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Tissue function is comprised of a complex interplay be- 
tween biological and physicochemical rate processes. 
The design of bioreactors for tissue engineering must 
account for these processes simultaneously in order to 
obtain a bioreactor that provides a uniform environment 
for tissue growth and development. In the present study 
we consider the effects of fluid flow and mass transfer 
on the growth of a tissue in a parallel-plate bioreactor 
configuration. The parenchymal cells grow on a pre- 
formed stromal (feeder) layer that secretes a growth fac- 
tor that stimulates parenchymal stem cell replication and 
differentiation. The biological dynamics are described by 
a unilineage model that describes the replication and dif- 
ferentiation of the tissue stem cell. The physicochemical 
rates are described by the Navier-Stokes and convective- 
diffusion equations. The model equations are solved by 
a finite element method. Two dimensionless groups gov- 
ern the behavior of the solution. One is the Graetz number 
(Gz) that describes the relative rates of convection and 
diffusion, and the other a new dimensionless ratio (desig- 
nated by P )  that describes the interplay of the growth 
factor production, diffusion, and stimulation. Four geom- 
etries (slab, gondola, diamond, and radial shapes) for the 
parallel-plate bioreactor are analyzed. The uniformity of 
cell growth is measured by a two-dimensional coefficient 
of variance. The concentration distribution of the stroma- 
derived growth factor was computed first based on fluid 
flow and bioreactor geometry. Then the concomitant cell 
density distribution was obtained by integrating the cal- 
culated growth factor concentration with the parenchy- 
mal cell growth and unilineage differentiation process. 
The spatiotemporal cell growth patterns in four different 
bioreactor configurations were investigated under a vari- 
ety of combinations of Gz (lo-', loo, and 10') 
and lo-', loo, lo', and lo2). The results indicate high 
cell density and uniformity can be achieved for parameter 
values of P = 0.01, . . . ,0.1 and Gz = 0.1, . . . ,1.0. 
Among the four geometries investigated the radial-flow- 
type bioreactor provides the most uniform environment 
in which parenchymal cells can grow and differentiate ex 
vivo due to  the absence of walls that are parallel to the 
flow paths creating slow flowing regions. 0 1996 John 
Wiley & Sons, Inc. 
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INTRODUCTION 

Growth of human tissues ex vivo for cellular therapy and 
tissue engineering is a burgeoning to pi^.^,^,^^,^^,^^,^^,^^,^^,^^ 
Bioreactors that accurately simulate the in vivo micro- 
and macroenvironment are needed for the cultivation 
of primary cells for basic scientific studies and for the 
production of a clinically meaningful number of cells for 
cellular therapy. Most types of primary tissue cultures 
contain cells that require attachment to a substratum 
for proper functioning. Single-pass perfusion systems 
composed of parallel plates have proven to be an appro- 
priate configuration for a number of applications. 

Several issues have been addressed using this bioreac- 
tor type. A number of flow chambers have been de- 
signed to investigate the effects of shear stress on 
cells'3,23,28,59 and for studying cell a d h e ~ i o n . ' , ~ , ~ ~ , ~ ~ , ~  
Parallel-plate flow chambers have also been utilized for 
the growth and maintenance of primary cell ex vivo 
for cellular therapy In spite of their 
extensive use, only a few studies have addressed the 
effects of the physicochemical rate processes that take 
place in such perfusion  chamber^.'^,^^ These analyses 
were based on two-dimensional Hele-Shaw fluid 
and the coupled mass transport of secreted or supplied 
compounds was evaluated by a two-dimensional mathe- 
matical model. In addition, quite a few two-dimensional 
heat transfer analyses of ducts have been reported in 
the l i t e r a t ~ r e . ~ ~  

Here, we show that, in thin parallel-plate flow cham- 
bers, the assumption that the bioreactor is uniform in 
the third spatial dimension is compromised by the fact 
that the concentration gradients that emanate from the 
side walls can exceed the hydrodynamic boundary 

and that this feature can lead to nonuniform 
cell growth. For any bioreactor design, the flow of me- 
dium and cells has t o  be bounded by walls. The wall 
not  only influences fluid flow in its vicinity but also 
affects the concentration distribution. Since the concen- 
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tration distribution of supplied or secreted proteins in- 
side bioreactors can be nonuniform, we may not be able 
to thoroughly understand the effect of either endoge- 
nously secreted or exogenously supplied protein on the 
cell culture by a simplified two-dimensional analysis. A 
complete analysis would have to take into account the 
three-dimensional shape effects on growth factor con- 
centration distribution, which in turn can influence cell 
growth kinetics and other cell behaviors. 

