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Abstracts 

Matrix elements of the Runge-Lenz vector A are presented for those linear combinations of 
degenerate hydrogenic functions often referred to as hybrid orbitals. The uncertainties in the 
components of A for each type of wave-function are related to the distribution of classical Kepler 
orbits corresponding to each function. Matrix elements of A with respect to radially nodeless Slater 
functions are presented, as these functions are often used as a basis set in atomic and molecular 
calculations. The properties of A for a piecewise Coulombic central field are discussed in relation to the 
description of penetrating orbits in the old quantum theory. Simultaneous eigenfunctions of A and the 
Hamiltonian cannot be chosen for the piecewise Coulombic field because of a discontinuity in the 
radial derivative of the potential energy. 

On presente des elements de la matrice representant le vecteur de Runge-Lenz A dans une base 
consistant d’orbitales hybridtes de fonctions hydrogtnoydes. Les mesures d’indttermination des 
composantes de A pour chaque type de fonction d’onde sont assocites a la distribution des orbites de 
Kepler classiques correspondant a chaque fonction. On prtsente aussi des elements de la matrice de A 
par rapport B des fonctions de Slater sans naeuds. Les proprittts de A pour un champ Coulombien 
central par morceaux sont discuttes par rapport a la description des orbites pht t rantes  dans la vieille 
thtorie quantique. I1 n’est pas possible de choisir des fonctions propres simultantes de A et du 
Hamiltonien, a cause d’une discontinuitt dans la dtrivte radiale de I’knergie potentielle. 

Matrixelemente des Runge-Lenz’schen Vektors A mit Rucksicht auf von entarteten Wasser- 
stoffunktionen konstruierte Hybridorbitale werden angegeben. Die Unbestimmtheiten in den Kom- 
ponenten von A fur jeden Typ von Wellenfunktionen sind mit der jeder Funktion entsprechenden 
Verteilung der klassischen Keplerbahnen verbunden. Matrixelemente von A werden auch mit 
Riicksicht auf knotenlose, radielle Slaterfunktionen angegeben. Die Eigenschaften von A fur ein 
stuckweise Coulombisches Zentralfeld werden in Bezug auf die Beschreibung von penetrierenden 
Bahnen in der alten Quantentheorie diskutiert. Gleichzeitige Eigenfunktionen von A und vom 
Hamiltonoperator konnen fur das stuckweise Coulombische Feld wegen einer Diskontinuitat in der 
radiellen Ableitung der potentiellen Energie nicht gewahlt werden. 

It has been known for some time that the “accidental” degeneracy associated 
with the nonrelativistic description of the bound states of hydrogenic atoms may 
be related [I, 21 to the invariance of the Hamiltonian with respect to the 
four-dimensional orthogonal symmetry group 04. Alternatively, the degeneracy 
may be related [l, 31 to the existence of a vector constant of motion in addition to 
the orbital angular momentum vector. This vector is called [4] the Runge-Lenz 
vector A and may be written [l-3]* as 

- 
A = 1/2{(p x L) - (L x p)}-Pr/r (1) 

* Several definitions of A exist which differ by multiplicative factors. We follow Englefield [2] ,  
whose A has dimensions of momentum. The A of Bander and Itzykson [l] has the same sign but 
dimensions of charge squared, while that of Pauli [3] is of opposite sign and dimensionless. 
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where p is the linear momentum operator, hL is the orbital angular momentum 
operator (h is Planck’s constant divided by 2 r ) ,  r is the electron radius vector, and 
P is a constant pZ e 2 / h  with the dimensions of momentum where p is the reduced 
mass, 2 is the atomic number, and e is the magnitude of electron charge. The 
constant P may also be written as Zh/aH,  in which aH = h2/p  e2 = ( m / p ) a o  where 
m is the electron mass and a.  is the Bohr radius for infinite nuclear mass. 
Classically, the vector A lies along the major axis of an elliptical orbit and has a 
magnitude equal to P times the eccentricity of the orbit. For the sign convention 
in Eq. (l), A points in the direction of the perihelion of the orbit. 

