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Abstracts 

The orthogonalized plane wave (OPW) method of calculating electronic continuum wave- 
functions is tested by the computation of photodetachment cross-sections and angular distributions for 
gaseous halide anions. The results are compared to those obtained by a related augmented plane wave 
(APW) method involving the exact solution of a single-particle Schriidinger equation containing a 
piecewise Coulombic potential energy. These comparisons, as well as other involving experimental 
and theoretical cross-sections from the literature, indicate that OPW cross-sections are, at best, only 
semi-quantitatively reliable for describing photodetachment even at low photon energies, and that 
OPW cross-sections should be calculated using the dipole length operator rather than the dipole 
velocity operator. 

La mtthode des ondes planes orthogonalistes (OPW) pour calculer des fonctions d’onde du spectre 
continu a Ct6 test6 par un calcul des sections efficaces et des distributions angulaires assocites a des 
processus de photodttachement pour des anions halogtno’ides. Les rksultats sont comparts a ceux 
obtenus par la mtthode des ondes planes augmenttes (APW), qui comporte la solution exacte d’une 
tquation de Schrodinger B une particule, avec un potentiel coulombien par morceaux. Ces com- 
paraisons ainsi que d’autres bastes sur des sections efficaces exptrimentales et thtoriques de la 
litttrature indiquent que les sections efficaces OPW ne sont guerre dignes de confiance m&me pour des 
tnergies photoniques basses, et qu’elles doivent &re calculies avec I’optrateur dipolaire de longueur 
plutdt qu’avec celui de vitesse. 

Die OPW-Methode (orthogonalisierte ebene Wellen) fur die Berechnung von elektronischen 
Kontinuumfunktionen wird rnit einer Berechnung der mit Photoauslosevorgangen 
zusammenhangenden Querschnitte und Winkelverteilungen fur Halogenidanionen getestet. Die 
Ergebnisse werden mit denen verglichen, die durch eine APW-Methode erhalten werden. In dieser 
Methode wird eine exakte Lasung einer Schrodingergleichung fur ein Teilchen rnit einem stuckweise 
coulornbischen Potential erhalten. Diese Vergleichungen als auch andere, basierend auf experirnen- 
telle und theoretische Literaturquerschnitte, deuten an dass die OPW-Querschnitte nicht einmal fur 
geringe Photonenenergien zuverlassig sind, und dass sie mit dem Dipollange-operator eher als mit 
dem Dipolgeschwindigkeitsoperator berechnet werden sollen. 

1. Introduction 

The rapidly increasing use of photoelectron spectroscopy has stimulated much 
recent interest in the calculation not only of ionization potentials but also of 
photoionization cross-sections and angular distributions. The desire to treat 
theoretically molecules of chemical interest has led to many studies using either 
plane waves (PW’s) or orthogonalized plane waves (OPWs) to represent the 
ejected electrons [ 1-1 11. The use of OPW continuum functions may be viewed [4] 
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as the use of plane wave (PW) continuum functions together with considerations 
of the nonorthogonality of PW’s to  core orbitals and of the requirement of total 
wave-function antisymmetry. The results obtained to date by this method for a 
variety of small molecules appear to be semi-quantitatively reliable and very 
useful to photoelectron spectroscopists in making assignments. Particularly valu- 
able have been the studies [ 10,111 showing how the variation with photon energy 
of the cross section for ionization from a given molecular orbital is related to the 
symmetry and composition of that orbital. However, serious misgivings have 
frequently been raised [12] about even the approximate validity of the OPW 
method. It is the object of this paper to explore the relationship of the OPW 
method to more nearly exact methods of calculating continuum wave-functions 
and to present numerical results for atomic photodetachment cross-sections and 
angular distributions. 

We have chosen to study photodetachment of anions rather than photoioniza- 
tion of neutrals because the continuum wave-functions in the former case are 
phase-shifted plane waves, which are more closely related to OPW’s than are the 
phase-shifted Coulomb waves appropriate to the latter case. The specific systems 
studied are the gaseous halide ions, for which there have been numerous experi- 
mental and theoretical investigations of photodetachment cross-sections. Since 
these studies are largely confined to an energy range not exceeding 1 Ry (13.6 eV) 
above the detachment threshold, our studies are made in the range from zero to 
10 Ry to facilitate comparisons. Thus, we are not considering in detail the high 
energy range for which the PW method and its derivative, the OPW method, are 
presumed to be most nearly valid. The compensating factor, as mentioned above, 
is the choice of anions rather than neutrals to study, thus eliminating the need to 
consider a long range Coulomb interaction. However, the calculation of cross 
sections for p-electron detachment, as in the case of the halides, is a demanding 
test since there are two final states for the electron, an s-state with a comparatively 
large phase shift and a d-state with a comparatively small phase shift. This study 
serves as a model for the detachment of non-bonding electrons from such species 
as OH-, SH-, SeH-, NH;, PH;, and ASH;, each isoelectronic with a halide ion 
and each studied by either crossed-beam [13] or ion cyclotron resonance [14] 
techniques. Earlier PW calculations of photodetachment cross sections include 
the studies of Bates and Massey [ 151 and Chandraskhar [16] on H-, and those of 
Moskvin [17, 181 on Li-, Na-, K-, C-, N-, 0-, F-, and C1-. A recent study by 
Reed et al. [ 191 reports cross-sections for H-, C - ,  0-, F-, OH-, O,, CN-, C,, and 
C5H; calculated using PW’s orthogonalized only to the orbital from which 
detachment occurs. Other theoretical methods are described at the end of the next 
section. 

2. Theoretical Methods 

The differential cross-section for producing photoelectrons in the solid angle 
dfl is given [l, 3, 91 in the dipole approximation by the expression 
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where e is the magnitude of the electron charge, m the electron mass, c the 
velocity of light, w the circular frequency, u a unit vector in the direction of the 
electric polarization, a and b the initial and final states respectively, pn the linear 
momentum operator -ihV, for the nth electron, and p ( E )  the density of final 
states with an electron kinetic energy E = hw -BE, where the binding energy BE 
for photodetachment equals the electron affinity EA. If the initial state (a1 is a 
determinant of doubly occupied atomic orbitals and the final state ( 6 )  is a spin 
singlet constructed by promoting one electron from the jth atomic orbital to an 
unbound orbital ( k ) ,  with no change in the shape of the other atomicorbitals, then 

( a I C ~ ~ l b ) = 2 ’ ’ ~ ( j l p ( k )  (2) 
It 

where the factor 2l” accounts for the fact that there are two electrons in orbital j .  
The matrix element of the linear momentum operator p in Eq. (2) may be written 
in terms of dipole length operator r as 

where Ek - Ej corresponds to the photon energy hw. 
In this study each bound atomic orbital ( j l  is taken to be a superposition of 

Slater-type basis functions. The orbitals used are those obtained by self- 
consistent-field (SCF) calculations on the atomic halides [20-231. 