For cultivating many tissue types such as skin, bone 
marrow, or liver, stroma (or feeder layer) is impor- 
tant for sustaining long-term tissue c u l t ~ r e s . ' , ' ~ , ~ ~ , ~ ~ , ~ ~ ,  
35,37,41,4834y The effect of growth factors and/or chemotac- 
tic factors secreted by stromal cells, leading to recon- 
stitution of tissue function in ex vivo cultures, is thus 
expected to be significant. Therefore, the concentration 
distribution of secreted proteins may be prove to be 

numerical solutions 
& 

parametric sensitivities 

lated into mathematical descriptions. The numerical val- 
ues for the parameters appearing then need to be deter- 
mined. Key dimensionless property ratios are then 
formed to predict model behavior and to aid in the 
interpretation of the solutions obtained. The appro- 
priate numerical solution strategy is then implemented 
so that the solutions can be obtained. Order-of- 
magnitude analysis is then performed to formulate the 
key dimensionless parameter ratios that describe critical 
differences in overall behavior and to provide a frame- 
work for obtaining meaningful numerical solutions. The 
processes just described are outlined in Figure 1 and 
can be executed to obtain a spatiotemporal description 
of tissue dynamics in parallel-plate bioreactors. 
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Cell Development and Tissue Formation 
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a critical consideration in the design and- function of 
bioreactor systems for tissue engineering. As a model 
system for studying these effects, this article focuses on 
the concentration distribution of endogenously secreted 
growth factors by a preformed stromal layer on the 
growth and differentiation of parenchymal stem cells. 

Conceptual Mode, 

Proliferating tissues, such as bone mar- 
row,'1,17~h2 e p i d e r m i ~ , ' ~ . ~ ~ . ~ ~  and g ~ t ~ ~ . ~ ~ , ~ ~  are believed to 
Originate from tiSSUe-SpeCifiC Stem Cells. Recently, it has 
hen suggested that even quiescent tissues, such as 
l i ~ e r ~ ~ , " . ~ '  and neural harbor stem cells. Con- 
ceptual stem cell models, formulated based on extensive 
biological data, are thus used to describe the function MODEL DEVELOPMENT 
of many tissues. 

tics: first, stem cells are capable of self-renewal, i.e., 
undergoing symmetric divisions to maintain a germinal 

To an integrated description Of physicochemi- Stem cells are defined by two important characteris- cal and cell developmental dynamics, we need to first 
set up conceptual models that described the underlying 
processes (Fig' Such are based population; second, stem cells have the potential to gen- 
On a erate differentiated, often multilineage, progeny. The Of assumptions that need t' be explicitly 
stated' The then need to be trans- latter takes place either by an asymmetric division where 

Biological Process 
cell replication 

& 
lineage development 
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Convective-diffusion equations 
(with initial & h o u n d q  conditions) 

I 

one daughter cell is committed to differentiation while 
the other retains stem cell characteristics, or by a divi- 
sion where both of the daughter cells undergo differenti- 
ation.26 Therefore, the stem cells persist over time and 
retain the capability to generate parenchymal cells. The 
progeny of stem cells undergoes a series of differentia- 
tion and replication events to generate a large number 
of mature cells. 

Assumptions 

Unilineage differentiation models have been formu- 
lated to describe the differentiation process5.'7,53~6s,66.68 
(see Fig. 2). A kinetic description of a unilineage model 
is based upon the following assumptions: 

order-of-magnitude analysis 
& 

identification of key dimensionless groups 
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1. The process is viewed as a series of discrete stages 
through which the cells pass as they unidirectionally 
differentiate and proliferate. 

2. The stem cells are in the first compartment. Upon 
division, a stem cell may self-renew or differentiate.62 
The probability of self-renewal, j is between 0 and 
1. If differentiation occurs, the cell moves on to the 
next stage of differentiation; otherwise, it remains in 
the stem cell compartment. 

3. The Monod growth model33 will be used to describe 
the effects of a growth-factor-derived mitogenic stim- 
uli on the growth rate (p). Although Monod's model 
was originally used to describe microbial growth in 
response to a limiting nutrient concentration, this 
model has also been successfully used to describe the 
mitogenic effects of growth  factor^.'^ Furthermore, 
it can be used to fit many reported experimental 
data.'5,z7,32 Accordingly, the growth rate is de- 
scribed as 

where C, is the concentration of growth-limiting fac- 
tor, here taken to be stromally derived (see below); 
the maximal growth rate is pma, (=In 2/td, t d  = dou- 
bling time); and K, is the Monod constant at which 
cell growth reaches one-half of the maximum specific 
growth rate. 

4. Fully mature cells have a wide range of life spans. 
For instance, granulocytic cells have a life span that 
is less than 1 day, whereas erythrocytes have a life 
span of about 4 months.' Here, we assume that the 
fully mature cells do not die during the course of 
the ex vivo tissue growth that is being simulated. In 
addition, no cell death is assumed to take place in 
the intermediate compartments. 

Kinetic Model 

Based on these assumptions, a cell population balance 
on each compartment in Figure 2 leads to a set of dy- 
namic equations that describe the differentiation 
process: 

with the following initial conditions: 

(4) 

T = 0 M,, = M,Jo n = 1, 2, 3, 4 (6) 

where T is the dimensionless time which is pmaxt; M is 
the cell density; and 0 (=Cs/Co) is the dimensionless 
concentration of the secreted growth factor. The refer- 
ence concentration Co is defined below. 

We consider the case where the mitogenic stimulus is 
derived from a preformed layer of stromal cells. Stromal 
cells (or feeder layers) often are required to obtain tissue 
function ex vivo. Accessory cells are known to play a 
critical support role in tissue f ~ n c t i o n . ~ ~ ~ ~ ~  The secretion 
of the growth factor is then described by 

ac D- = - K  
an (7) 

where K is a product of the per-cell growth factor secre- 
tion rate and the surface stromal cell density. This sys- 
tem of ordinary differential equations can be integrated 
to determine the cell distribution at the various stages 
of differentiation as functions of time and the kinetic 
parameters of the model. It should be pointed out that 
if the growth factors are either consumed or degraded, 
then the mathematical expression for the flux balance 
on the cell bed needs to be modified from Equation (7) 
to account for these processes. 