The Runge-Lenz vector has attracted considerable attention in recent years 
because of its usefulness in approximately describing [5-121 the dynamical 
symmetry in two-electron atoms. Specifically, configuration mixing coefficients 
for doubly excited states have been obtained [8-121 group-theoretically by 
considering a basis which is diagonal in the square of the difference of the 
Runge-Lenz vectors of the electrons and subject to conservation of parity and of 
orbital and spin angular momenta. Other applications have included the evalua- 
tion [13] of Coulomb integrals with respect to hydrogenic wave-functions and the 
determination [14] of a “hidden” constant of motion for the two-center Coulomb 
problem. Some developments in the analysis of the dynamical symmetries of 
classical systems included the demonstration [15,16] of the existence of a Runge- 
Lenz-type vector for all spherically symmetric single-particle potentials in three 
dimensions. 

The basic commutation relationships involving A, L, and the hydrogenic 
Hamiltonian X have been given by several authors [l-31 and are 

[Z, Ail=[%, Lj]=O 

A .  L = L *  A=O 

where the factor ejkl is the Levi-Civita tensor.” 
The vector A has been used to derive matrix elements of the position vector r 

without explicitly using radial wave-functions. The key result, obtained [2] by 
Englefield using a hypervirial relationship, is 

4pE,(nl(lrllnE’) = 3h(nlllAllnl’) ( 3 )  

in which the energy eigenvalues En are 

-/Az2e4 - -P2 En = - 
2h2n2 2pn2 (4) 

*The tensor ejk, equals zero if any two subscripts are equal, equals +1 if j k l  represents an even 
permutation of xyz ,  and equals -1 if jkl  represents an odd permutation of xyz .  
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The double bars in Eq. (3) denote reduced matrix elements related to matrix 
elements by the Wigner-Eckart theorem, which for complex components may be 
written 

where v is the vector coupling coefficient of Fano and Racah [ 171. Alternatively, 
the use of Griffith’s V coefficients [18] for real components yields 

in which the quantum numbers a, r, and Mr are analogous to n, I, and m, 
respectively. 

Since A commutes with the hydrogenic Hamiltonian, the matrix of A is 
diagonal in the principal quantum number n, and Eq. (3) cannot be used to obtain 
matrix elements of r between states of different n. The fact that matrix elements of 
A between states of the same n are simply proportional to those of r might make it 
seem that there is little use in discussing the former except as a route to the latter. 
However, as we shall show, it is the special property of A being diagonal in n 
which makes it useful for an analysis of the properties of hydrogenic hybrid 
orbitals. 

Pauli showed [3] that the eigenstates for a hydrogenic atom in a weak electric 
field may be chosen as simultaneous eigenstates of the components of A and L 
parallel to the field. For n = 2 these states are the pair of functions often described 
as digonal sp hybrids together with the pair of p functions with Ml = + 1. Choosing 
z as the field direction, these four functions are eigenstates of A,, but not of A, 
and A,, as the latter operators mix the digonal hybrids with 2p, and 2py functions, 
respectively. The operation of A, on the familiar real n = 2 functions gives 

A212s) = (~/2)l2P2) 

Az12P,)=0 

A, (2p, ) = 0 (7) 

with similar results for A, and A,. Thus, A, simply interchanges the functions 2s 
and 2p,. The reduced matrix element* (2s(lA1)2p) is 3l/*P/2. As given by Pauli, but 
using Englefield’s sign convention [2], the eigenvalues of A, are +P/2 for the 
digonal hybrids 2-’/2[12s)+ 12pz)] and zero for 2p+ and 2p- (or equivalently for 
2p, and 2py). In addition, each digonal hybrid is connected to 2px by a matrix 

* The positive sign for (nlllA/lnl‘) corresponds, using Eq. (3), to a negative sign for (n//lrllnl’). This 
implies a choice of radial phases such that the lobe closest to the nucleus has the same sign, say positive, 
for all states. Thus the outer lobe of 12s) is negative, making the density associated with the digonal 
hybrid 2-”2[)2s)+12p,)] point along the negative z axis. 
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element of A, equaling 8-’”P and to 2pY by a matrix element of A, equaling 
8- 1/2P. 