Two types of continuum state functions ( k )  are used in our photodetachment 
cross section, namely orthogonalized plane waves (OPWs) and wave-functions 
derived from a central-field model. The latter type of function is related to a plane 
wave which is phase-shifted at distances far from the nucleus and which is 
augmented by Coulomb-type functions at distances close to the nucleus. There- 
fore it will be referred to as an augmented plane wave (APW). 

The adaptation of Eq. (1) to OPW final states has been given by several 
authors [4, 91 and will be only briefly described. A box-normalized plane wave 
(PW) 

Ik) = (PW(k)) = LP3” elk.‘ (4) 

where L is the box length, has a corresponding density of states 

so that Eq. (1) reduces to 

where the subscript j on du/d i l  denotes the atomic orbital from which detach- 
ment occurs. The magnitude of k in Eqs. (5 )  and (6)  is given by 
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where EAj is the electron affinity for the j th  orbital. Since the PW is an 
eigenfunction of the linear momentum p with eigenvalue hk, 

Using the dipole length formulation, 

The integrals in the two expressions are quite different. In Eq. (8) (jlPW(k)) is the 
overlap of the initial bound state with the PW, or simply the Fourier transform of 
the bound state into momentum space. In Eq. (9) the integral (jlrlPW(k)) 
corresponds to a transition moment from the initial states (jl to the final state 
(PW(k)). In the spirt of Eq. (8) one could write the matrix element in Eq. (9) as 
(rj(PW(k)), which is the overlap of a state (rjl with the PW. 

Schmidt orthogonalization of the PW to the bound state yields 

lOPW(k)) =“IPW(k)) -C (@‘W(k))lI)I (10) 
1 

where the sum is over all occupied orbitals / I ) .  The normalization constant N is 
given by 

N=[l-C (IJPw)(PwIl>]-”2 
1 

As the size of the box within which the P W s  are normalized becomes infinite, the 
overlap (IIPW) becomes negligible compared to unity and N approaches unity. 
Substituting Eq. (10) in Eq. (6), 

The use of OPW’s introduces into the cross-section expression bound-to-bound 
dipole matrix elements of the form (jlpll) multiplied by monopole matrix ele- 
ments (f(PW(k)). 

The differential cross-sections are calculated for two fixed orientations of the 
polarization u with respect to the electron momentum hk, namely for the 
polarization u perpendicular to hk and for u parallel to hk. For detachment from 
orbitals other than s orbitals an averaging procedure is required and may be 
carried out in either of two ways: a) by specifying the type of the orbital (for 
example px, p,,, or pz in the case of detachment from a p  orbital) and then averaging 
over the orientation of its axes with respect to the laboratory axes; or b) by 
calculating a simple average of the expressions for detachment from all the 
different orbitals in a given subshell for a fixed direction of u relative to k. 

In summary, the integrals that have to be evaluated in the OPW procedure are 
of three main types: overlap integrals (jlPW) of atomic wave-functions with a PW, 
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bound-to-bound transition integrals (jlrlf) and (jlpll), and dipole transition 
integrals of the form (j(r1PW). 

In the second, or APW, method the continuum state wave-function is obtained 
by solving the radial Schrodinger equation 

where 1 is the angular quantum number of the photoelectron, V,,I,(r) (which is 
designated with the subscript nl' to indicate that detachment is from the nt'th 
subshell) is an effective potential energy, and PEI(r)  = rREl(r) is the continuum 
radial function. We have chosen to use a modification of the procedure developed 
by McGuire [24] and extended by Chapman and Lohr [25 ]  for the solution of Eq. 
(13). In this procedure V ( r )  is approximated by a model potential energy for 
which an exact solution of the radial equation can be determined. The potential 
energy corresponds to an electron in the field of a positive charge Ze at the origin 
surrounded by a series of concentric shells at Ri, each having a uniform distribu- 
tion of negative charge -2,e. The potential energy is piecewise Coulombic in all 
regions except the outermost, and hence solutions can be expressed in terms of 
Whittaker functions. These functions of the dimensionless variable kr are 
evaluated in terms of their power series expansions for kr 5 11 and with asympto- 
tic formulas for kr > 11. They involve a number of infinite but convergent series 
which are evaluated by approximating them as finite sums. 

For the outermost region where V, ( r )  is zero, the solutions are spherical 
Bessel and Neumann functions. It is the form of the solutions in this outermost 
region that distinguishes the procedure from that used by McGuire [24] and by 
Chapman and Lohr [25] for describing the photoionization of neutral atoms. For 
each region of potential a general solution is constructed from the two particular 
solutions required to form the general solution of the second-order differential 
equation (13). The coefficients are evaluated by the application of suitable 
boundary conditions. A solution for the entire range of potential is then deter- 
mined by insuring that the wave-function and its derivative are continuous at each 
boundary of the potential and that the wave-function has an appropriate form at 
limits of small and large r. The limiting boundary conditions for the continuum 
wave-function at small and large r are 

PEI = rREI(r) + 0 as r+O 

and 

PEI ( r )  = rREl ( I )  + k -' sin 

where is the phase shift of the lth partial wave relative to a free wave (for which 
V ( r )  = 0 for all r )  due to the attractive potential of the residual atom. The phase 
shift is related to coefficients A and B for the outermost (nth) region by 

tan 6 = - B / A  (15) 
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The phase shift is assigned a positive sign to indicate that the potential is attractive. 
Since the spherical Bessel functions of order 1 which occur in the outermost region 
may be viewed as spherical projections of a plane wave, the total continuum wave 
may be viewed as the lth component of a phase-shifted plane wave suitably 
augmented by Coulomb waves in the inner regions, and hence its designation as an 
“augmented plane wave” (APW). 