Model Parameters and Their Estimated 
Numerical Values 

The parameters appearing in the unilineage model are 
pman f ,  and K,. The apparent regeneration time for bone 
marrow in vivo is about 2 and this is closely 
approximated in perfusion-based bioreactor sys- 
t e m ~ . ~ ' ~ ~ '  For human epidermal keratinocytes, the aver- 
age doubling time is about 1 day.48,49 Thus the maximal 
growth rates pmax are 0.35 day-' and 0.69 day-' for 
hematopoietic cells and keratinocytes, respectively. Un- 
der steady-state in vivo conditions, fmust be 0.5. How- 
ever, if expansion of stem cells takes place, fexceeds $. 
Here, we use 0.6 to simulate an expanding stem cell 
population. The values of K, fall into the range of 0.05 
to 5.0 ng/mL.'s~27~32 

Initial conditions must be assigned. We will use initial 
conditions that simulate the self-renewal, growth, and 
differentiation of stem cells that are present at the begin- 
ning of the culture. Thus, initially all cell compartments 
are assumed to be empty except for the first one. Thc 
value of the secretion rate K can be obtained by direct 
measurement of a particular protein of interest from a 
known number of cells. Alternatively, its value can be 
obtained from the stromal cell density and the estimated 
maximal achievable secretion rate per cell. The latter 
has been estimated to be on the order of 2000-8000 
molecules/cell/s.51 Stromal cells may not be secreting at 
this maximum rate, and this numerical value should be 
considered as an upper bound on this parameter. 
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Bioreactor Geometry and 
Physicochemical Processes 

Conceptual Model 

The growth of stem cells on a performed feeder layer 
(or stromal layer) in bioreactors of four basic geometries 
will be considered. Geometries of four representative 
parallel-plate flow chambers and their coordinate sys- 
tems are shown in Figure 3a. These geometries represent 
the shapes of various chambers that have appeared in 
the l i t e r a t ~ r e . ' . ~ ~ ~ ~ ~ ~ ~ "  The depth of all chambers was 
considered to be the same and was set at 0.3 cm. By 

I 

Slab bioreactor Diamond bioreactor 

Gondola bioreactor Radial bioreactor 

Figure 3. 
coordinate systems. 

(a) Four different parallel-plate Flow chambers and their 

Slab I Diamond 

-It=- + 4cm-4 

I 0.4 cm L 
1 cm 

T 

0.4 cm 

Gondola 

@ 0.6 cm 

Radial 

Figure 3. (b) The detailed dimensions of the flow chambers of Figure 
3(a) seen through top-viewing. The configuration is essentially based 
on an aspect ratio of 3 to 2 (length = 6 cm, width = 4 cm). 

top-viewing, Figure 3b provides the detailed dimensions 
of these four chambers. The configuration is essentially 
based on an aspect ratio of 3 to 2 (length 6 cm, width 
4 cm). The slab chamber utilizing a manifold distributor 
to supply medium has a volume of 7.2 cm3; diamond- 
and gondola-constructed chambers, based on the aspect 
ratio 1.5, have volumes of 4.0 cm3 and 6.1 cm3, respec- 
tively. Fluid enters at the left end and exits from the 
right end of the three bioreactors (slab, diamond, and 
gondola). The radial-flow chamber with inner and outer 
radii 0.3 cm and 6 cm has a volume of 33.8 cm3. Fluid 
enters at the bottom of the hole and exits from the 
periphery. It should be noted that we tried basically to 
maintain the same axis length for these four bioreactors 
(i.e., 6 cm). Therefore, the volumes of these four biore- 
actors are different. However, the residence time V/Q 
(volume divided by flow rate) is maintained by changing 
the flow rate Q. Thus, the inlet velocities of these biore- 
actors are different (see Table I), while the Graetz num- 
ber (defined below) is the same. 

Governing Equations 

The origin of the coordinate system (see Fig. 3a) chosen 
is at the center of the duct (for a radial-flow chamber, 
the origin is chosen at the bottom center). The cells 
are located on the bottom wall of the chambers. The 
application of appropriate symmetry conditions at the 
cross-sectional center line permits the restriction of the 
solution to the left half of the duct chambers. For the 
radial-flow chamber, we take one-quarter of the flow 
domain for the analysis (Fig. 3a). 