A trigonal set of sp2 functions for n = 2 may be defined by 

*I = 3-1/2[(2s)+21’212p,)] 

42 = 3-’~”~2s)-2-’~’~2p,)+(3/2)’/212p,)1 (8) 
+3 = 3-1’2[12~) - 2-I/’(2pX) - (3 /2)  ‘/’12p,)] 

In Table I we present the matrices of A,, A,, and A, with respect to the functions 
in Eq. (8) together with +4 = (2p,). The diagonal elements are the direction cosines 
of Eq. (8) multiplied by the constant 2l”P/3 and are components of the vector 
expectation value 

TABLE I. Matrix elementsa of Ain sp2 basisb for n = 2. 

*l *Z *3 94 

$1 (8/3)’/’ 6-’/Z 6 - w  0 
$2 6’’’ -(2/3)’/’ -(2/3)1/2 0 

94 0 0 0 0 

- 2-1/2 0 
0 0 

*l 0 

*4 0 0 0 0 

A, $3 6-112 -(2/3)‘/’ -(2 / 3) ‘ I 2  0 

2-1/2 

21/2 *2 2-1/2 
A, 14~ -2-1/2 0 -2‘12 0 

a In units of 1 2 - l ’ ~ ~ .  
Basis defined by Eq. (8) together with 4 1 ~  = 1 2 ~ ~ ) .  

where i, j, and k are unit vectors in the x, y, and z directions, respectively. Thus, as 
indicated by Eq. (3) ,  the expectation value of A lies antiparallel to the mean 
position of the charge density. The nonvanishing of Eq. (9) for the pair of digonal 
functions and for +kl, &, and J13 indicates that each of these hybrid functions 
corresponds to a set of classical elliptical orbits whose mean A value equals the 
expectation value. 

Similar properties hold for the set of four n = 2 sp‘ hybrid functions 
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TABLE 11. Matrix elementsa of A in sp3 basisb for 
n =2. 

$a 1 0 0 1 
$b -1  -1 0 

$d 0 0 1 

*a 1 0 1 0 
*b -1 0 -1 
*c 1 0 1 0 
$d -1 0 -1 

*a 1 1 0 0 
$b 1 0 0 
$c 0 0 -1 -1 
$d 0 0 -1 -1 

Ax *c 0 -1  - 1  0 

a Basis defined by Eq. (10). 
In units of ~ / 4 .  

The spread CT associated with the ith component of A is given by 

@’(Ail =z (+IAi2I+) - /(+IAi/+)/’ (1 1) 

For the sp2 hybrids in Eq. (S), 

Combining Eq. (12) with matrix elements of A in Table I yields: @(A,) values of 
P/6 for 9, and (5/72)’12P for ~ + b ~  and +b3; @(Ay)  values of 12-’”P for +1 and 6-’”P 
for +z and (lr3; and @(A,) values of 12-’12P for +i, where i = 1-3. The smallest of 
these values is @(A,) for +1, indicating simply that the orientation of the function 
in Eq. (8) with respect to the Cartesian axes places 4, along the x axis. The 
functions +1, qZ, and q3 are equivalent by symmetry and must have identical 
properties. However, it is significant that @(A,) and @(A,) for +hl are each larger 
by a factor of 3l” than @(A,) for G l ,  indicating that +1 is closer to being an 
eigenfunction of A, than of A, or A,. Since it can easily be shown from the 
“interchange”pr0perties in Eq. (7) that any superposition of s and p functions for 
n = 2 is an eigenfunction of the square of the component of A parallel to the 
direction of the mean charge density, it follows that +1 is an eigenfunction of A:, 
although not of A,. 
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By contrast, the sp hybrids, which are eigenfunctions of A,, are characterized 
by cr(A,) = 0 and cr(A,) = @(A,) = 8-'I2P. The latter follows from the fact that the 
mean values of A$ and A y' are P2/8  while the mean values of A, and A, are zero. 
Thus, the hybrids 2-1/2[12s) f 12p,)] correspond to sets of elliptical orbits having 
A, = *P/2, respectively, but with a spread of A, and A, values. Specifically, the 
magnitude of A, for these hybrids is 2-'/2 times that of A itself, as it is for an 
elliptical orbit of any orientation that places the major axis at an angle of 45" to the 
z axis. If, in addition, the plane of the orbit contains the z axis, then L, is zero and 
the correspondence is even closer. 