In order to characterize the piecewise potential energy V(r) ,  the set of 
parameters Ri and Zi must be specified. This is done by fitting [25] the piecewise 
potential energy to a reference potential energy Vnl,(r), which is obtained from 
SCF orbitals for the core atom and which has the form 

- Z e 2  e2 
Vnl,(r) = - p ( r ’ )  dr‘+ e2  I“ r 

in which 

The summation is over the n - 1 electrons in the residual atom. The occupation 
number w ~ , ,  for the E.LA th orbital includes electrons of both spins, but the exchange 
interaction between the residual atom and the continuum electron is not included 
explicitly. Note that the summation in Eq. (17) does not include the electron which 
is being ionized, so that the so-called “self-Coulomb energies” are absent. 
Parameters for the model potential energy are then determined by fitting r times 
the reference potential energy of Eq. (16) with a series of line segments. The 
charge at the origin is taken as the true nuclear charge Ze, and the sum of the shell 
charges is -Ze. Thus, the model potential energy approches the correct asyrnpto- 
tic limit of zero. Since the fitting requires that the model and reference potential 
energies be equal at each of the boundaries, the model potential energy is more 
negative than the reference potential energy between boundaries. Exceptions to 
this occur for radii greater than or just slightly less than the radius of the outermost 
sphere. 

If the bound-state orbitals in Eq. (17) are taken as those for the negative ion 
before detachment, then the detachment is assumed to be electronically vertical. 
This specifically neglects effects due to the relaxation of the core atom. The 
reference potential energy can also be calculated using bound-state orbitals of the 
residual neutral atom, in which case the potential energy corresponds to the 
relaxed core. 

In an attempt to account for the polarization of the core, a polarization term 
may be added to the reference potential energy of Eq. (16). This term is taken as 

a e L  
2(r2+ r;)’ 

Vp(r) = - 

where a is the polarizability and rp corresponds roughly to the atomic core radius. 
It should be noted that the polarization term of Eq. (18) is not included explicitly 
in the model potential. The continuum wave-functions for all n - 1 regions are still 
calculated for a piecewise Coulombic potential energy. The only effect of polari- 
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zation is to make the reference potential energy to which the model potential 
energy is fitted more attractive. 

The angular distribution of ejected electrons is characterized by an asymmetry 
parameter p which appears in the differential cross-section [26] for polarized light 
as 

du u 
dln 47r 

- [ I  +~P,(COS el] 

where 19 is the angle between k and u and P2(x)  = (3x2-  1)/2. The total subshell 
cross-section u is the intensity parameter reported in Section 3. In the OPW 
method p is conveniently obtained from 

p = 2 ( u ~ ~ - u d / ( u ~ ~  +2u,)= 8 d u ~ ~ - ~ * ) / 3 ~  (20) 

where UII and u,. denote the values of the differential cross-section for kllu and 
k lu, respectively. In the APW method, as with other central field methods, @ for 
p electron detachment or ionization is given by the Cooper-Zare [26] relationship 

where R, and Rd are the radial transition moments to the s and d final states and 
where @ is the difference between the s and d phase shifts. 

Other theoretical methods have been used for calculating photo-detachment 
cross-sections. Several of these are described below to show their relationship to 
the present work. The main difference among the methods is in the type of the 
bound and continuum state wave-functions that are employed and the manner in 
which they are obtained. The notations Pnl(r) and PEI(r) are used to designate the 
bound and the continuum radial wave-function, rRnI(r) and r&(r), respectively. 

Cooper and Martin [27] calculated photodetachment cross-sections for 0-, 
C-, C1-, and F-, making the assumption that Pnl(r) and PEl(r) are eigenfunctions 
of the same one-electron Hamiltonian having a potential energy 

where the first two terms correspond to the electrostatic potential energy. The 
factor p(r’) is the electronic charge distribution derived from the available Hartree 
or Hartree-Fock wave-functions. The correction term (with a) is allowed to 
absorb the effects of polarization and exchange as they effect the binding energy 
Eb, which is taken as an experimental electron affinity. The factor rp is taken to be 
the average core radius. The bound function Pnr(r) is then obtained treating a as 
an eigenvalue. Using the calculated value of a, the continuum-state wave- 
functions PEI(r) are then evaluated for various values of electron energy. 

The chief advantages of this procedure are that it yields bound radial orbitals 
with correct binding energies and that it includes polarization effects, with the 
potential energy approaching the correct form -a e2/2r4 for large r. A major 
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shortcoming is that the semi-emperical parameters (Y and rp do not arise naturally 
from the formalism and are introduced somewhat arbitrarily. 

Using a related procedure, Robinson and Geltman [28] calculated photo- 
detachment cross-sections for a number of atomic negative ions. The potential 
energy which they used has the form 

where VHs(r) is the Hartree-Fock-Slater potential energy for the neutral atoms, 
evaluated by the methods of Herman and Skillman [ 2 9 ] .  The second term 
removes the Coulomb tail of VHs and the third term introduces the effects of 
polarization. As in the previous case, the parameter rp is chosen somewhat 
arbitrarily to correspond to core radius. The atomic polarizability (Y is chosen from 
the best existing theoretical or experimental values, while the parameter ro is 
chosen such that the resulting potential will support an np bound state with an 
assumed binding energy. The bound- and continuum-state wave-functions are 
then calculated in a manner similar to the method of Cooper and Martin. 

Garrett and Jackson [ 3 0 ]  used a more sophisticated procedure to calculate 
photodetachment cross sections of 0-. The bound-state wave-functions P,,(r) are 
calculated by the modification of the Hartree-Fock-Slater (HFS) method, in which 
the potential energy is the sum of the electrostatic energy and an exchange energy 
Vex(r) given in terms of the electron density p ( r )  by 

where the coefficient A is varied until an eigenvalue of the 2 p  electron is obtained 
which corresponds to the experimental binding energy of 0-. This method of the 
calculation of the bound-state wave-functions is different from that used by 
Cooper and Martin or Robinson and Geltman in that a self-consistent calculation 
is made each time the parameter A is adjusted rather than taking a single equation 
and adjusting a parameter in the total potential function (the parameter rp in the 
method of Cooper and Martin or the parameter ro in the method of Robinson and 
Geltman) in order to match the desired eigenvalue. The continuum functions are 
then obtained by numerical integration of the radial Schrodinger equation 
containing a polarization potential obtained from an application of first-order 
perturbation theory to the Hartree-Fock (HF) atomic system. The method leads to 
substantial improvement in the agreement of theory and experiment over the 
methods of Cooper and Martin or Robinson and Geltman. The major difference 
in their results for 0- as compared to those of the previous methods stems from 
differences in the continuum functions which are very sensitive to small differ- 
ences in the polarization potential. 