The governing equations are the equation of continu- 
ity, the Navier-Stokes equation, and the convective- 
diffusion equation, depicted here in a vector format as 

v - u = o  (8) 

(9) 

(10) 

At inlet: C = O  u = u ,  (11) 

(12) 

u = o  (13) 

u = o  (14) 

1 
P 

ur + u ' v u  = --vp + v v2u 

C, + u ' VC = D V2C 

The boundary conditions are: 

ac 

ac 
an 

At bottom wall: D- = -K u = 0 
an 

At top wall: D-=O 

D-=O ac At side wall: 
an 

ac 
an uy = u, = 0 (15) 

Equation (11) states that the medium flowing into the 
bioreactor does not contain the compound of interest 

At symmetry: D-=O 
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Table I. Parameters of inlet velocity profile for different bioreactors. 

a b C d 

Slab 5.0 X lo-' -1.25 X -2.22 x 10-3 5.56 x 10-4 
Diamond 2.75 x 10-4 -6.88 X -1.22 x 10-2 0.31 
Go n d o 1 a 4.25 x 10-4 -1.06 X -1.88 X 0.47 

The inlet flow velocity profile is assigned as the shape of parabola. The mathematical 
formula used is u, = a + by2 + cz2 + dy2z2 (u,  = u, = 0 in the inlet). The parameters a, 
b, c, and d are calculated based on Gz of unity. 

and the only velocity component is u,. Equation (12) 
represents the mass flux of the secreted growth factor 
from the feeder layer located on the bottom wall. No 
slip fluid is assumed at the bottom wall. Equations (13) 
and (14) state that the top wall and left side wall are 
impervious to cytokines and no slip boundary condition. 
Equation (15) gives the symmetry condition at the cross- 
sectional center lines. Finally, at the outflow boundary 
where the fluid leaves the calculation domain, neither 
the value nor the flux of concentration is known. This 
outflow boundary condition is considered as a free 
boundary c ~ n d i t i o n . ' ~ , ~ ~  The boundary conditions men- 
tioned above are for slab, diamond, and gondola con- 
figurations. 

For the radial-flow reactor, Equations (12) and (13) 
remain the same, but Equations (11) and (14) are 
changed to 

At inlet: C = 0  u=u, (16) 

aC At cyclic plane: D- = 0 u,=0 (17) 
dn 

Equation (17) describes the symmetry condition for con- 
centration and the normal velocity is zero for two cyclic 
planes. Equation (15) is not necessary for this configu- 
ration. 

Assumptions 

Standard assumptions are used here. The flow is as- 
sumed to be fully developed, steady, and laminar with 
constant fluid properties. For the velocity profile to be 
fully developed, the entrance length for the flow must 
be small compared to the total length of the bioreactor, 
where the entrance length L, was estimated asz8 

L, = 0.05 . H * Re 

For our maximum Reynolds number of lo-' and H = 

0.3 cm, the entrance length was negligible (the length 
of the bioreactor used is 6 cm). 

(18) 

Dimensional Analysis and Formulation of Key 
Dimensionless Groups 

There are two relative property ratios that are of key 
concern. One deals with the distribution of the secreted 

protein over the flow domain, while the second measures 
the importance of the local growth factor concentration. 

The first one is the Graetz (Gz) number. It is defined 
as the ratio of diffusional time (@/D) to transit time 

Gz=- -  @/D - diffusional time 

It measures the relative time of lateral diffusion to the 
convective transit time through the perfusion chamber. 
If the Graetz number is small, diffusional time is slow, 
relative to the transit time, and the local growth factor 
concentration can build up over time. Conversely, when 
the Graetz number is larger, the secreted factor is effi- 
ciently swept out by the fluid flow and the local growth 
factor concentrations are lowered. At  a Graetz number 
of unity, the two processes are approximately in balance. 
Knowing Gz, H, D, and, V one can calculate volume 
flow rates ( Q )  for a desired Graetz number and the 
corresponding entrance velocities for the four biore- 
actors. 

The local growth factor concentration determines the 
strength of the mitogenic stimulus. The appropriate ref- 
erence scale for the local growth factor concentration 
(C,)  can be obtained by making the growth factor secre- 
tion boundary condition dimensionless. By introducing 
dimensionless concentration and depth variables, C = 
COO and n = H<, into Equation (12), we obtain 

(VIQ) 

(19) V/Q transit time 

Let (DCo) / (HK)  = 1; thus the concentration reference 
scale is defined as 

where H represents the depth of the chambers. The 
reference concentration is a product of the volumetric 
growth factor secretion rate ( K I H )  and the diffusional 
response time (@/D ). The second key dimensionless 
number is then 

P = KJC, = K,D/HK 

which represents the interplay of the growth factor pro- 
duction (KIH),  diffusion (@ID), and stimulation (Ks) .  

(22) 
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Numerical Values 

The diffusion coefficients for secreted protein can be 
estimated from the Stokes-Einstein equation or ob- 
tained from published data on protein diff~sion.~’ They 
are in the range of D = 5 X to 10 X cm2/s 
(we used 5 X cm2/s for this study). The fluid proper- 
ties (u = 0.007 cm’/s, p = 1.0 g/cm3) used are typical of 
those for growth medium at 37°C. The inlet flow velocity 
was calculated for a given Graetz number and described 
by a parabolic distribution. For example at Gz of unity, 
inlet velocity is formulated as u, = 9.97 X 10-4-l.ll X 
10-*r2 centimeters per second for radial flow chamber; 
but for the remaining three configurations it is u, = a 
+ by2 + cz2 + dy’z’ centimeters per second, where the 
parameters a, 6, c, and d are listed in Table I for each 
geometry. Here, we take the slab geometry as an exam- 
ple to illustrate the approach of inlet parabola velocity 
profile. First, 

1 X 7.2 cm3 X 5 . cm2/s Q = G z .  V .  D / P  = (0.3 cm)2 
= 4 x cm’/s. 

The maximal inlet velocity is then equal to 

1.5 * u = 1.5 . Q/(inlet cross section area) 

Then, the inlet parabola velocity can be expressed as 

5 x 10-5 
= 5 x 10-5 - 22 Y 2  

5 x 1 0 - 5  2 ’ cm/s 5 x 10-5 - 

0.152 22 + 22 X 0.15’ 

where 2 cm and 0.15 cm are the half of the width and 
depth of the inlet square hole. 