For each of the four sp2 hybrid n = 2 functions in Eq. (10) 

( + I A h )  = (+/A;/+)  = (+/A:/+) = P2/8 

l(+lAxl+)l= l(+lAyl+)l = I(+lAz/$)I = p/4 

@(A,) =@(A,) = a(A,) = P/4 

(13) 

(14) 

(15) 

and 

so that 

meaning that the spread in each component of A equals the magnitude of the 
mean value of that component. 

The properties of states with n > 2 may be illustrated by the operation of A on 
the familiar real eigenstates of L~ for n = 3: 

Ax13p,) = A,13pX) = 3-'PI3dx,) (164  

with similar relationships involving x ,  z and y ,  z : 

A, (3px) = (8/27)'/2P(3~) - 27-'/2P(3d,,z-rz) 
+ 3-'P13dx2-,z) (16b) 

with a change in sign of the last term for A,(3py); and 

A, (3p,) = (8/27)'/2P(3s) + (4/3)'/2P)3d3,2-,z) ( 1 6 4  

The results are also presented as the matrix elements in Table 111. Reduced matrix 
elements for use in Eq. (6) with coupling coefficients for the 0, group are 

(3s (a  1 ,)IIA(tiu )II3p (ti, )> = 8 1/2P/3 

(~P(~lU)11A(~lU) l13~(~ ,>> = -2P/2 (17) 

(3p(rlu>llA(tl,)l13~(t2g)) = - 6 W 3  

The simultaneous eigenfunctions of A, and L, are the spd linear hybrids with 
ML = 0, the pd linear hybrids with ML = * 1, and the unmixed d functions with 
ML = k2. The properties of A with respect to hybrid n = 3 functions are similar to 
those we have discussed for n = 2, so that the spread in the component of A 
parallel to the direction of an sp3d2 hybrid is small compared to the spread in 
perpendicular components. 
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TABLE 111. Matrix elements” of A for n = 3. 

S d 3 = 2 ~ ~ 2  dx2-y2 dxy dxz dYZ 

P, (8/3) - 3 - I / Z  1 0 0 0 
A x  P y  0 0 0 1 0 0 

Pz 0 0 0 0 1 0 

0 0 1 0 0 Pz 0 

Pz 0 0 0 0 0 1 

Pr 0 0 0 0 1 0 
A, P y  0 0 0 0 0 1 

pZ (8/3)’/’ (4/3)*lZ 0 0 0 0 

A ,  py  (8/3)‘” - 3 - l / 2  -1 0 0 0 

a In units of P/3 .  

The hybrid functions used to describe bonding in molecules are usually taken 
not as superpositions of hydrogenic functions but rather of atomic central-field 
functions. The matrix of A is not diagonal in the principal quantum number n for 
such functions, which are frequently determined by a self-consistent field (SCF) 
procedure involving an expansion in either a Slater or Gaussian basis set. A Slater 
s function may be written 

so that 

Since a Slater pz function may be written 

we have 

X[(ha-P)(n+n’)-h(n’-l)(a+P)] (2 1) 