A somewhat different approach is the close-coupling method used by Con- 
neely, Smith, and Lipsky [ 3  11 for electron impact and photoionization as well as 
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for photodetachment. In lieu of a polarization potential their method explicitly 
includes low-lying excited terms in the final-state wave-functions, although again 
SCF initial-state functions are chosen. Very recently, Ishihara and Foster [32] 
studied the photodetachment of C- and F- using many-body perturbation theory 
in which they included the effects due to correlation and to intrachannel interac- 
tions. The calculated cross-sections are in very good agreement with the experi- 
mental results, showing the importance of the above corrections in the cross- 
section calculations. 

3. Results and Discussions 

A.  General Remarks 

The photodetachment cross-section u and the asymmetry parameter p are 
calculated by the OPW and APW methods for the np photodetachment of halide 
ions. In all cases both the dipole length and dipole velocity formulations are 
employed. In order to facilitate comparisons the same SCF bouhd-state functions 
are used in the PW, OPW, and APW calculations. These functions enter the OPW 
calculations both as the initial-state functions ( j (  and as the functions to which a 
PW is Schmidt orthogonalized. They enter the APW calculation both as the 
initial-state functions ( j l  and as the functions used to calculate the reference 
potential energy in Eq. (16). Since SCF functions for X- rather than Xo are used 
throughout, effects associated with core relaxation are ignored. The spin-orbit 
splitting of the np5 core of the Xo atom is ignored except in the series of APW 
calculations including core polarization, where the splitting is considered in order 
to facilitate comparisons of our results with other calculated values and with 
experimental values. 

Table I is a list of the electron affinities for the halide ions. The values in the 
first column are one-electron energies [20-231 corresponding to the bound-state 
orbitals of X-. The values in the second column correspond to the difference in the 
neutral and negative ion total energies, where Goth energies are calculated 
[ZO-221 from wave-functions with comparable basis sets. The third column 
corresponds to the experimental electron affinities [33]. For most of the ions the 

TABLE 1. Electron affinities (eV). 

A t o m  One-Electron D i f f e r e n c e  of Experimentale 
E n e r g i e s  Total Energ ies  

F 4 .  93a 

c1 4.13b 

B r  3.7Jc 

I 3.10d 

1 .39  3.45 

2 . 5 9  3 . 6 1  

2.58 3.36 

3.06 __ 

a Ref. [20]. Ref. [21]. 'Ref. [22]. Ref. [23]. Ref. [33]. 
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three electron affinities listed in Table I are significantly different. This poses a 
problem in choosing among them. Since for negative ions the calculated energies 
are not usually very accurate, the experimental electron affinities provide a better 
description of the process. On the other hand, the theoretical one-electron 
energies correspond to the bound-state functions which are used to calculate the 
photodetachment cross-sections, and in that sense they might be more appro- 
priate. 

In the cases where the values are different, the choice of one or the other 
makes a significant difference in the relative magnitude of the cross-sections 
calculated by the dipole length and dipole velocity methods, especially at very low 
electron energies. This is easily illustrated if one looks at the two expressions 

ffL - (E + E A ) ( M E ~ ( ~  (24) 

1 
( E  + EA) W”I2 ffV - 

where the subscripts L and V correspond to dipole length and dipole velocity 
formulations, respectively. EA is the absolute value of the electron affinity and E 
the kinetic energy of the photoelectron. In Eq. (24) the cross-section is directly 
proportional to the photon energy hw = E + EA, whereas in the formulation of 
Eq. (25) it is inversely proportional to this factor. For example, at energies close to 
threshold the cross-section uL for F- increases by about 40% if the one-electron 
energy is used, while the cross-section uv decreases by the same amount. 
Therefore, at low energies the calculated cross-sections are very sensitive to the 
value used for the electron affinity. For the calculations reported here the 
experimental electron affinities are used. 

B. A Comparison of PW and OPW Results 

The variation of the PW and OPW cross-sections with photoelectron energy 
for ions F-, C1-, Br-, and I- are shown in Figures 1 through 4, respectively. For F- 
(Fig. 1) with the dipole length formulation, both the magnitude and th’e shape of 
the cross-section are significantly different for the PW and OPW results in the 
energy range from 0 to about 2 Ry. The two approach each other as one moves to 
higher energies. The same is also true for the dipole velocity formulation. There is 
a similar pattern for the other three ions (Figs. 2-4). There is a similar pattern for 
the other three ions (Figs. 2-4). The difference is even greater if one compares the 
results of the two formulations in each of the two PW and OPW methods. As 
mentioned earlier, one must be cautious when comparing the cross-sections 
calculated by the dipole length and dipole velocity formulations, since at low 
photoelectron energies the relative magnitude of the two is very sensitive to the 
choice of the electron affinity. Indeed, using the theoretical orbital energy gives a 
better agreement between the two formulations at electron energies below 
0.05 Ry. However, as the electron energy increases, the use of a greater electron 
affinity makes the agreement worse as the cross-sections calculated with the 
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F- 

K E (Ry) 

Figure 1. Cross-section (J or in Mb. vs. electron kinetic energy in Ry for F-. OPW 
(length) results denoted by (- . - .), PW (length) by (-4, OPW (velocity) by (--), 
and PW (velocity) by (- - - -). Curves in Figures 1-8 and 10-12 are drawn through 
points computed at intervals of 0.1 Ry between zero and 1.0 Ry and at intervals of 

1 .O Ry above 1 .O Ry. Finer meshes were employed in some cases. 

c1- 

I 

0 2 4 6 0 I 

82 I 

K E  (Ry) 
Figure 2. Cross section cr in Mb vs. electron kinetic energy in Ry for C1-. Curves 

labeled as in Figure 1. 

dipole length formulation are becoming greater than those calculated with the 
dipole velocity operator. The “dips” in the plots of (+ at low electron energies are 
due to the fact that the cross-section for the photodetachment from a p orbital is 
the sum of the cross-sections for the transition to the s and d continuum waves. 
For the s transition the cross-section rises rapidly at very low electron energies, 
reaches a maximum, and then drops. For the d transition the cross-section rises 
gradually with energy and reaches a maximum at much higher energies. 