The numerical value of P can be estimated. Based on 
a growth factor production rate of 50-5000 molecules/ 
cell/s (5000 is in the middle range of 2000-8000 and 50 
is 1% of that) and cell density lo5 cells/cm2, the range 
of numerical values for K is 0.01 to 1 pM . (cm/s). Given 
H = 0.3 cm and D = 5 X cm2/s, we can esti- 
mate the reference concentration to be ( H K ) / D  = 6, 
. . . ,600 nM. With K, values in the range of 0.05 to 
5.0 ng/mL, the expected numerical values of P fall in 
the range of 5 X 10-6-0.1 for growth factors such as 
epidermal growth factor (EGF; MW = 6 kDa’) and 
granulocyte colony-stimulating factor (G-CSF; MW = 
19.6 kDa’). 

Numerical Methods 

Algorithm 

A finite element method program FIDAP’’ (FDI, ver- 
sion 7.02) was used to obtain the numerical solutions. 

This method transforms the governing equations into a 
system of nonlinear ordinary differential equations. To 
solve the nonlinear system of matrix equations, a segre- 
gated solution algorithm in FIDAP was selected which 
solves sequentially and separately for each active degree 
of freedom (i.e., velocity, pressure, and concentration). 
This method requires less disk storage compared to 
other solution algorithms available in FIDAP. When 
solving the equations, the maximum iterative number 
was set to 60 and the convergence tolerance for all 
freedoms was set to 0.001. A HP9000-730 workstation 
was used for these computations. The unilineage model 
system was readily solved using any standard numerical 
method that integrates a set of ordinary differential 
equations. For the computations presented here, the 
Runge-Kutta fourth-order method6 was used to inte- 
grate the differential equations. 

Mesh Generation 

The flow domain of each bioreactor (half part due to 
symmetry) was discretized into a large number of iso- 
parametric brick elements (shown as Fig. 4) with eight 
nodes by the preprocessor FI-GEN (Fluid Dynamics 
International Inc., Evanston, IL). The mesh was graded 
finely close to the side and bottom walls, where the 
most significant changes in the concentration occur. The 
numbers of nodes and elements utilized are listed in 
Table 11. In each element the concentration field was 
approximated by a function 

c = -&c, 
j =  1 

where +, is the trilinear basis function. Mesh optimiza- 
tion was achieved by testing the influence of mesh den- 
sity on the concentration distribution on the bottom 
wall. The convergence of the numerical solution was 
verified by mesh refinement. Finally, Matlab3’ (Math- 
works Inc., Natick, MA) was used for generating 
meshed surface plots of growth factor concentrations 
and cell densities. 

Measurement of Nonuniformity 

The overall nonuniformity can be estimated by the coef- 
ficient of variance. The coefficient of variance (A) is 
defined as the ratio of the standard deviation (u) to the 
mean (c). The smaller is the coefficient of variance, 
the more uniform is the microenvironment provided by 
the bioreactor. 

When considering the two-dimensional growth area, 
the standard deviation and mean are defined as 

It should be noted the value of u2 and c are normalized 
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Figure 4. Mesh-generated computational domains of the four bioreactor geometries. 

with the surface area (i.e., 
pendent of the surface area of bioreactors. 

dx dy) .  Thus, they are inde- 

RESULTS 

Motivating Experimental Observation 

We have consistently observed that bone marrow cul- 
tures carried out in parallel-plate bioreactors display a 
nonuniformity in growth close to side walls that are 
oriented parallel to the flow direction. Figure 5 shows 
how a higher cell density appears near the side walls of 
a diamond-shaped bioreactor after 7 days of cell culture. 
How is the pattern formed and what possible mechanism 
leads to its formation? Three possible mechanisms are 
(i) accelerated cell growth due to stroma-secreted 
growth factors that concentrate in the slower flowing 

regions near the side wall; (ii) directed cell migration 
induced by chemotaxis caused by buildup of chemoat- 
tractants near the side wall; and (iii) cell drift due to 
hydrodynamic shear stress. Since an insignificant frac- 
tion of the cells were detected in the effluent, we can 
conclude the hydrodynamic force is not stronger than 
the adhesive force to detach the hematopoietic cells 
away from the bottom surface. This conclusion is readily 
supported by order-of-magnitude ca l c~ la t ions .~~  In this 
study, we explore numerically the consequences of dif- 
ferential growth driven by stroma-derived cytokines. 

How Key Dimensionless Property 
Ratios Influence Concentration of 
Growth Factor on Cell Bed 

The computed concentration profiles for the secreted 
growth factor show that the local concentrations at the 
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Table 11. Numbers of nodes and elements utilized for four bioreactors. 