which is not diagonal in n. For n‘ = 1, the second term in Eqs. (19) and (21) 
vanishes, while the first term approaches zero as ha approaches P = hZ/aH, the 
hydrogenic value of h a  for n ‘ = 1. Thus, as expected, A annihilates a hydrogenic 
1s function. For n = n’ = 2 and a = P = Z/2aH, (2pz(A, (2s) from Eqs. (21) equals 
-3”2P/4, as compared to the hydrogenic value of P/2. The sign difference arises 
trivially from the fact that the phase of the Slater 12s) function (18) is positive while 
that of the corresponding outer lobe of the hydrogenic 12s) function is negative. 
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The value of -3'l2P/4 is unchanged if the Slater (2s) function is Schmidt- 
orthogonalized to a Slater (1s)  function with the same exponent as the (2s) 
function, namely Z/2aH. The resulting (2s) function differs from the hydrogenic 
(2s) function in having its radial node at 3aH/Z instead of 2aH/Z and by having a 
normalization constant larger by a factor of 12'/'/3. While a diagonal hydrogenic 
hybrid 2-'"[(2s)+(2p,)] is an eigenfunction of both A, and A:, with u(A,) = 0 ,  
the corresponding Slater hybrid constructed with either the radially nodeless or 
the orthogonalized 12s) function is not an eigenfunction of either operator but has 
u(A,) = 5'''P/l2, a value obtained from the matrix elements (2slAZ12s) = 
7P2/36, (2pZ)A1(2p,) = P2/4, and (2p,IA, 2s) -3'/'P/4. The expectation value 

hydrogenic value of P/2. While these results are for sp hybrids using single Slater 
functions, Eq. (21) may be used to evaluate matrix elements of A with respect to 
any sp" hybrids constructed from atomic functions which are superpositions of 
any number of Slater basis functions. 

of A, for the Slater hybrid is also -3' I 'P/4, smaller in magnitude than the 

To obtain matrix elements connecting Slater p and d functions we use 

~ , I n p , ) = ( ( h k - ~ ) / 3 + h / r - ( 3  COS'O- 1)(2hk + ~ ) / 3 } ~ , r , , - ~  e-Or 

A,(np,) = -{2hk +P}Ng"-le-P'sin 8 cos 8 cos 4 

(22) 

which is a superposition of radially modified Ins) and (nd3s2-r~)  functions, or 

(23) 

which is a modified Ind,,) function; the factor k in Eqs. (22) and (23) equals 
[ ( n  - 2 ) / r ] - p .  The matrix element (n's(A,Inp,) is the same as that given in Eq. 
(2 l), while 

where y is the exponent for ln'd,,) and Nd is the normalization constant 
[(15/4.rr)(2y)2""/(2n'!)]1'2. 

Other matrix elements involving In ' d )  and Inp) functions are readily obtained 
from Eq. (24) by the use of coupling coefficients. Reduced matrix elements thus 
obtained from Eqs. (21) or (24) can then be used to scale the matrix elements in 
Tables 1-111 to a non-hydrogenic basis. 

An interesting example of a central field is the piecewise Coulombic field 
corresponding to a positive nucleus surrounded by spherical shells of negative 
charge. This field has been used by McGuire [19] and by Chapman and Lohr [20] 
in calculating continuum wave-functions and photoionization cross sections. 
Since the field is Coulombic in each region of space, hydrogenic wave-functions 
matched at each shell radius form exact solutions of the Schrodinger equation. 
However, the bound states do not possess the n2 (excluding spin) hydrogenic 
degeneracy. It is instructive to examine carefully the commutator [A, X] when X 
contains a piecewise Coulombic potential energy. We first write 

A=Al  +A, 
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where 
A1 = 1/2[(pxL)-(L. P)I 

and 

A2 = -Pr/r 

Thus, 

[A, XI=[A,, TI+[Al, VI+[A2, TI+[A*, vl (26) 

Since A2 and V are multiplicative operators, [A2, v] equals zero. If Vis a function 
of r only, then 

[A,, v] = -i(dV/dr)[rF'(r - p)r-rp] 

[Az, TI = (ihP/2p){rP3[r- p+p . r+3ih]r-2r-'p} 

(27) 

(28) 

[A,, Vl=-[A2, TI (29) 