An important result that is not readily apparent in Figures 1-4 is that all of the 
curves except for those obtained using PW’s and the velocity operator have the 
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Figure 3 .  Cross-section u in Mb vs. electron kinetic energy in Ry for Br-. Curves 
labeled as in Figure I .  

K E (Ry) 

Figure 4. Cross-section u in Mb vs. electron kinetic energy in Ry for I- .  Curves 
labeled as in Figure 1. 

threshold behavior (+ - k expected from Wigner’s rules [34] for the detachment of 
a p-electron. By contrast, the curves for the PW results with the velocity operator 
have the threshold form u - k3’* for the detachment of any electron, a result that 
is only correct for s- or d-electron detachment. The conclusion is that use of the 
length operator is necessary if PWs are used in order to have the correct threshold 
behavior. The same conclusion was reached by Reed et al. [ 191 in studies involving 
orthogonalization of the PW only to the orbital from which detachment occurs. 
However, the additional orthogonalization of the PW to s orbitals builds into 
expression (14) the requisite final states for IT so that either operator yields the 
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\ 

correct threshold behavior. By contrast, at  the higher energies shown in Figures 
1-4 the cr values are more dependent on the choice of operator than on 
orthogonalization, with the length values lying significantly above the velocity 
values for all halides. 

Figures 5-8 show the variation of the PW and OPW values of the asymmetry 
parameter p with photoelectron energy. The PW-dipole velocity formulation p 
equals 2 at all electron energies and is not shown. For the other three methods, 0 
starts at zero, implying a spherical distribution at threshold. It drops to a minimum 
of - 1 at about 0.1 to 0.2 Ry and then rises to a value close to +2. The shape of p is 
approximately the same for all three methods. Also shown in these figures are 

P 

F- 

I 
0 2 4 6 a 10 

K E  (Rg j  

Figure 5. Asymmetry parameter p vs. electron kinetic energy in Ry for F-. OPW 
(length) results denoted by (- . - .), PW (length) by (-), OPW (velocity) by (--), 

and APW (length) by (- -).The PW (velocity) value ofp is 2 at all energies. 

Figure 6 

\ -- . - - - -  '. 2 -  

0 2 4 6 

/-- 

c1- 

\ 
\ 

I 
8 10 

K E (Rg) 

, Asymmetry parameter p vs. electron kinetic energy in Ry for C1-. Curves 
labeled as in Figure 5.  



824 MOHRAZ AND LOHR 

K E  (Ryf 

Figure 7. Asymmetry parameter in 0 vs. electron kinetic energy in Ry for Br- 
Curves labeled as in Figure 5. 

0 2 4 6 a 10 
K E (Ry) 

labeled as in Figure 5. 
Figure 8. Asymmetry parameter 0 vs. electron kinetic energy in Ry for I-. Curves 

APW-dipole length p values which are discussed in Section 3D. For C1-, Br-, and 
I-, after reaching a maximum p does not level off or decrease gradually, as for F- 
(Fig. 5), but sharply drops to a minimum and then rises again. In the OPW- 
dipole length method of Figure 6 for C1- the second minimum occurs after 10 Ry. 
Going from C1- to I- this minimum is shifted towards lower energies. For Br- it 
occurs at about 7.4 Ry and for I- around 4.6 Ry. Although the OPW p values are 
not calculated from Eq. (21), the equation may be used to analyze the results. 
Since the OPW phase shifts are zero, p equals zero at energies for which Rd = 0 or 
Rd = 2Rs ; any relationship between the number of such crossings, and hence 
oscillations in 0, to the number of bound-state radial nodes requires further 
exploration, although there is no relationship in the corresponding pliotoioniza- 
tion of np electrons from neutral rare gas atoms [35, 361. It has recently been 
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stated [37] that since p is so crucially dependent on the phase shifts there is no 
possibility, except by accident, of p’s obtained by PW methods, and presumably 
by OPW methods, being correct. While it would certainly be unjustified to attach 
other than semi-quantitative significance to the results in Figures 5-8, we do note 
that the curves have the correct threshold behavior for p-electron detachment as 
found theoretically by Cooper and Zare [38] using the Robinson-Geltman 
potential [28] and as found experimentally by Hall and Siege1 [39]. Specifically, p 
is zero at threshold, falls rapidly to a value near -1, and then rises through zero to 
a value near 2. 

C. A Comparison of APW and OPW Results 

In this section the APW cross-sections for the photodetachment from the p 
orbital of halides are compared with the OPW results of the preceding section. 
Spin-orbit coupling is again neglected so that the cross-sections represent the 
sum over the levels of the residual atom. Cross-sections were 
computed for all halides, but are listed for F- only in Table I1 with E denoting the 
photoelectron energy and subscripts L and V the dipole length and dipole velocity 
formulations, respectively. The OPW results are the same as those shown in 
Figures 1-4. 

and 

TABLE 11. Photodetachment cross-sections (Mb) for F-. 

3588 

2574 

2007 

1645 

13 93 

1209 

1067 

955 

864 

727 

404 

214 

146 

110 

89 

0.0 0.0 0.0 

0.1 4.5 6.9 

0.2 6.0 8.5 

0.3 7.2 9.7 

0.4 8.3 10.6 

0.5 9.2 11.3 

0.6 10.0 11.8 

0.7 10.8 12.1 

0.8 11.3 12.2 

1.0 12.3 12.2 

2.0 11.9 9.8 

4.0 6.5 5.2 

6.0 3.4 2.7 

8.0 1.9 1.5 

10.0 1.1 0.9 

0.0 0.0 

6.8 14.0 

6.6 12.4 

6.7 11.1 

7.0 10.2 

7.4 9.6 

7.8 9.2 

8.3 8.9 

8.8 8.7 

9.6 8.2 

10.8 6.0 

7.6 3.3 

5.3 2.0 

3.7 1.3 

2.7 0.9 

a Using experimental EA = 0.254 Ry. 
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The results of the dipole length and dipole velocity methods are generally 
different in magnitude. This may seem surprising since the APW continuum 
function represents an exact solution of the Schrodinger equation with the model 
potential energy VM(r) .  However, the SCF bound-state orbital is a solution of the 
Schrodinger equation with a different Hamiltonian, so that the identity in Eq. (3) 
does not hold. This point has been recently discussed by Starace [40] and by 
Cohen and McEachran [41]. In addition, we chose experimental rather than 
theoretical E A  values, thus giving up any requirement of agreement of length and 
velocity cross sections. For F- (Table 11) the agreement between the length and 
velocity formulations is fair, and in most cases the difference is less than 25%. In 
both cases the maximum cross section occurs between 1.0 and 2.0 Ry. 