Nodal points Nodal points Nodal points Total 
in x-direction in y-direction in z-direction Total nodes elements 

Slab 27 21 9 5103 4160 
Diamond 27 19 9 4617 3744 
Gondola 33 17 9 5049 4096 
Radial 

Inlet region 11 11 9 3969 3360 
Radial region 16 20 9 3969 3360 

growth surface are unevenly distributed (Fig. 6). The 
high growth factor concentrations formed near the side 
wall are due to the slower fluid flow in this region that 
results from the no-slip condition caused by the side 
wall. Therefore, local nonuniformities in the concentra- 
tion of the growth factor at the bottom of three of the 
four bioreactor geometries considered are very promi- 
nent near the side wall. Conversely, the radial geometry 
which has no internal side wall does not exhibit this 
behavior. All four geometries do exhibit axial concen- 
tration gradients, which are influenced by the Graetz 
number. 

The concentration gradients in the x and y directions 
are shown in more detail in Figure 7 at various Graetz 
numbers (using 0.1, 1, and 10). Figure 7a presents the 
spanwise concentration gradient at halfway of down- 
stream (i.e., at x = 3 cm). The concentration profile 
extending from the side wall varies with the Graetz 
number. The concentration of secreted cytokine at the 
cell bed under slow flow (Gz = 0.1) is higher than under 
fast flow (Gz = 10.0). The uniformity of the concentra- 
tion profile is increased as the flow rate is increased. 

Figure 5. Photomicrographs of bone marrow cell distributions (day 
7) on the bottom of the diamond-shaped perfusion bioreactor. The 
pictures from top to bottom indicate the area from near the center 
bottom of the bioreactor to close to the side wall of the bioreactor. 
These demonstrate that cell density is higher near the bottom side 
wall. The hexagonal-shaped background is a shadow from a support 
mesh in the membrane used to separate the gas and liquid phases 
within the bioreactor. This bioreactor was operated under the condi- 
tion of Gz = 1.0. 

Figure 6. Concentration profiles on the bottom surface and corre- 
sponding A of four different bioreactor geometries with Gz = 1.0. 
Given H = 0.3 cm, D = 5 X lo-’ cm%, and K = 0.1 pM . (cmls), 
the reference concentration ( H W D )  is 60 nM. The dimensionless 
concentration can be converted into a dimensional unit through the 
reference concentration. 
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Figure 7. Representative concentration profiles of four bioreactors under Gz = 0.1, 10,  and 10.0: (a) spanwise concentration distribution at 
halfway of downstream; (b) axial concentration distribution at the bottom line of symmetrical plane As in Figure 6, the dimensionless 
concentration c m  be converted into a dimensional unit through the reference concentration 
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Again, the radial-type bioreactor gives the most uniform 
concentration distribution due to no internal side walls. 
Figure 7b shows the axial concentration profiles at the 
bottom line of the symmetrical plane for four different 
bioreactors which have nearly the same concentration 
gradients under different Gz numbers. 

The concentration gradients were a function of biore- 
actor geometry and the Graetz number. The concentra- 
tion gradients in the flow direction are influenced by 
the Gz number. The concentration gradients perpendic- 
ular to the flow are significant except for the radial 
geometry. The local concentrations in turn influence the 
cell growth and differentiation rates, and this influence 
is modulated by the P number. 

How Dimensionless Property Ratios Influence 
Growth Pattern 

The uneven distribution of the growth factor will induce 
nonuniform cell growth (Fig. 8). As with the local con- 
centrations of the growth factor, the overall cell density 
varies both in the x and y directions. Again cell growth 
in the radial geometry exhibits the most uniform pattern 
due to the absence of the side wall effect on the concen- 
tration distribution. 

The nonuniform growth will be influenced by both of 
the dimensionless property ratios. The spatiotemporal 
patterns of overall cell densities (the total cell number in 
the four compartments in Fig. 2) for the four bioreactors 
were computed for various values of P (=KsIC,) for 
the three Graetz numbers used above to determine the 
concentration distributions. The coefficient of variance 
varies strongly with the governing dimensionless groups 
(Fig. 9). 

The coefficient of variance is small for small values 
of P. Under these conditions the variation in growth 
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Figure 9. Coefficient of variance for the distributions of cell density 
in the four different bioreactor geometries as functions of P for three 
Gz numbers. 
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Figure 8. Distributions of cell density on the bottom and correspond- 
ing A of four bioreactors operated at T = 5.0, with P 7 1.0 and 
Gz 7 1.0. 

lower concentrations will exceed Ks and growth pro- 
ceeds at a maximal rate throughout the entire cell bed. 
The coefficient of variance increases as P approaches 
unity. There the local concentration of the growth factor 
is close to the Ks value, and variations around this condi- 
tion will lead to significant differences in growth rates. 
As P increased above unity, the coefficient of variation 
decreases again since the growth factor concentration 
is lower than Ks and little growth is observed through 
the entire cell growth surface. Although the coefficient 
of variance is similar for all reactor geometries, the 
radial-flow bioreactor generates the relatively uniform 
cell distribution among these four bioreactors. 

The average cell density ( M )  is given as Figure 10. 
Under the same conditions (Gz and P ) ,  the four geome- 
tries generate almost identical average cell density. The 
cell densities under low-Gz-number conditions are 
higher than they are under high-Gz-number conditions. 
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geometries as functions of P for three Gz numbers. 