From Englefield [2], 

For a hydrogenic system dV/dr = Ze2/r2, so that 

if P in A2 is set equal to Zh/aH=Ze2p/h. The remaining term in Eq. (26), 
[A,, TI, equals zero assuming* that it operates on functions which are analytic. 
Thus, from Eq. (26) the well known result is [A, w=0. For smooth but 
non-Coulombic central fields Eq. (29) no longer holds, so that [A, X I #  0, 
meaning that A is no longer a constant of motion. However, for the piecewise 
Coulombic field for which V(r) = -(Zeff e2/r) + C, in the ith region, where 2;" e is 
the effective nuclear charge and C, is the external shielding constant, the com- 
mutator [A,, V] again equals -[A2, TI, as in Eq. (29), if P is set equal to ZPffh/aH. 
The reason is that both commutators are proportional to ZPff, so that even though 
dV/dr in [A,, V] is discontinuous, the change is matched by the change in P in 
[A2, TI. We know that [A, cannot be zero for the piecewise Coulombic field, so 
we must examine the behavior of the commutators at the shell radii. Consider a 
single negatively charged shell of radius a. The coefficient P in A2 has a finite jump 
discontinuity at r = a, so we write 

P =  (e2p/h)[z":e(a - r ) + ~ $ ~ ~ ( r - a ) ]  (30) 

where O(r - a )  is the Heaviside function?, and Z":e and Z":e are the effective 
nuclear charges for r < a and r > a, respectively. The term in T involving,radial 

* While [A,, TI contains fourth derivatives with respect to Cartesian coordinates, it is easily shown 
to contain no derivatives higher than the third with respect to the radial coordinate r. As described in 
[20], not only are the piecewise Coulombic wave-functions and their first derivatives with respect to r 
continuous at the shell radii, but also their second derivatives are continuous. The jump discontinuities 
in the third radial derivatives at the shell radii are finite, so that a Dirac 6 function does not appear until 
fourth radial derivatives are taken. As such derivatives do not appear in [A,, TI, we may still take this 
commutator to  equal zero. 

t The function O ( x )  equals zero for x < 0 but unity for x > 0, so that dB/d equals S ( x ) ,  the Dirac 
delta function. 
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derivatives is - ( h ' / 2 ~ ~ ) r - ~ a / a r ( r ~ a / a r ) ,  leading to 

[A2, 7') = [terms in Eq. (28)]+ ( e2h /2 ) ( r / r )  

x ( ~ ~ ~ - ~ " : ' { 2 ~ ( r - a ) ( r - ' + a / a r ) + ~ ' ( r - a ) }  (3  1) 
where S(r - a)  is the Dirac delta function and S'(r - a)  is its derivative with respect 
to r. The terms in Eq. (31) which are like Eq. (28) ,  but with the value of P given by 
Eq. (30), are those which add to [Al, VJ to give zero. No terms involving S(r - a )  
arise in [A,, v], which contains dV/dr but no higher derivatives of V, and none 
arise* in [A,, T] or [A2, v]. Thus the finite jump discontinuity in dV/dr at r = a 
introduces a discontinuity in the definition of AZ, using Eq. (30), leading to the 
result that [A, X] does not vanish at the shell radius; hence A is not a constant of 
motion. It is interesting to note that the penetrating orbits obtained from the old 
quantum theory [21] for a two-region piecewise Coulombic field are segments of 
Kepler ellipses in each region. The change in the eccentricity and orientation of 
these segments, and hence in the value of A, in passing from one region to the 
other results in an advancing perihelion and an overall rosette orbit. As discussed 
by Born [22], this description may be extended to the n-region piecewise 
Coulombic field. 

In summary, it is concluded that matrix elements of the Runge-Lenz vector A 
provide a useful description of polar wave-functions such as those linear combina- 
tions of atomic orbitals known as hybrid orbitals. Specifically, the matrix elements 
of A help establish the correspondence between wave-mechanical and classical 
descriptions. The properties of A are described for hybrid orbitals constructed 
from general central-field functions for which A is not diagonal in the principal 
quantum number n. As a consequence, these hybrid functions are characterized 
by greater spreads o(A) than are their hydrogenic counterparts. Analysis of the 
properties of a piecewise Coulombic field shows that the noncommutation of A 
and 2 is associated with a discontinuity in the radial derivative of the potential 
energy.? 