For all the halides there is a general agreement in the shape of the OPWL 
cross-section and the position of its maximum with the APW results. However, 
the magnitude of the OPWL maximum cross-sections are generally lower than the 
corresponding APW values. The OPW, cross-sections are very different from the 
APW values and, as in the case of the length operator, the maximum OPW 
cross-section occurs at lower electron energies. 

In Figure 9 we illustrate the PW, OPW, and APW s continuum wave-functions 
for F- at an energy of 1.0 Ry. The functions are plotted as P ( r )  = rR(r) ,  with an 

I 

r (o.u.) 

Figure 9. The s continuum waves r R ( r )  vs. r in a.u. at an electron kinetic energy of 
l.ORyforF-.APWdenotedby(-. -),OPWby(- -),andPWby(-). 

arbitrary unit amplitude so that the curve labeled PW is simply krjo(kr) = sin (kr) ,  
which is kr times the s component of the PW. The dashed vertical line at r = 5 a.u. 
denotes the radius beyond which V,(r) is zero. We note that this is also the 
approximate radius beyond which the PW and OPW curves coincide. For r <  
5 a.u. the OPW function has one more maximum than does the PW function, but 
there is of course no long range phase shift. Another feature of the OPW function 
is that its nodes do not coincide with its points of inflection, so that there are 
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singularities at the nodes in the local kinetic energy T (local) = (T'P)/q, where T 
is the kinetic energy operator. Conversely, the OPW function may be viewed as an 
exact solution of a Hamiltonian containing a singular potential E - T (local). By 
contrast, the APW function is an exact solution of a Hamiltonian containing a 
nonsingular potential, so we observe in Figure 9 that its nodes and points of 
inflection coincide. The s phase shift at this energy is 1 . 5 7 ~ ,  or approximately 
37~/2, so that the extrema at large r nearly coincide with the nodes of the PW or 
OPW functions. 

In Figure 10 we illustrate the PW and APW d continuum functions for F-, 
again at an energy of 1.0 Ry. The PW function is simply krj2(kr) and may be used 

Figure 10. The d continuum waves rR ( r )  vs. I in a.u. at an electron kinetic energy of 
1 .0 Ry for F-. APW denoted by (- . -) and OPW or PW denoted by (- -). 

as an OPW function since F- has no occupied d orbitals. As expected, the APW 
phase shift is quite small, namely 0 . 0 2 7 ~ ,  so that the PW and APW functions are 
essentially identical at this energy. 

D. Inclusion of Core Polarization and Comparisons with Other Results 

APW continuum wave-functions are now evaluated for all halides using a 
reference potential energy which includes an empirical core polarization term 
Vp(r)  of the form given in Eq. (18). The halogen polarizabilities are chosen either 
from theory [42] (F) or experiment [28] (Cl, Br, and I) are given in Table I11 
together with values of the parameter rp chosen to correspond roughly to the 
atomic core radius. The effect of VJr)  on the parameters defining the model 
potential energy V M ( r )  is quite large. For C1- the effect is to make V M ( r )  at 
r = 3 a.u. about twice as attractive as in the case with no Vp(r)  in the reference 
potential energy. In addition, the region with V,(r) = 0 begins at r = 13.9 a.u. 
when polarization is included in V, whereas the corresponding region begins at 
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6.2 a.u. when polarization is not included. The polarization effects on VM(r) are 
even greater for Br- and I-. As is well known from earlier studies [28], the 
inclusion of polarization increases the maximum value of the cross-section and 
moves its position to lower electron energies. For C1- the APWL maximum 
without polarization is 46 Mb at a kinetic energy of 0.7 Ry, while the AP.WL 
maximum with polarization is 57 Mb at 0.6 Ry. 

Figure 11 compares the APWL with polarization for F- to the OPWL results, to 
the theoretical results of Cooper and Martin [27], Robinson and Geltman [28], 

0 I I 1 1 I I I 1 I 
0.1 0.2 0.4 0.6 0.8 I. 0 

KE (Ry) 

Figure 11. Cross-section c in Mb vs. electron kinetic energy in Ry for F-. APW 
(length) results with polarization denoted by (- - -) and OPW (length) results by 
(-.-.). Other results are those of Cooper and Martin [27] denoted by (.. ..), 
Robinson and Geltman [28] by (-), Ishihara and Foster [32] by (- -), and Mandl 

[43] by the points @. 

and Ishihara and Foster [32], and to the shock tube measurements of Mandl [43]. 
Except for electron energies below 0.2 Ry the OPWL values are much lower than 
the others. The excellent agreement between the APWL calculations and Mandl’s 
measurements, which have estimated uncertainties of *25%, must in part be 
fortuitous, as our calculations ignore correlation in the initial state and both 
correlation and exchange in the final state. However, our reference potential 
energy used in calculating the APW final state does implicitly contain some 
correlation and exchange effects uiu the polarization term. Mandl [43] also 
compared his measurements to Robinson and Geltman’s calculations, as well as to 
Moskvin’s PW calculations [ 181 and to Berry and Reimann’s [33] and Popp’s [44] 
near threshold measurements. As Mandl’s Figure 4 and our Figure 11 indicate, 
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the Robinson-Geltman calculations agree reasonably well with experiment if 
their values are scaled by approximately 0.7. 

The experimental [45] spin-orbit splittings for the neutral halogens are given 
in Table 111. We now include the effect of this splitting on the cross-sections for C1, 
Br, and I by simply apportioning two-thirds of the computed cross-section to the 
lower J = 3/2 level and one-third to the upper J = 1/2 level, being careful to use u 
values computed for the desired kinetic energy, which for a given photon energy is 
different for the two levels, and to correct the photon frequency factors in Eqs. 
(24) and (25). 