Average cell density on the bottom of four bioreactor 

The reason is that, at a low Gz number (i.e., less than 
unity), the growth factor secreted from the feeder layer 
(i.e., stromal cells) diffuses faster than the convective 
flow can carry it away. Therefore the growth factor can 
accumulate more near the cell bed than it can under 
the conditions of a Gz number greater than unity. Figure 
9 reveals that, for P less than unity, the nonuniformity 
of cell distribution slightly increases with increasing Gz 
number. While, for P greater than unity, the nonunifor- 
mity of cell distribution decreases with increasing Gz 
number. 

Finally, a quantitative parameter plan diagram was 
generated to depict the effects of the two parameters Gz 
and P on cell growth and distribution within bioreactors 
(Fig. 11). In this figure, the uniformity of cell distribution 
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b 

Figure 11. Parameter plane illustrating the effects of Gz and P on 
(a) the uniformity of cell distribution and (b) average cell density 
within four bioreactor geometries. 

is defined as A < 0.2; the high average cell density is 
defined as M > 0.8 and low cell density as < 0.2. 
The radial-flow bioreactor provides more uniform cell 
distribution within a wide range of Gz and P. 

DISCUSSION AND CONCLUSION 

The function of living tissue involves an intricate inter- 
play between physicochemical and biological rate pro- 
cesses. The balance between these simultaneously oc- 
curring processes needs to be restored in ex vivo systems 
in order to obtain accurate simulation of tissue function. 
This requirement applies to bioreactors that are de- 
signed to reconstitute physiologic structure-function re- 
lationships accurately so that scientific studies are en- 
abled and production of clinical doses of cells for cellular 
therapies realized. 

Parallel-plate bioreactors of various geometries have 
been employed for these p ~ r p o s e s . ~ ~ ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ ~  We show 
here that previously published two-dimensional analy- 
ses of parallel-plate configurations are insufficient to 
describe cultures that have important trafficking of in- 
ternally produced protein, such as growth factors and 
chemo-attractants, that affect cellular replication and 
differentiation. The present study is focused on the con- 
centration distribution of stromally secreted growth fac- 
tor in four different geometries of parallel-plate bioreac- 
tors close to such side walls. The computational results 
(Fig. 6) show that a peak concentration for all bioreactor 
geometries (except radial shape) occurs in the bottom 
corners. Here the low medium-flow velocities provide 
for a lower rate of removal than at the center of the 
bioreactor where flow velocities are high. This flow- 
induced concentration difference leads to a diffusion 
process and an accompanying concentration boundary 
layer. Two key dimensionless quantities were found to 
govern the extent and uniformity of growth of a bed 
of parenchymal cells that develop on a growth factor 
secreting stromal layer. 

For steady flow at low Reynolds number in a slab 
bioreactor, velocity gradients exist near the side walls. 
These Hele-Shaw flows have a hydrodynamic boundary 
layer thickness near the side walls that is approximately 
the same as the depth of the bioreactor. In sharp con- 
trast, the thickness of the concentration boundary layer 
can be several-fold larger than the depth of the bioreac- 
tor.44 For the other two bioreactor geometries (diamond 
and gondola) that have one inlet and one outlet port, 
the existence of side walls and cross-sectional shape 
varying with longitudinal distance (x direction) makes 
the coefficient of variance for the concentration slightly 
larger than the value computed from slab geometry. 
Numerical results for the concentration distributions 
immediately over the cell bed in the different geometries 
(see Fig. 6) indicate that the radial-flow chamber has 
relatively more uniform concentration distributions 
than other configurations due to the absence of an inter- 
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nal side wall effect. In addition, due to axisymmetry, 
the radial-flow bioreactor can be analyzed as a two- 
dimensional problem which saves computational time. 

A unilineage model describing growth and differenti- 
ation was formulated. This model used a Monod-type 
kinetics for the stromally derived growth-stimulatory 
factor. The unilineage model combined with the convec- 
tive-diffusion description of the secreted growth factor 
predicts that a spatiotemporal cell growth pattern devel- 
ops in parallel-plate bioreactors (Fig. 8). The uneven 
growth pattern is less prominent as the key dimension- 
less quantity P (= KsIC,) is much smaller than unity. 
This uniformity in cell growth results from the fact that 
the growth rates are relatively insensitive to the concen- 
tration of the stromally derived factor. Uniformity in 
cell growth also was exhibited for large P (much greater 
than unity) since growth rates are low and few cells are 
produced. The nonuniformity in cellular growth rates 
is most prominent for values of P in the range of 0.1 to 
10 (see Fig. 9). Within this range, the specific growth 
rates vary strongly with distance from the side wall. 
Thus, the dimensionless parameter P is a critical factor 
for determining the uniformity of the spatiotemporal 
development of tissues. From available l i t e r a t ~ r e , ’ ~ ~ ’ ~ ~ ~ ~  
we estimated that the P values of endogenous growth 
factors are likely to be in the range of 0.01 to 1 and 
possibly much lower than 0.01. 

The Gz number controls the cell density in the biore- 
actor. Figure 10 shows that the higher cell density can 
be obtained at a low Gz number as compared to high 
Gz numbers. This difference is due to the fact that a 
low Gz numbers the growth factor secreted from the 
stromal layer diffuses faster than the convective flow 
can carry it away. Therefore the growth factor can 
accumulate into higher local concentrations near the 
cell bed than it can at high Gz numbers. 