Acknowledgment 

The author wishes to thank Professor S. M. Blinder and Dr. D. F. Heller for 
valuable discussions, and the University of California, Berkeley for its hospitality 
during the 1974-5 academic year. He also wishes to thank Professor C. 
Wulfman for helpful discussions of group theory. 

Bibliography 

[l] See the reviews by M. Bander and C. Itzykson, Rev. Mod. Phys. 38, 330, 346 (1966); H. V. 
McIntosh, Group Theory and its Applications, Vol. 11, E. M. Loebl, Ed. (Academic Press, New 
York, 1971), p. 75; C. Wulfman, ibid., p. 145. The invariance with respect to 0, was first pointed 
out in V. Fock, Z Physik 98, 145 (1935) and V. Bargmann, Z. Physik 99,576 (1936). 

* See footnote on p. 807. 
t The piecewise Coulombic example suggests a choice of P for smooth central fields not as Ze2p/h, 

where Ze is the true nuclear charge, but instead as r2(dV/dr)p/R, which is the choice in Eq. (27), 
making [A, H] = 0 within each piecewise Coulombic region. However, it is unclear whether the 
resulting definition of A has any physical significance. 



RUNGE-LENZ VECTOR 809 

[2] M. J. Englefield, Group Theory and the CoulombPrablem (Wiley-Interscience, New York, 1972). 
[3] W. Pauli, Z. Physik 36,336 (1926) [for English translation see B. L. van der Waerden, Sourcesof 

[4] C. Runge, VectorAnalysis (Dutton, New York, 1919), p. 79; W. Lenz, Z. Physik24,197 (1924). 
[5] J. S. Alper and 0. Sinanoglii, Phys. Rev. 177, 77 (1969). 
[6] J. S. Alper, Phys. Rev. 177, 86 (1969). 
[7] E. Chacon, M. Moshinsky, 0. Novaro, and C. Wulfman, Phys. Rev. A3, 166 (1971). 
[8] C. Wulfman, Chem. Phys. Lett. 23, 370 (1973). 
[9] 0. SinanoglG and D. R. Herrick, Chem. Phys. Lett. 31, 373 (1975). 

Quantum Mechanics (North-Holland Publishing Co., Amsterdam, 1967), p. 387.1 

[lo] D. R. Herrick and 0. Sinanoglil, Phys. Rev. A l l ,  97 (1975). 
[Ill 0. Sinanoglt and D. R. Herrick, J. Chem. Phys. 62, 886 (1975). 
[12] D. R. Herrick, J. Math. Phys. 16, 1047 (1975). 
[I31 C. Wulfman and S. Kumei, Chem. Phys. Lett. 23, 367 (1973). 
1141 C. A. Coulson and A. Joseph, Int. J. Quantum Chem. 1,337 (1967). 
1151 H. Bacry, R. Ruegg, and J. Souriau, Commun. Math. Phys. 3, 323 (1966). 
1161 N. Mukunda, Phys. Rev. 155, 1383 (1967). 
[17] U. Fano and G. Racah, Irreducible Tensorial Sets (Academic Press, New York, 1959). 
[18] J. S. Grfith,  The Irreducible Tensor Method for Molecular Symmetry Groups (Prentice-Hall, 

[19] E. J. McGuire,Phys. Rev. 161,51(1967); 175,20(1968); alsoseePhys. Rev. A3,267 (1971) for 

[20] F. M. Chapman, Jr. and L. L. Lohr, Jr., J.  Amer Chem. Soc. 96,4731 (1974). 
[21] E. Schradinger, Z. Physik 4, 347 (1921); also see H. E. White, Introduction to Atomic Spectra 

[22] M. Born, The Mechanics of the Atom (G. Bell and Sons, Ltd., London, 1927), p. 169. 

Englewood Cliffs, N.J., 1962). 

applications to inelastic electron and proton scattering. 

(McGraw-Hill, New York, 1934), p. 106 and references cited therein. 

Received May 10, 1975 
Revised September 23, 1975 