Figure 12 compares the APWL results with polarization for C1- to the OPWL 
and other theoretical results. The APWv values, not'shown, are typically about 

TABLE 111. Polarization and spin-orbit parameters. 

A t m  o ( r l u  rp (nu)' AEso ( R y ) =  
- 

F 4 .  05'' 1.5 0.0037 

C 1  2 3 .  5'' 2.5 0. 0 0 8 0  

Br 24. g h  3.5 0.0336 

1 40. g h  4.5 0 . 0 6 9 3  

a Ref. [42]. 

' Ref. [45]. 
dConverta tocrn3andrp tocmforuseinEq.(18). 

Ref. [28]. Values chosen to be larger than a for the neighboring rare gases. 

1/3 less than the APWL values over this energy range. The experimental u value 
of Berry and Reimann [33], Muck and Popp [46], and Rothe [47] are not shown as 
they are confined to a narrow range of energies not exceeding 0.04 Ry above 
threshold (their data have been compared by Conneely et al. [31] and by 
Myerscough and Peach [48] to earlier calculations). Interestingly, the close- 
coupling calculations of Conneely et al. [31] lie closer to the OPWL results than 
they do to the APWL, Robinson-Geltman, or Cooper-Martin results. The 
Moskvin PW calculations, not shown in Figure 12, predict a very large cross- 
section of almost 40 Mb for hv = 0.34 Ry, but the p + s matrix elements are 
incorrect [48]. 

Tables IV and V list u values for Br- and I-, respectively. The energy in these 
tables is relative to that for the J = 3/2 level, and is thus a measure of the kinetic 
energy only for the process producing that level. The OPW values in these tables 
differ from those in Tables 111 and IV by having the intensity distributed over the 
two J levels and then summed for a given wavelength. We note that the APWv 
values are larger than the APWL values at energies below 0.2 Ry and agree better 
with both the OPWL values and the Robinson-Geltman results. As in previous 
cases, the OPW, results are lower at their maxima than are the other cross- 
sections, but are larger at energies above 1 Ry. In general, the OPW decrease 
more slowly with energy than do the APW cross-sections, reflecting the inade- 
quate treatment of the attractive potential by the former method. For I-, the 
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I , 

60 

P - 
b 

40 

20 

- 

- 

- 

c1- 
APW(L) 

'\ 

-/----- 

I 

c1- 
APW(L) 

'\ 

-/----- 

I 
I ,  

0.2 0.4 0.6 0.0 I .o I .2 
PHOTON ENERGY ( R y )  

Figure 12. Cross-section m in Mb vs. photon energy in Ry for CI-. APW (length) 
results with polarization denoted by (- - - -) and OPW (length) results by (- . - .). 
Other results are those of Cooper and Martin [27] denoted by (. . . .), Robinson and 
Geltman [28] by (-), and Conneely et al. [3 11 by (- -). Energy shown as photon 

energy since all curves include thespin-orbit splitting of 0.008 Ry. 

OPWL results in Figure 8 (without spin-orbit splitting) or Table V (with spin-orbit 
splitting) show a slight increase above 6 Ry, although the cross-section decreases 
at even higher energies. 

In addition to the PW and OPW p values described in Section 3B, Figures 5-8 
display APWLP values including core polarization. Values are not shown for 
energies below 0.2 Ry as they nearly coincide with the OPW curves. However, the 
APWL minima do occur at a lower energy than the PW or OPW minima; for 
example, for C1- at approximately 0.07 Ry vs 0.18 Ry. As in the APW study [25] 
of inner p-shell photoionization, the dipole length and velocity p values coincide 
within 2% or better except in regions where p is varying rapidly with energy, so 
the velocity values are not shown. In the energy range from threshold to 3 Ry the 
APWL p values tend to be closer to the OPWL and OPWv values than to the PWL 
values. However, the second APWL minimum for C1- in Figure 6 occurs near 
2.9 Ry rather than above 10 Ry for the second OPWL minimum, probably as a 
result of the APW method's more nearly accurate treatment of the s channel. The 
APW, curve for CI- passes through zero,at 2.7 and 3.1 Ry, on either side of this 
second minima at 2.9 Ry. At 2.7 Ry the d channel matrix element Rd is zero, 
while at 3.1 Ry the crossing results from Rd = 2Rs cos Q, in Eq. (21), as does the 
lower energy crossing near 0.2 Ry. The APWL p values without polarization are 
similar, but with the second minimum shifted to 3.4 Ry. Although APWL p values 
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TABLE IV. Photodetachment cross-sections (Mb) for Br- with polarization 
and spin-orbit coupling. 

3 6 7 4  

3 4 0 0  

3 0 5 8  

2 8 6 6  

2 6 1 8  

2 0 3 4  

1 6 6 3  

1 4 0 6  

1 2 1 8  

1 0 7 5  

9 6 1  

87  0 

7 94 

7 3  0 

4 0 5  

214 ,  

1 4 6  

1 1 0  

8 9  

0.0 

0 . 0 2  

0 . 0 5  

0.07 

0 . 1  

0 . 2  

0.3 

0 .4  

0 . 5  

0.6 

0 .7  

0 . 8  

0 . 9  

1 . 0  

2.0 

4 . 0  

6 . 0  

8 . 0  

10 .0  

0.0 

5 . 1  

7 . 1  

1 2 . 1  

1 5 . 8  

3 1 . 0  

45 .6  

5 5 . 6  

5 9 . 8  

6 0 . 3  

5 7 . 9  

54 .2  

4 9 . 0  

4 2 . 6  

9.5 

0 . 8 3  

0 . 1 6  

0 . 1 1  

0 . 0 8  

0 .0  

8 . 7  

1 5 . 0  

1 6 . 6  

1 7 . 7  

3 0 . 8  

3 9 . 5  

4 4 . 6  

4 5 . 9  

4 4 . 7  

41.3 

3 7 . 2  

3 3 . 4  

2 9 . 6  

6.3 

1 . 0  

0 . 1 3  

0 .10  

0 . 0 8  

0.0 

1 0 . 0  

1 7 . 6  

1 9 . 4  

1 9 . 7  

2 1 . 1  

2 6 . 7  

3 3 . 6  

3 9 . 6  

4 3 . 5  

4 5 . 8  

46 .5  

4 5 . 9  

4 4 . 8  

24.4 

5 . 9  

1 . 2  

0 . 8  

0 .8  

0.0 

1 3 . 8  

2 1 . 5  

2 2 . 1  

2 5 . 0  

4 0 . 5  

5 3 . 5  

6 1 . 5  

6 4 . 9  

63 .6  

5 8 . 2  

5 0 . 1  

4 1 . 1  

- 

" E A  = 0 . 2 4 8 R y , A E s , = 0 . 0 3 4  Ry. 
NO polarization. 
Robinson and Geltman, Ref. [28]. 

