 as compared to 0.20 from SCM. 
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easy to realize that the successful application of a mathe- 
matical model of such complex system for the design, opera- 
tion, and optimization of a bioreactor greatly depends upon 
the mathematical tractability and accurate description of 
process reality. Furthermore, the model should contain a 
few significant parameters which can be either measured 
independently or estimated by an objective set of criteria. 
The TPSCM is simple enough for accurate predictions of 
E .  coli growth and it provides an opportunity for its employ- 
ment to study reactor scaleup and reactor configuration 
strategies to make optimum use of this microorganism. 

In this article, a biochemically based kinetic model of E .  
coli under the glucose limiting condition of growth has been 
examined and taken as a starting point for the development 
of a tractable but physiologically realistic growth model. 
The structure of SCM was analyzed using temporal decom- 
position and a study of relaxation time hierarchy. The re- 
duced three-pool single cell model and its structure has been 
determined based entirely on the information provided by 
the modal matrix and the inherent dynamic characteristics of 
the SCM. The model parameters postulated in the reduced 
model are derived from the parameters of the full SCM. 
TPSCM successfully and simultaneously predicts the mac- 
romolecular composition, cell size and shape, DNA initia- 
tion and termination points, and the growth rate and yield of 
the cell under glucose limitation. TPSCM predictions are 
essentially the same as those of the detailed SCM. 

Temporal decomposition results in an elegant dynamic 
interpretation of the biochemically based structured E.  coli 
model. The interaction between the low-molecular-weight 
precursors, Pi, and the macromolecules, Mi, lead to the 
formation of physiologically significant metabolic pools 
that are comprised of the macromolecules and their precur- 
sors. The quality and extent of the TPSCM predictions 
should not come as a surprise; the model accounts for only 
the important transients required for the description of 
growth and has been stripped of all unnecessary metabolic 
description. 

Since the model explicitly accounts for the three im- 
portant macromolecular pools, necessary details can be 
added to description of each of the pools depending on the 
particular application of the model, e.g., significant refine- 
ment can be made into the pool of nucleic acids to account 
for the plasmid replications. The model can be extended to 
describe cellular growth under nitrogen source limitations. 
Furthermore, because of the simplicity of the model, scaling 
techniques can be applied to this reduced model to extract 
essential dimensionless groups and property ratios that char- 
acterize growth dynamics; and the TPSCM therefore has the 
potential to become a generic bacterial growth model. 

The authors thank Professor M. L. Shuler for the critical reading of 
this manuscript and for his many valuable comments. 
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