The Gz number calculated above is based on endog- 
enously produced growth factors. Since the diffusion 
coefficient for small molecules, such as glucose and 
amino acids, is at least 10 times greater than that for 
proteins, the Gz for small molecules is correspondingly 
smaller. Therefore, sufficient nutrients supplied from 
the medium can be delivered to the cell bed before 
being washed out from the bioreactor. Similarly, under 
the same flow rate, the metabolic by-products (e.g., 
lactate) secreted from stroma cells can be carried 
away from the cell bed about 10 times faster than 
the secreted endogenous growth factors because the 
diffusion coefficient of lactate is 10 times higher than 
that of the growth factors. Thus, there should be little 
concern about nutrient limitation or waste accumula- 
tion even under conditions where uneven concentra- 
tions exists for endogenously produced growth fac- 
tors. 

There exists another potentially important conse- 
quence of an uneven distribution of stromally de- 
rived protein. Directed parenchymal cell motion can 

be induced by the concentration gradient of a stro- 
mally derived chemo-attractant. This phenomenon of 
concentration-gradient-driven cell motion is due to the 
well-known process of c h e m o t a x i ~ . ~ ~  Several cell types 
show the ability to move toward a high concentration 
of chemo-attractants. Some  report^^^,^^ have suggested 
that hematopoietic stem cells have the capability of be- 
ing induced to migrate by this process. Is the concentra- 
tion gradient near the side walls on the cell bed high 
enough to drive cells to migrate toward the walls? The 
estimation of the magnitude of the concentration gradi- 
ent emanating from the side wall suggests that the an- 
swer is yes.44 

Thus the consequences of uneven concentration 
distributions of stromally derived protein are twofold: 
uneven localized growth or directed motion of cells 
to particular locations. Of course both of these pro- 
cesses can occur simultaneously and can lead to non- 
uniform cell growth. In order to distinguish between 
these processes, an experimental study employing time 
lapse videography and image analysis would be re- 
quired. 

The present analysis represents a simplified case of a 
complex process. Although the results are conceptually 
useful, particularly in terms of the dimensionless 
groups identified and their subsequent value in order- 
of-magnitude estimations, there are several underlying 
assumptions in the current analysis of which one 
needs to be cognizant. The growing cell bed creates 
a “granular” characteristic of the surface. From a 
hydrodynamic standpoint this characteristic may influ- 
ence the exact applicability of the no-slip boundary 
conditions. Although the present model may not accu- 
rately account for this possible effect, such alterations 
are not expected to change the major conclusions 
reached herein. The biology considered and modeled 
may not account for all the complexities that occur 
in some biological systems. For instance, secreted 
protein may bind to extracellular matrix molecules. 
Further, high consumption rates of the secreted factors 
by the parenchymal cells will affect the concentration 
distributions. Such additional effects can readily be 
accounted for in the type of model developed here. 
Once known and characterized experimentally, these 
processes can be incorporated and their effects on 
overall bioreactor performance assessed. 

In summary, the focus of this study was to characterize 
the interplay between physicochemical dynamics and 
biological rate processes that take place in parallel-plate 
bioreactors that are used to grow complex tissue cul- 
tures. Specifically, the effects of stromally derived pro- 
tein on growth and differentiation of parenchymal cells 
were analyzed. The interplay of the participating dy- 
namics are very complicated and require an integrated 
model. The results show that for the biological situation 
considered, significant differences in the concentration 
endogenously secreted growth factors can occur near 
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side walls. This nonuniformity in turn can affect the 
growth and differentiation of parenchymal cells. The 
extent of heterogeneity in cellular growth is described 
by two dimensionless numbers: the well-known Graetz 
number and a new dimensionless quantity, called P. The 
effects caused by side walls can be eliminated by using 
a radial configuration. 

This work was supported by a grant from Aastrom Biosci- 
ences Inc., Ann Arbor, Michigan, and grant No. NAG9-652 
from NASA. 

NOMENCLATURE 

C 

C 
D 

Gz 
H 
K 
Ks 
L, 

G o  

f 

M 
M 
n 
P 
P 
Q 
Re 
r 

- 

td 
U 

V 
X 

V 

growth factor concentration ( M )  
reference concentration, =KH/D ( M )  
mean of concentration ( M )  
diffusivity coefficient (cm2/s) 
self-renewal probability 
Graetz number 
bioreactor depth (cm) 
growth factor secretion rate ( M  . cm/s) 
Monod constant ( M )  
entrance length (cm) 
cell density (number/cm2) 
average cell density (numbericm’) 
normal vector 
dimensionless group, = K,/C,, 
pressure (dyneicm’) 
volume flow rate (cm’/s) 
Reynolds number 
coordinate of radial bioreactor 
doubling time (day) 
velocity vector 
bioreactor volume (cm’) 
coordinate of bioreactor length 
coordinate of bioreactor width 

Greek Letters 

coordinate of bioreactor height 
trilinear basis function 
coefficient of variance 
cell growth rate (day-’) 
maximal growth rate (day-‘) 
kinematic viscosity (cm’is) 
dimensionless concentration 
density of medium (g/cm’) 
standard deviation 
dimensionless time 
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