€or the other halides were not calculated for energies above 3 Ry, there is no zero 
value for Rd €or F- above threshold but below 10 Ry. For Br- and I- there are 
zero values of Rd near 7 Ry with polarization and near 8 Ry without, so there must 
be at least one crossing in the same energy range as with the OPW results in 
Figures 7 and 8." 

* Noteadded in proof: Calculations of p by the APW method have now been made for F-, Br-, and 
I for electron kinetic energies from 3.0 to 10.0 Ry in increments of 1 .O Ry, thus extending the curves 
denoted by (- -) in Figures 5,7, and 8. For F- the curve is nearly flat over this range and approaches a 
value of 1.49 at 10.0 Ry in calculations including polarization and using the length operator. For Br- 
there is minimum near 7.5 Ry, but p is approximately 0.0 instead of - 1.0 as in the OPW, and OPWv 
curves. For 1 ~ there is a similar shallow minimum in p near 8.0 Ry. Thus, as already seen for CI- in 
Figure 6, the APW calculations do not show the deep minima in p in the range 1 .0 to 10.0 Ry that the 
OPW calculations show. Both methods do  yield, however, deep minima below 1.0Ry with p 
approaching - 1 .O. Qualitatively similar results are found in calculations without polarization. 
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4. summary 

From the results and discussion in the previous section some conclusions may 
be drawn about the use of OPW continuum functions in describing photodetach- 
ment and photoionization processes: 

1.  The operator which should be used in connection with OPW continuum 
functions is the dipole length operator. The dipole velocity operator is not suitable 
in this case since the PW is an eigenfunction of this operator. A comparison of the 

TABLE V. Photodetachment cross-sections (Mb) for 1- with polarization and 
spin-orbit coupling. 

h ( i ) a  E ( R y )  oL(APW) '"(APW) 5L(OPW)b ' L ( R ~ G ) '  

4032 0.0 0.0 0 . 0  0.0 0.0 

3 8 6 1  0 .01  1 .8  9.3 1 0 . 5  16 .6  

3 3 0 2  0.05 3 . 9  13 .8  15 .5  17 .5  

3 0 7 9  0.07 5.5 1 5 . 9  1 6 . 2  27 .0  

2978 0.08 7.6 2 0 . 6  21.4 30.3 

2795 0 . 1  1 0 . 9  24.6 25 .2  37 .2  

213 9 0 .2  32 .2  41.4 2 8 . 6  69.0 

1 7 3 2  0.3 59 .0  54 .8  38 .4  92.8 

1 4 5 6  0.4 82.0 60.8 5 1 . 1  97.7 

1 2 5 5  0 .5  91.8 59.5 62.7 89.0 

1 1 0 3  0.6 91.4 53 .0  70.4 73.3 

984 0.7 83 .4  46 .0  73.8 56 .4  

888 0.8 70.7 3 8 . 9  7 3 . 1  41.6 

8 0 9  0 . 9  59.0 3 2 . 1  7 0 . 1  3 0 . 2  

743 1 . 0  48 .2  25.7 6 2 . 0  

4 0 9  2 . 0  6.4 4.2 1 9 . 3  

216 4.0 0 .78  0.49 1 .6  

1 4 6  6 . 0  0.20 0.15 1 . 2  

111 8 . 0  0.10 0.09 3.1 - 
8 9  10.0  0.08 0.07 3.5 - 

- 
- 
- 
- 

a EA = 0.226 Ry, AE,, = 0.69 Ry. 

' Robinson and Geltman, Ref. [28] .  
NO polarization. 

OPWL and OPWv cross-sections with the corresponding APW values, with other 
calculated values, and with experimental values, shows that there is a better 
agreement using the length operator. In addition, as pointed out by Reed et al. 
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[19], only the length operator gives the correct threshold behavior for p-electron 
detachment into a PW final state. Most of the published PW and OPW results 
[I-1 13 for the photoionization of neutral molecules have, however, for reasons of 
convenience, been obtained exclusively with the velocity operator. 

2. In OPW and PW methods the continuum states are essentially free waves. 
As such, they are better approximations for those photodetachment processes 
which result in continuum states with small phase shifts, namely states with high 
angular momentum. Therefore, one would expect that PW and OPW functions 
are poor for describing photodetachment from a p-orbital where one of the final 
states is an s wave. As has also been frequently pointed out, these functions are 
better approximations to continuum states at high rather than low energies. 

3. Although the OPWL values of both (T and p as a function of photon energy 
are in some instances in reasonable agreement with more reliable values, there is 
sufficient disagreement, even for atomic photodetachment, to suggest that indis- 
criminate use of the OPW method to describe photoionization of neutrals is 
unwarranted. In particular, we share the recent concern [37] about the signifi- 
cance of OPW p values [lo] for molecular photoionization. 

It is obvious that the PW and OPW methods are far less accurate (at least at 
very low electron energies) than the APW and other theoretical methods discus- 
sed here, as they do  not correctly account for the interaction between the ejected 
electron and the atomic core. However, the main attraction of the method is that it 
can be readily extended to molecular systems for which the other method are not 
easily applicable. Computationally, it is by far the cheapest method for cross- 
section calculations as all the integrals can be evaluated analytically. 

The major advantage of the APW method* over the other related theoretical 
methods is that the APW method offers a more convenient and computationally 
cheaper means of obtaining continuum wave-functions. Our formulation of the 
method, however, does not explicitly include polarization and exchange poten- 
tials. In all of the other methods reviewed here, at least the continuum function 
and sometimes both the bound and continuum functions, are obtained by the 
numcrical integration of the corresponding radial wave equation. In the APW 
method, however, the solutions of the radial equation for each region of the 
potential are known. The continuum-state solution for the entire range of 
potential is constructed from these “regional” solutions, smoothly joined together 
by the application of suitable boundary conditions. 
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